Properties

Label 325.2.n.f.251.3
Level $325$
Weight $2$
Character 325.251
Analytic conductor $2.595$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(101,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 16x^{8} + 84x^{6} + 163x^{4} + 118x^{2} + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 251.3
Root \(-0.666048i\) of defining polynomial
Character \(\chi\) \(=\) 325.251
Dual form 325.2.n.f.101.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.576815 - 0.333024i) q^{2} +(-1.24146 + 2.15028i) q^{3} +(-0.778190 - 1.34786i) q^{4} +(1.43219 - 0.826874i) q^{6} +(-0.509002 + 0.293872i) q^{7} +2.36872i q^{8} +(-1.58246 - 2.74090i) q^{9} +(-2.58582 - 1.49292i) q^{11} +3.86437 q^{12} +(1.93746 - 3.04076i) q^{13} +0.391466 q^{14} +(-0.767539 + 1.32942i) q^{16} +(-3.28719 - 5.69358i) q^{17} +2.10798i q^{18} +(5.19894 - 3.00161i) q^{19} -1.45932i q^{21} +(0.994358 + 1.72228i) q^{22} +(-0.335352 + 0.580847i) q^{23} +(-5.09340 - 2.94068i) q^{24} +(-2.13020 + 1.10874i) q^{26} +0.409469 q^{27} +(0.792200 + 0.457377i) q^{28} +(3.94620 - 6.83501i) q^{29} -4.53727i q^{31} +(4.98820 - 2.87994i) q^{32} +(6.42039 - 3.70681i) q^{33} +4.37886i q^{34} +(-2.46290 + 4.26588i) q^{36} +(-6.70933 - 3.87363i) q^{37} -3.99844 q^{38} +(4.13319 + 7.94107i) q^{39} +(-0.629569 - 0.363482i) q^{41} +(-0.485990 + 0.841760i) q^{42} +(0.503359 + 0.871843i) q^{43} +4.64711i q^{44} +(0.386872 - 0.223361i) q^{46} +3.15624i q^{47} +(-1.90574 - 3.30084i) q^{48} +(-3.32728 + 5.76302i) q^{49} +16.3237 q^{51} +(-5.60625 - 0.245144i) q^{52} -4.94455 q^{53} +(-0.236188 - 0.136363i) q^{54} +(-0.696101 - 1.20568i) q^{56} +14.9056i q^{57} +(-4.55245 + 2.62836i) q^{58} +(-12.3630 + 7.13776i) q^{59} +(4.03067 + 6.98133i) q^{61} +(-1.51102 + 2.61716i) q^{62} +(1.61095 + 0.930080i) q^{63} -0.766197 q^{64} -4.93783 q^{66} +(0.551372 + 0.318335i) q^{67} +(-5.11612 + 8.86138i) q^{68} +(-0.832654 - 1.44220i) q^{69} +(-7.79982 + 4.50323i) q^{71} +(6.49242 - 3.74840i) q^{72} -16.8200i q^{73} +(2.58003 + 4.46874i) q^{74} +(-8.09153 - 4.67165i) q^{76} +1.75491 q^{77} +(0.260480 - 5.95698i) q^{78} +15.0859 q^{79} +(4.23903 - 7.34222i) q^{81} +(0.242096 + 0.419323i) q^{82} +0.370576i q^{83} +(-1.96697 + 1.13563i) q^{84} -0.670523i q^{86} +(9.79811 + 16.9708i) q^{87} +(3.53631 - 6.12507i) q^{88} +(-8.00015 - 4.61889i) q^{89} +(-0.0925751 + 2.11712i) q^{91} +1.04387 q^{92} +(9.75637 + 5.63284i) q^{93} +(1.05111 - 1.82057i) q^{94} +14.3013i q^{96} +(5.99502 - 3.46123i) q^{97} +(3.83845 - 2.21613i) q^{98} +9.44994i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 3 q^{3} + 6 q^{4} + 9 q^{6} + 6 q^{7} - 8 q^{9} - 9 q^{11} + 28 q^{12} - 8 q^{13} - 8 q^{14} - 12 q^{16} - 8 q^{17} + 12 q^{22} - 13 q^{23} + 42 q^{24} - 17 q^{26} - 30 q^{27} - 33 q^{28} + 7 q^{29}+ \cdots + 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.576815 0.333024i −0.407869 0.235484i 0.282004 0.959413i \(-0.409001\pi\)
−0.689874 + 0.723930i \(0.742334\pi\)
\(3\) −1.24146 + 2.15028i −0.716759 + 1.24146i 0.245519 + 0.969392i \(0.421042\pi\)
−0.962277 + 0.272070i \(0.912292\pi\)
\(4\) −0.778190 1.34786i −0.389095 0.673932i
\(5\) 0 0
\(6\) 1.43219 0.826874i 0.584688 0.337570i
\(7\) −0.509002 + 0.293872i −0.192384 + 0.111073i −0.593098 0.805130i \(-0.702095\pi\)
0.400714 + 0.916203i \(0.368762\pi\)
\(8\) 2.36872i 0.837469i
\(9\) −1.58246 2.74090i −0.527486 0.913632i
\(10\) 0 0
\(11\) −2.58582 1.49292i −0.779653 0.450133i 0.0566544 0.998394i \(-0.481957\pi\)
−0.836307 + 0.548261i \(0.815290\pi\)
\(12\) 3.86437 1.11555
\(13\) 1.93746 3.04076i 0.537355 0.843356i
\(14\) 0.391466 0.104624
\(15\) 0 0
\(16\) −0.767539 + 1.32942i −0.191885 + 0.332354i
\(17\) −3.28719 5.69358i −0.797261 1.38090i −0.921393 0.388631i \(-0.872948\pi\)
0.124132 0.992266i \(-0.460385\pi\)
\(18\) 2.10798i 0.496857i
\(19\) 5.19894 3.00161i 1.19272 0.688617i 0.233797 0.972285i \(-0.424885\pi\)
0.958922 + 0.283668i \(0.0915515\pi\)
\(20\) 0 0
\(21\) 1.45932i 0.318451i
\(22\) 0.994358 + 1.72228i 0.211998 + 0.367191i
\(23\) −0.335352 + 0.580847i −0.0699258 + 0.121115i −0.898868 0.438219i \(-0.855610\pi\)
0.828943 + 0.559334i \(0.188943\pi\)
\(24\) −5.09340 2.94068i −1.03969 0.600263i
\(25\) 0 0
\(26\) −2.13020 + 1.10874i −0.417767 + 0.217441i
\(27\) 0.409469 0.0788023
\(28\) 0.792200 + 0.457377i 0.149712 + 0.0864361i
\(29\) 3.94620 6.83501i 0.732790 1.26923i −0.222896 0.974842i \(-0.571551\pi\)
0.955686 0.294388i \(-0.0951157\pi\)
\(30\) 0 0
\(31\) 4.53727i 0.814917i −0.913224 0.407459i \(-0.866415\pi\)
0.913224 0.407459i \(-0.133585\pi\)
\(32\) 4.98820 2.87994i 0.881797 0.509106i
\(33\) 6.42039 3.70681i 1.11765 0.645273i
\(34\) 4.37886i 0.750967i
\(35\) 0 0
\(36\) −2.46290 + 4.26588i −0.410484 + 0.710979i
\(37\) −6.70933 3.87363i −1.10301 0.636821i −0.165998 0.986126i \(-0.553084\pi\)
−0.937009 + 0.349305i \(0.886418\pi\)
\(38\) −3.99844 −0.648632
\(39\) 4.13319 + 7.94107i 0.661841 + 1.27159i
\(40\) 0 0
\(41\) −0.629569 0.363482i −0.0983222 0.0567663i 0.450033 0.893012i \(-0.351412\pi\)
−0.548355 + 0.836246i \(0.684746\pi\)
\(42\) −0.485990 + 0.841760i −0.0749899 + 0.129886i
\(43\) 0.503359 + 0.871843i 0.0767615 + 0.132955i 0.901851 0.432047i \(-0.142209\pi\)
−0.825089 + 0.565002i \(0.808875\pi\)
\(44\) 4.64711i 0.700578i
\(45\) 0 0
\(46\) 0.386872 0.223361i 0.0570412 0.0329327i
\(47\) 3.15624i 0.460386i 0.973145 + 0.230193i \(0.0739357\pi\)
−0.973145 + 0.230193i \(0.926064\pi\)
\(48\) −1.90574 3.30084i −0.275070 0.476436i
\(49\) −3.32728 + 5.76302i −0.475325 + 0.823288i
\(50\) 0 0
\(51\) 16.3237 2.28577
\(52\) −5.60625 0.245144i −0.777447 0.0339954i
\(53\) −4.94455 −0.679186 −0.339593 0.940573i \(-0.610289\pi\)
−0.339593 + 0.940573i \(0.610289\pi\)
\(54\) −0.236188 0.136363i −0.0321411 0.0185567i
\(55\) 0 0
\(56\) −0.696101 1.20568i −0.0930204 0.161116i
\(57\) 14.9056i 1.97429i
\(58\) −4.55245 + 2.62836i −0.597766 + 0.345120i
\(59\) −12.3630 + 7.13776i −1.60952 + 0.929257i −0.620043 + 0.784568i \(0.712885\pi\)
−0.989477 + 0.144689i \(0.953782\pi\)
\(60\) 0 0
\(61\) 4.03067 + 6.98133i 0.516075 + 0.893867i 0.999826 + 0.0186618i \(0.00594058\pi\)
−0.483751 + 0.875205i \(0.660726\pi\)
\(62\) −1.51102 + 2.61716i −0.191900 + 0.332380i
\(63\) 1.61095 + 0.930080i 0.202960 + 0.117179i
\(64\) −0.766197 −0.0957747
\(65\) 0 0
\(66\) −4.93783 −0.607805
\(67\) 0.551372 + 0.318335i 0.0673608 + 0.0388908i 0.533302 0.845925i \(-0.320951\pi\)
−0.465941 + 0.884816i \(0.654284\pi\)
\(68\) −5.11612 + 8.86138i −0.620421 + 1.07460i
\(69\) −0.832654 1.44220i −0.100240 0.173620i
\(70\) 0 0
\(71\) −7.79982 + 4.50323i −0.925668 + 0.534435i −0.885439 0.464756i \(-0.846142\pi\)
−0.0402292 + 0.999190i \(0.512809\pi\)
\(72\) 6.49242 3.74840i 0.765138 0.441753i
\(73\) 16.8200i 1.96864i −0.176403 0.984318i \(-0.556446\pi\)
0.176403 0.984318i \(-0.443554\pi\)
\(74\) 2.58003 + 4.46874i 0.299922 + 0.519480i
\(75\) 0 0
\(76\) −8.09153 4.67165i −0.928162 0.535875i
\(77\) 1.75491 0.199991
\(78\) 0.260480 5.95698i 0.0294936 0.674495i
\(79\) 15.0859 1.69729 0.848646 0.528961i \(-0.177418\pi\)
0.848646 + 0.528961i \(0.177418\pi\)
\(80\) 0 0
\(81\) 4.23903 7.34222i 0.471003 0.815802i
\(82\) 0.242096 + 0.419323i 0.0267351 + 0.0463065i
\(83\) 0.370576i 0.0406760i 0.999793 + 0.0203380i \(0.00647423\pi\)
−0.999793 + 0.0203380i \(0.993526\pi\)
\(84\) −1.96697 + 1.13563i −0.214614 + 0.123908i
\(85\) 0 0
\(86\) 0.670523i 0.0723043i
\(87\) 9.79811 + 16.9708i 1.05047 + 1.81946i
\(88\) 3.53631 6.12507i 0.376972 0.652935i
\(89\) −8.00015 4.61889i −0.848014 0.489601i 0.0119665 0.999928i \(-0.496191\pi\)
−0.859980 + 0.510327i \(0.829524\pi\)
\(90\) 0 0
\(91\) −0.0925751 + 2.11712i −0.00970451 + 0.221934i
\(92\) 1.04387 0.108831
\(93\) 9.75637 + 5.63284i 1.01169 + 0.584099i
\(94\) 1.05111 1.82057i 0.108413 0.187777i
\(95\) 0 0
\(96\) 14.3013i 1.45962i
\(97\) 5.99502 3.46123i 0.608702 0.351434i −0.163755 0.986501i \(-0.552361\pi\)
0.772457 + 0.635067i \(0.219027\pi\)
\(98\) 3.83845 2.21613i 0.387742 0.223863i
\(99\) 9.44994i 0.949754i
\(100\) 0 0
\(101\) −6.91837 + 11.9830i −0.688403 + 1.19235i 0.283951 + 0.958839i \(0.408355\pi\)
−0.972354 + 0.233511i \(0.924979\pi\)
\(102\) −9.41575 5.43618i −0.932298 0.538262i
\(103\) 4.42075 0.435590 0.217795 0.975995i \(-0.430114\pi\)
0.217795 + 0.975995i \(0.430114\pi\)
\(104\) 7.20272 + 4.58930i 0.706285 + 0.450018i
\(105\) 0 0
\(106\) 2.85209 + 1.64665i 0.277019 + 0.159937i
\(107\) 1.35336 2.34408i 0.130834 0.226611i −0.793164 0.609008i \(-0.791568\pi\)
0.923998 + 0.382397i \(0.124901\pi\)
\(108\) −0.318645 0.551909i −0.0306616 0.0531074i
\(109\) 11.3266i 1.08489i −0.840091 0.542446i \(-0.817498\pi\)
0.840091 0.542446i \(-0.182502\pi\)
\(110\) 0 0
\(111\) 16.6588 9.61794i 1.58118 0.912894i
\(112\) 0.902234i 0.0852531i
\(113\) 1.25454 + 2.17293i 0.118018 + 0.204413i 0.918982 0.394299i \(-0.129013\pi\)
−0.800964 + 0.598712i \(0.795679\pi\)
\(114\) 4.96391 8.59774i 0.464912 0.805252i
\(115\) 0 0
\(116\) −12.2836 −1.14050
\(117\) −11.4004 0.498503i −1.05396 0.0460866i
\(118\) 9.50818 0.875299
\(119\) 3.34637 + 1.93203i 0.306761 + 0.177109i
\(120\) 0 0
\(121\) −1.04237 1.80544i −0.0947609 0.164131i
\(122\) 5.36924i 0.486108i
\(123\) 1.56317 0.902498i 0.140947 0.0813755i
\(124\) −6.11562 + 3.53085i −0.549199 + 0.317080i
\(125\) 0 0
\(126\) −0.619478 1.07297i −0.0551875 0.0955875i
\(127\) −3.00538 + 5.20546i −0.266684 + 0.461910i −0.968003 0.250937i \(-0.919261\pi\)
0.701319 + 0.712847i \(0.252595\pi\)
\(128\) −9.53444 5.50471i −0.842734 0.486553i
\(129\) −2.49961 −0.220078
\(130\) 0 0
\(131\) 1.11618 0.0975211 0.0487605 0.998810i \(-0.484473\pi\)
0.0487605 + 0.998810i \(0.484473\pi\)
\(132\) −9.99256 5.76921i −0.869741 0.502145i
\(133\) −1.76418 + 3.05565i −0.152974 + 0.264958i
\(134\) −0.212026 0.367240i −0.0183163 0.0317247i
\(135\) 0 0
\(136\) 13.4865 7.78644i 1.15646 0.667681i
\(137\) 17.0529 9.84550i 1.45693 0.841158i 0.458069 0.888917i \(-0.348541\pi\)
0.998859 + 0.0477593i \(0.0152080\pi\)
\(138\) 1.10918i 0.0944193i
\(139\) −4.93518 8.54798i −0.418596 0.725030i 0.577202 0.816601i \(-0.304144\pi\)
−0.995799 + 0.0915711i \(0.970811\pi\)
\(140\) 0 0
\(141\) −6.78680 3.91836i −0.571551 0.329985i
\(142\) 5.99873 0.503402
\(143\) −9.54954 + 4.97038i −0.798573 + 0.415644i
\(144\) 4.85839 0.404866
\(145\) 0 0
\(146\) −5.60148 + 9.70204i −0.463581 + 0.802946i
\(147\) −8.26138 14.3091i −0.681387 1.18020i
\(148\) 12.0577i 0.991136i
\(149\) −7.04577 + 4.06788i −0.577212 + 0.333254i −0.760025 0.649894i \(-0.774813\pi\)
0.182813 + 0.983148i \(0.441480\pi\)
\(150\) 0 0
\(151\) 13.0169i 1.05930i −0.848216 0.529650i \(-0.822323\pi\)
0.848216 0.529650i \(-0.177677\pi\)
\(152\) 7.10998 + 12.3148i 0.576695 + 0.998866i
\(153\) −10.4037 + 18.0197i −0.841088 + 1.45681i
\(154\) −1.01226 0.584428i −0.0815702 0.0470946i
\(155\) 0 0
\(156\) 7.48708 11.7506i 0.599446 0.940805i
\(157\) −12.3177 −0.983061 −0.491530 0.870860i \(-0.663562\pi\)
−0.491530 + 0.870860i \(0.663562\pi\)
\(158\) −8.70174 5.02395i −0.692274 0.399684i
\(159\) 6.13847 10.6321i 0.486812 0.843184i
\(160\) 0 0
\(161\) 0.394203i 0.0310675i
\(162\) −4.89027 + 2.82340i −0.384216 + 0.221827i
\(163\) −1.84793 + 1.06690i −0.144741 + 0.0835664i −0.570622 0.821213i \(-0.693298\pi\)
0.425880 + 0.904779i \(0.359964\pi\)
\(164\) 1.13143i 0.0883500i
\(165\) 0 0
\(166\) 0.123411 0.213754i 0.00957852 0.0165905i
\(167\) 0.0948176 + 0.0547430i 0.00733720 + 0.00423614i 0.503664 0.863900i \(-0.331985\pi\)
−0.496327 + 0.868136i \(0.665318\pi\)
\(168\) 3.45673 0.266693
\(169\) −5.49249 11.7827i −0.422499 0.906363i
\(170\) 0 0
\(171\) −16.4542 9.49984i −1.25828 0.726471i
\(172\) 0.783418 1.35692i 0.0597351 0.103464i
\(173\) 4.09968 + 7.10085i 0.311693 + 0.539868i 0.978729 0.205158i \(-0.0657707\pi\)
−0.667036 + 0.745025i \(0.732437\pi\)
\(174\) 13.0520i 0.989471i
\(175\) 0 0
\(176\) 3.96943 2.29175i 0.299207 0.172747i
\(177\) 35.4450i 2.66421i
\(178\) 3.07640 + 5.32848i 0.230586 + 0.399387i
\(179\) −0.0150584 + 0.0260820i −0.00112552 + 0.00194946i −0.866588 0.499025i \(-0.833692\pi\)
0.865462 + 0.500974i \(0.167025\pi\)
\(180\) 0 0
\(181\) 11.4087 0.848004 0.424002 0.905661i \(-0.360625\pi\)
0.424002 + 0.905661i \(0.360625\pi\)
\(182\) 0.758450 1.19036i 0.0562201 0.0882350i
\(183\) −20.0157 −1.47960
\(184\) −1.37586 0.794356i −0.101430 0.0585607i
\(185\) 0 0
\(186\) −3.75175 6.49821i −0.275091 0.476472i
\(187\) 19.6301i 1.43549i
\(188\) 4.25419 2.45616i 0.310269 0.179134i
\(189\) −0.208420 + 0.120332i −0.0151603 + 0.00875283i
\(190\) 0 0
\(191\) 2.66801 + 4.62112i 0.193050 + 0.334373i 0.946260 0.323408i \(-0.104829\pi\)
−0.753209 + 0.657781i \(0.771495\pi\)
\(192\) 0.951205 1.64754i 0.0686473 0.118901i
\(193\) 9.20113 + 5.31227i 0.662312 + 0.382386i 0.793157 0.609017i \(-0.208436\pi\)
−0.130846 + 0.991403i \(0.541769\pi\)
\(194\) −4.61069 −0.331028
\(195\) 0 0
\(196\) 10.3570 0.739787
\(197\) −4.88920 2.82278i −0.348341 0.201115i 0.315613 0.948888i \(-0.397790\pi\)
−0.663954 + 0.747773i \(0.731123\pi\)
\(198\) 3.14706 5.45086i 0.223652 0.387376i
\(199\) 7.79679 + 13.5044i 0.552700 + 0.957305i 0.998079 + 0.0619621i \(0.0197358\pi\)
−0.445378 + 0.895342i \(0.646931\pi\)
\(200\) 0 0
\(201\) −1.36901 + 0.790401i −0.0965628 + 0.0557506i
\(202\) 7.98123 4.60797i 0.561558 0.324215i
\(203\) 4.63871i 0.325574i
\(204\) −12.7029 22.0021i −0.889383 1.54046i
\(205\) 0 0
\(206\) −2.54996 1.47222i −0.177664 0.102574i
\(207\) 2.12272 0.147539
\(208\) 2.55536 + 4.90960i 0.177183 + 0.340419i
\(209\) −17.9247 −1.23988
\(210\) 0 0
\(211\) −8.46675 + 14.6648i −0.582875 + 1.00957i 0.412262 + 0.911066i \(0.364739\pi\)
−0.995137 + 0.0985037i \(0.968594\pi\)
\(212\) 3.84780 + 6.66458i 0.264268 + 0.457725i
\(213\) 22.3623i 1.53224i
\(214\) −1.56127 + 0.901400i −0.106726 + 0.0616184i
\(215\) 0 0
\(216\) 0.969917i 0.0659945i
\(217\) 1.33338 + 2.30948i 0.0905155 + 0.156777i
\(218\) −3.77203 + 6.53335i −0.255474 + 0.442494i
\(219\) 36.1677 + 20.8814i 2.44399 + 1.41104i
\(220\) 0 0
\(221\) −23.6816 1.03553i −1.59300 0.0696570i
\(222\) −12.8120 −0.859886
\(223\) −14.2283 8.21470i −0.952796 0.550097i −0.0588475 0.998267i \(-0.518743\pi\)
−0.893948 + 0.448170i \(0.852076\pi\)
\(224\) −1.69267 + 2.93179i −0.113096 + 0.195888i
\(225\) 0 0
\(226\) 1.67117i 0.111165i
\(227\) 14.9348 8.62262i 0.991259 0.572304i 0.0856085 0.996329i \(-0.472717\pi\)
0.905650 + 0.424025i \(0.139383\pi\)
\(228\) 20.0907 11.5993i 1.33054 0.768186i
\(229\) 10.0809i 0.666162i −0.942898 0.333081i \(-0.891912\pi\)
0.942898 0.333081i \(-0.108088\pi\)
\(230\) 0 0
\(231\) −2.17866 + 3.77355i −0.143345 + 0.248281i
\(232\) 16.1902 + 9.34744i 1.06294 + 0.613689i
\(233\) 19.7103 1.29126 0.645632 0.763648i \(-0.276594\pi\)
0.645632 + 0.763648i \(0.276594\pi\)
\(234\) 6.40988 + 4.08414i 0.419027 + 0.266989i
\(235\) 0 0
\(236\) 19.2415 + 11.1091i 1.25251 + 0.723138i
\(237\) −18.7285 + 32.4388i −1.21655 + 2.10712i
\(238\) −1.28682 2.22884i −0.0834124 0.144474i
\(239\) 11.2372i 0.726871i −0.931619 0.363435i \(-0.881604\pi\)
0.931619 0.363435i \(-0.118396\pi\)
\(240\) 0 0
\(241\) 3.24657 1.87441i 0.209130 0.120741i −0.391777 0.920060i \(-0.628140\pi\)
0.600907 + 0.799319i \(0.294806\pi\)
\(242\) 1.38854i 0.0892586i
\(243\) 11.1394 + 19.2940i 0.714593 + 1.23771i
\(244\) 6.27326 10.8656i 0.401604 0.695599i
\(245\) 0 0
\(246\) −1.20221 −0.0766504
\(247\) 0.945563 21.6243i 0.0601647 1.37592i
\(248\) 10.7475 0.682468
\(249\) −0.796840 0.460056i −0.0504977 0.0291549i
\(250\) 0 0
\(251\) 10.1871 + 17.6446i 0.643007 + 1.11372i 0.984758 + 0.173930i \(0.0556466\pi\)
−0.341751 + 0.939790i \(0.611020\pi\)
\(252\) 2.89512i 0.182375i
\(253\) 1.73432 1.00131i 0.109036 0.0629518i
\(254\) 3.46709 2.00172i 0.217545 0.125599i
\(255\) 0 0
\(256\) 4.43260 + 7.67749i 0.277038 + 0.479843i
\(257\) −7.17856 + 12.4336i −0.447786 + 0.775588i −0.998242 0.0592763i \(-0.981121\pi\)
0.550456 + 0.834864i \(0.314454\pi\)
\(258\) 1.44181 + 0.832429i 0.0897631 + 0.0518247i
\(259\) 4.55341 0.282935
\(260\) 0 0
\(261\) −24.9787 −1.54615
\(262\) −0.643829 0.371715i −0.0397759 0.0229646i
\(263\) 13.3709 23.1590i 0.824484 1.42805i −0.0778291 0.996967i \(-0.524799\pi\)
0.902313 0.431081i \(-0.141868\pi\)
\(264\) 8.78040 + 15.2081i 0.540396 + 0.935994i
\(265\) 0 0
\(266\) 2.03521 1.17503i 0.124787 0.0720456i
\(267\) 19.8638 11.4683i 1.21564 0.701851i
\(268\) 0.990899i 0.0605288i
\(269\) −0.215092 0.372550i −0.0131144 0.0227148i 0.859394 0.511314i \(-0.170841\pi\)
−0.872508 + 0.488600i \(0.837508\pi\)
\(270\) 0 0
\(271\) 10.1868 + 5.88137i 0.618806 + 0.357268i 0.776404 0.630235i \(-0.217042\pi\)
−0.157598 + 0.987503i \(0.550375\pi\)
\(272\) 10.0922 0.611929
\(273\) −4.43746 2.82739i −0.268567 0.171121i
\(274\) −13.1151 −0.792315
\(275\) 0 0
\(276\) −1.29593 + 2.24461i −0.0780056 + 0.135110i
\(277\) −1.98793 3.44320i −0.119443 0.206882i 0.800104 0.599861i \(-0.204778\pi\)
−0.919547 + 0.392980i \(0.871444\pi\)
\(278\) 6.57413i 0.394290i
\(279\) −12.4362 + 7.18003i −0.744534 + 0.429857i
\(280\) 0 0
\(281\) 17.3267i 1.03363i −0.856098 0.516814i \(-0.827118\pi\)
0.856098 0.516814i \(-0.172882\pi\)
\(282\) 2.60982 + 4.52033i 0.155412 + 0.269182i
\(283\) −4.50729 + 7.80686i −0.267931 + 0.464070i −0.968327 0.249684i \(-0.919673\pi\)
0.700397 + 0.713754i \(0.253006\pi\)
\(284\) 12.1395 + 7.00873i 0.720346 + 0.415892i
\(285\) 0 0
\(286\) 7.16357 + 0.313241i 0.423591 + 0.0185223i
\(287\) 0.427269 0.0252209
\(288\) −15.7872 9.11476i −0.930271 0.537092i
\(289\) −13.1113 + 22.7094i −0.771250 + 1.33584i
\(290\) 0 0
\(291\) 17.1879i 1.00757i
\(292\) −22.6711 + 13.0892i −1.32673 + 0.765986i
\(293\) −23.5400 + 13.5908i −1.37522 + 0.793984i −0.991580 0.129498i \(-0.958663\pi\)
−0.383641 + 0.923482i \(0.625330\pi\)
\(294\) 11.0050i 0.641822i
\(295\) 0 0
\(296\) 9.17555 15.8925i 0.533318 0.923734i
\(297\) −1.05881 0.611305i −0.0614385 0.0354715i
\(298\) 5.41881 0.313903
\(299\) 1.11649 + 2.14510i 0.0645681 + 0.124054i
\(300\) 0 0
\(301\) −0.512421 0.295846i −0.0295355 0.0170523i
\(302\) −4.33494 + 7.50833i −0.249448 + 0.432056i
\(303\) −17.1778 29.7528i −0.986838 1.70925i
\(304\) 9.21542i 0.528541i
\(305\) 0 0
\(306\) 12.0020 6.92935i 0.686108 0.396125i
\(307\) 15.4630i 0.882522i 0.897379 + 0.441261i \(0.145469\pi\)
−0.897379 + 0.441261i \(0.854531\pi\)
\(308\) −1.36566 2.36538i −0.0778154 0.134780i
\(309\) −5.48820 + 9.50584i −0.312213 + 0.540768i
\(310\) 0 0
\(311\) −8.50072 −0.482032 −0.241016 0.970521i \(-0.577481\pi\)
−0.241016 + 0.970521i \(0.577481\pi\)
\(312\) −18.8102 + 9.79038i −1.06492 + 0.554271i
\(313\) −4.81358 −0.272080 −0.136040 0.990703i \(-0.543438\pi\)
−0.136040 + 0.990703i \(0.543438\pi\)
\(314\) 7.10504 + 4.10209i 0.400960 + 0.231495i
\(315\) 0 0
\(316\) −11.7397 20.3337i −0.660408 1.14386i
\(317\) 3.35387i 0.188372i 0.995555 + 0.0941860i \(0.0300248\pi\)
−0.995555 + 0.0941860i \(0.969975\pi\)
\(318\) −7.08152 + 4.08852i −0.397112 + 0.229273i
\(319\) −20.4083 + 11.7827i −1.14264 + 0.659706i
\(320\) 0 0
\(321\) 3.36028 + 5.82017i 0.187552 + 0.324850i
\(322\) −0.131279 + 0.227382i −0.00731589 + 0.0126715i
\(323\) −34.1798 19.7337i −1.90182 1.09801i
\(324\) −13.1951 −0.733060
\(325\) 0 0
\(326\) 1.42122 0.0787141
\(327\) 24.3553 + 14.0616i 1.34685 + 0.777606i
\(328\) 0.860987 1.49127i 0.0475400 0.0823418i
\(329\) −0.927533 1.60653i −0.0511365 0.0885711i
\(330\) 0 0
\(331\) −17.8085 + 10.2817i −0.978842 + 0.565135i −0.901920 0.431902i \(-0.857843\pi\)
−0.0769218 + 0.997037i \(0.524509\pi\)
\(332\) 0.499486 0.288378i 0.0274129 0.0158268i
\(333\) 24.5194i 1.34366i
\(334\) −0.0364614 0.0631531i −0.00199508 0.00345558i
\(335\) 0 0
\(336\) 1.94005 + 1.12009i 0.105838 + 0.0611059i
\(337\) 15.3344 0.835316 0.417658 0.908604i \(-0.362851\pi\)
0.417658 + 0.908604i \(0.362851\pi\)
\(338\) −0.755785 + 8.62558i −0.0411093 + 0.469170i
\(339\) −6.22988 −0.338361
\(340\) 0 0
\(341\) −6.77378 + 11.7325i −0.366821 + 0.635352i
\(342\) 6.32735 + 10.9593i 0.342144 + 0.592611i
\(343\) 8.02539i 0.433330i
\(344\) −2.06515 + 1.19232i −0.111346 + 0.0642854i
\(345\) 0 0
\(346\) 5.46116i 0.293594i
\(347\) −7.52585 13.0352i −0.404009 0.699764i 0.590197 0.807260i \(-0.299050\pi\)
−0.994206 + 0.107495i \(0.965717\pi\)
\(348\) 15.2496 26.4130i 0.817463 1.41589i
\(349\) 26.8768 + 15.5173i 1.43868 + 0.830623i 0.997758 0.0669222i \(-0.0213179\pi\)
0.440923 + 0.897545i \(0.354651\pi\)
\(350\) 0 0
\(351\) 0.793330 1.24510i 0.0423448 0.0664584i
\(352\) −17.1981 −0.916661
\(353\) 24.7048 + 14.2633i 1.31491 + 0.759161i 0.982904 0.184118i \(-0.0589427\pi\)
0.332002 + 0.943279i \(0.392276\pi\)
\(354\) −11.8040 + 20.4452i −0.627378 + 1.08665i
\(355\) 0 0
\(356\) 14.3775i 0.762005i
\(357\) −8.30879 + 4.79708i −0.439748 + 0.253888i
\(358\) 0.0173718 0.0100296i 0.000918131 0.000530083i
\(359\) 16.4735i 0.869437i −0.900566 0.434718i \(-0.856848\pi\)
0.900566 0.434718i \(-0.143152\pi\)
\(360\) 0 0
\(361\) 8.51935 14.7559i 0.448387 0.776628i
\(362\) −6.58072 3.79938i −0.345875 0.199691i
\(363\) 5.17625 0.271683
\(364\) 2.92563 1.52274i 0.153345 0.0798134i
\(365\) 0 0
\(366\) 11.5453 + 6.66571i 0.603485 + 0.348422i
\(367\) 1.88471 3.26441i 0.0983809 0.170401i −0.812634 0.582775i \(-0.801967\pi\)
0.911015 + 0.412374i \(0.135300\pi\)
\(368\) −0.514792 0.891646i −0.0268354 0.0464803i
\(369\) 2.30078i 0.119774i
\(370\) 0 0
\(371\) 2.51678 1.45306i 0.130665 0.0754394i
\(372\) 17.5337i 0.909080i
\(373\) 6.63155 + 11.4862i 0.343368 + 0.594732i 0.985056 0.172235i \(-0.0550987\pi\)
−0.641688 + 0.766966i \(0.721765\pi\)
\(374\) 6.53729 11.3229i 0.338035 0.585494i
\(375\) 0 0
\(376\) −7.47626 −0.385559
\(377\) −13.1381 25.2420i −0.676644 1.30003i
\(378\) 0.160293 0.00824459
\(379\) 19.0442 + 10.9952i 0.978235 + 0.564784i 0.901737 0.432285i \(-0.142293\pi\)
0.0764985 + 0.997070i \(0.475626\pi\)
\(380\) 0 0
\(381\) −7.46212 12.9248i −0.382296 0.662156i
\(382\) 3.55404i 0.181841i
\(383\) 19.6380 11.3380i 1.00345 0.579344i 0.0941845 0.995555i \(-0.469976\pi\)
0.909268 + 0.416211i \(0.136642\pi\)
\(384\) 23.6733 13.6678i 1.20807 0.697481i
\(385\) 0 0
\(386\) −3.53823 6.12839i −0.180091 0.311927i
\(387\) 1.59309 2.75931i 0.0809812 0.140264i
\(388\) −9.33053 5.38698i −0.473686 0.273483i
\(389\) −18.3322 −0.929480 −0.464740 0.885447i \(-0.653852\pi\)
−0.464740 + 0.885447i \(0.653852\pi\)
\(390\) 0 0
\(391\) 4.40947 0.222996
\(392\) −13.6510 7.88139i −0.689478 0.398070i
\(393\) −1.38569 + 2.40009i −0.0698991 + 0.121069i
\(394\) 1.88011 + 3.25644i 0.0947184 + 0.164057i
\(395\) 0 0
\(396\) 12.7372 7.35385i 0.640070 0.369545i
\(397\) 4.63902 2.67834i 0.232826 0.134422i −0.379049 0.925377i \(-0.623749\pi\)
0.611875 + 0.790954i \(0.290416\pi\)
\(398\) 10.3861i 0.520607i
\(399\) −4.38033 7.58695i −0.219291 0.379822i
\(400\) 0 0
\(401\) 9.93714 + 5.73721i 0.496237 + 0.286503i 0.727158 0.686470i \(-0.240841\pi\)
−0.230921 + 0.972972i \(0.574174\pi\)
\(402\) 1.05289 0.0525134
\(403\) −13.7968 8.79078i −0.687265 0.437900i
\(404\) 21.5352 1.07142
\(405\) 0 0
\(406\) 1.54480 2.67568i 0.0766672 0.132792i
\(407\) 11.5661 + 20.0330i 0.573308 + 0.992999i
\(408\) 38.6663i 1.91427i
\(409\) −15.0683 + 8.69969i −0.745080 + 0.430172i −0.823913 0.566716i \(-0.808214\pi\)
0.0788336 + 0.996888i \(0.474880\pi\)
\(410\) 0 0
\(411\) 48.8912i 2.41163i
\(412\) −3.44019 5.95858i −0.169486 0.293558i
\(413\) 4.19518 7.26626i 0.206431 0.357549i
\(414\) −1.22442 0.706918i −0.0601768 0.0347431i
\(415\) 0 0
\(416\) 0.907233 20.7477i 0.0444808 1.01724i
\(417\) 24.5073 1.20013
\(418\) 10.3392 + 5.96935i 0.505708 + 0.291970i
\(419\) 11.2389 19.4664i 0.549058 0.950996i −0.449282 0.893390i \(-0.648320\pi\)
0.998339 0.0576056i \(-0.0183466\pi\)
\(420\) 0 0
\(421\) 5.16889i 0.251916i −0.992036 0.125958i \(-0.959799\pi\)
0.992036 0.125958i \(-0.0402005\pi\)
\(422\) 9.76749 5.63926i 0.475474 0.274515i
\(423\) 8.65094 4.99462i 0.420623 0.242847i
\(424\) 11.7122i 0.568797i
\(425\) 0 0
\(426\) −7.44720 + 12.8989i −0.360818 + 0.624955i
\(427\) −4.10324 2.36900i −0.198569 0.114644i
\(428\) −4.21267 −0.203627
\(429\) 1.16771 26.7047i 0.0563777 1.28931i
\(430\) 0 0
\(431\) −22.7964 13.1615i −1.09806 0.633968i −0.162352 0.986733i \(-0.551908\pi\)
−0.935712 + 0.352765i \(0.885241\pi\)
\(432\) −0.314284 + 0.544355i −0.0151210 + 0.0261903i
\(433\) 9.45546 + 16.3773i 0.454401 + 0.787045i 0.998654 0.0518762i \(-0.0165201\pi\)
−0.544253 + 0.838921i \(0.683187\pi\)
\(434\) 1.77619i 0.0852596i
\(435\) 0 0
\(436\) −15.2667 + 8.81425i −0.731144 + 0.422126i
\(437\) 4.02639i 0.192608i
\(438\) −13.9080 24.0894i −0.664552 1.15104i
\(439\) 13.7455 23.8079i 0.656037 1.13629i −0.325596 0.945509i \(-0.605565\pi\)
0.981633 0.190780i \(-0.0611018\pi\)
\(440\) 0 0
\(441\) 21.0611 1.00291
\(442\) 13.3151 + 8.48386i 0.633333 + 0.403536i
\(443\) 19.2846 0.916240 0.458120 0.888890i \(-0.348523\pi\)
0.458120 + 0.888890i \(0.348523\pi\)
\(444\) −25.9274 14.9692i −1.23046 0.710405i
\(445\) 0 0
\(446\) 5.47138 + 9.47672i 0.259078 + 0.448735i
\(447\) 20.2005i 0.955450i
\(448\) 0.389996 0.225164i 0.0184256 0.0106380i
\(449\) 5.66090 3.26832i 0.267154 0.154242i −0.360439 0.932783i \(-0.617373\pi\)
0.627594 + 0.778541i \(0.284040\pi\)
\(450\) 0 0
\(451\) 1.08530 + 1.87979i 0.0511048 + 0.0885161i
\(452\) 1.95255 3.38191i 0.0918401 0.159072i
\(453\) 27.9899 + 16.1600i 1.31508 + 0.759262i
\(454\) −11.4862 −0.539072
\(455\) 0 0
\(456\) −35.3071 −1.65341
\(457\) 12.4763 + 7.20317i 0.583614 + 0.336950i 0.762569 0.646907i \(-0.223938\pi\)
−0.178954 + 0.983857i \(0.557271\pi\)
\(458\) −3.35717 + 5.81478i −0.156870 + 0.271707i
\(459\) −1.34600 2.33135i −0.0628260 0.108818i
\(460\) 0 0
\(461\) 11.4829 6.62968i 0.534814 0.308775i −0.208161 0.978095i \(-0.566748\pi\)
0.742975 + 0.669320i \(0.233414\pi\)
\(462\) 2.51336 1.45109i 0.116932 0.0675108i
\(463\) 18.8671i 0.876827i −0.898773 0.438413i \(-0.855541\pi\)
0.898773 0.438413i \(-0.144459\pi\)
\(464\) 6.05772 + 10.4923i 0.281223 + 0.487092i
\(465\) 0 0
\(466\) −11.3692 6.56400i −0.526667 0.304072i
\(467\) −21.8870 −1.01281 −0.506406 0.862295i \(-0.669026\pi\)
−0.506406 + 0.862295i \(0.669026\pi\)
\(468\) 8.19974 + 15.7541i 0.379033 + 0.728233i
\(469\) −0.374199 −0.0172789
\(470\) 0 0
\(471\) 15.2920 26.4865i 0.704617 1.22043i
\(472\) −16.9073 29.2844i −0.778224 1.34792i
\(473\) 3.00590i 0.138212i
\(474\) 21.6058 12.4741i 0.992386 0.572954i
\(475\) 0 0
\(476\) 6.01394i 0.275648i
\(477\) 7.82453 + 13.5525i 0.358261 + 0.620526i
\(478\) −3.74224 + 6.48175i −0.171166 + 0.296468i
\(479\) −24.3402 14.0528i −1.11213 0.642089i −0.172751 0.984966i \(-0.555266\pi\)
−0.939381 + 0.342876i \(0.888599\pi\)
\(480\) 0 0
\(481\) −24.7779 + 12.8965i −1.12977 + 0.588028i
\(482\) −2.49689 −0.113730
\(483\) 0.847645 + 0.489388i 0.0385692 + 0.0222679i
\(484\) −1.62232 + 2.80995i −0.0737420 + 0.127725i
\(485\) 0 0
\(486\) 14.8387i 0.673099i
\(487\) −15.8678 + 9.16127i −0.719038 + 0.415137i −0.814398 0.580306i \(-0.802933\pi\)
0.0953608 + 0.995443i \(0.469600\pi\)
\(488\) −16.5368 + 9.54753i −0.748586 + 0.432196i
\(489\) 5.29809i 0.239588i
\(490\) 0 0
\(491\) 10.8603 18.8106i 0.490118 0.848908i −0.509818 0.860282i \(-0.670287\pi\)
0.999935 + 0.0113739i \(0.00362052\pi\)
\(492\) −2.43289 1.40463i −0.109683 0.0633256i
\(493\) −51.8876 −2.33690
\(494\) −7.74681 + 12.1583i −0.348546 + 0.547028i
\(495\) 0 0
\(496\) 6.03192 + 3.48253i 0.270841 + 0.156370i
\(497\) 2.64675 4.58430i 0.118723 0.205634i
\(498\) 0.306419 + 0.530734i 0.0137310 + 0.0237828i
\(499\) 14.7418i 0.659933i −0.943993 0.329966i \(-0.892963\pi\)
0.943993 0.329966i \(-0.107037\pi\)
\(500\) 0 0
\(501\) −0.235425 + 0.135923i −0.0105180 + 0.00607257i
\(502\) 13.5703i 0.605670i
\(503\) 18.5694 + 32.1631i 0.827969 + 1.43408i 0.899629 + 0.436655i \(0.143837\pi\)
−0.0716604 + 0.997429i \(0.522830\pi\)
\(504\) −2.20310 + 3.81588i −0.0981338 + 0.169973i
\(505\) 0 0
\(506\) −1.33384 −0.0592964
\(507\) 32.1548 + 2.81745i 1.42805 + 0.125127i
\(508\) 9.35501 0.415062
\(509\) −11.0110 6.35722i −0.488055 0.281779i 0.235712 0.971823i \(-0.424258\pi\)
−0.723767 + 0.690044i \(0.757591\pi\)
\(510\) 0 0
\(511\) 4.94294 + 8.56142i 0.218663 + 0.378735i
\(512\) 16.1142i 0.712154i
\(513\) 2.12881 1.22907i 0.0939891 0.0542646i
\(514\) 8.28139 4.78126i 0.365276 0.210892i
\(515\) 0 0
\(516\) 1.94517 + 3.36913i 0.0856312 + 0.148318i
\(517\) 4.71203 8.16147i 0.207235 0.358941i
\(518\) −2.62647 1.51640i −0.115401 0.0666266i
\(519\) −20.3584 −0.893634
\(520\) 0 0
\(521\) 34.3347 1.50423 0.752116 0.659031i \(-0.229033\pi\)
0.752116 + 0.659031i \(0.229033\pi\)
\(522\) 14.4081 + 8.31852i 0.630626 + 0.364092i
\(523\) −11.9219 + 20.6494i −0.521309 + 0.902934i 0.478384 + 0.878151i \(0.341223\pi\)
−0.999693 + 0.0247827i \(0.992111\pi\)
\(524\) −0.868600 1.50446i −0.0379450 0.0657226i
\(525\) 0 0
\(526\) −15.4250 + 8.90565i −0.672564 + 0.388305i
\(527\) −25.8333 + 14.9149i −1.12532 + 0.649702i
\(528\) 11.3805i 0.495272i
\(529\) 11.2751 + 19.5290i 0.490221 + 0.849087i
\(530\) 0 0
\(531\) 39.1277 + 22.5904i 1.69800 + 0.980339i
\(532\) 5.49147 0.238085
\(533\) −2.32503 + 1.21014i −0.100708 + 0.0524169i
\(534\) −15.2769 −0.661098
\(535\) 0 0
\(536\) −0.754046 + 1.30605i −0.0325698 + 0.0564126i
\(537\) −0.0373890 0.0647596i −0.00161345 0.00279458i
\(538\) 0.286523i 0.0123529i
\(539\) 17.2075 9.93473i 0.741178 0.427919i
\(540\) 0 0
\(541\) 16.3426i 0.702624i −0.936258 0.351312i \(-0.885736\pi\)
0.936258 0.351312i \(-0.114264\pi\)
\(542\) −3.91728 6.78492i −0.168261 0.291437i
\(543\) −14.1635 + 24.5319i −0.607814 + 1.05277i
\(544\) −32.7943 18.9338i −1.40605 0.811781i
\(545\) 0 0
\(546\) 1.61801 + 3.10866i 0.0692442 + 0.133038i
\(547\) 3.13542 0.134061 0.0670305 0.997751i \(-0.478648\pi\)
0.0670305 + 0.997751i \(0.478648\pi\)
\(548\) −26.5408 15.3233i −1.13377 0.654580i
\(549\) 12.7567 22.0953i 0.544444 0.943004i
\(550\) 0 0
\(551\) 47.3798i 2.01845i
\(552\) 3.41617 1.97233i 0.145402 0.0839477i
\(553\) −7.67873 + 4.43331i −0.326533 + 0.188524i
\(554\) 2.64812i 0.112508i
\(555\) 0 0
\(556\) −7.68101 + 13.3039i −0.325747 + 0.564211i
\(557\) −20.4120 11.7849i −0.864883 0.499341i 0.000761144 1.00000i \(-0.499758\pi\)
−0.865645 + 0.500659i \(0.833091\pi\)
\(558\) 9.56449 0.404897
\(559\) 3.62631 + 0.158567i 0.153377 + 0.00670668i
\(560\) 0 0
\(561\) −42.2101 24.3700i −1.78211 1.02890i
\(562\) −5.77022 + 9.99432i −0.243402 + 0.421585i
\(563\) −7.30716 12.6564i −0.307960 0.533402i 0.669956 0.742401i \(-0.266313\pi\)
−0.977916 + 0.208999i \(0.932980\pi\)
\(564\) 12.1969i 0.513583i
\(565\) 0 0
\(566\) 5.19974 3.00207i 0.218561 0.126187i
\(567\) 4.98293i 0.209263i
\(568\) −10.6669 18.4756i −0.447573 0.775218i
\(569\) −8.80300 + 15.2472i −0.369041 + 0.639198i −0.989416 0.145108i \(-0.953647\pi\)
0.620375 + 0.784305i \(0.286980\pi\)
\(570\) 0 0
\(571\) −3.82424 −0.160039 −0.0800197 0.996793i \(-0.525498\pi\)
−0.0800197 + 0.996793i \(0.525498\pi\)
\(572\) 14.1308 + 9.00359i 0.590836 + 0.376459i
\(573\) −13.2489 −0.553482
\(574\) −0.246455 0.142291i −0.0102868 0.00593910i
\(575\) 0 0
\(576\) 1.21247 + 2.10007i 0.0505198 + 0.0875028i
\(577\) 6.37523i 0.265405i −0.991156 0.132702i \(-0.957635\pi\)
0.991156 0.132702i \(-0.0423654\pi\)
\(578\) 15.1255 8.73273i 0.629139 0.363234i
\(579\) −22.8457 + 13.1900i −0.949435 + 0.548156i
\(580\) 0 0
\(581\) −0.108902 0.188624i −0.00451801 0.00782543i
\(582\) 5.72399 9.91424i 0.237267 0.410959i
\(583\) 12.7857 + 7.38182i 0.529529 + 0.305724i
\(584\) 39.8419 1.64867
\(585\) 0 0
\(586\) 18.1043 0.747881
\(587\) −40.9293 23.6306i −1.68933 0.975338i −0.955026 0.296522i \(-0.904173\pi\)
−0.734308 0.678816i \(-0.762493\pi\)
\(588\) −12.8578 + 22.2704i −0.530249 + 0.918418i
\(589\) −13.6191 23.5890i −0.561166 0.971967i
\(590\) 0 0
\(591\) 12.1395 7.00875i 0.499353 0.288301i
\(592\) 10.2993 5.94633i 0.423301 0.244393i
\(593\) 6.35373i 0.260916i 0.991454 + 0.130458i \(0.0416448\pi\)
−0.991454 + 0.130458i \(0.958355\pi\)
\(594\) 0.407159 + 0.705219i 0.0167059 + 0.0289355i
\(595\) 0 0
\(596\) 10.9659 + 6.33117i 0.449181 + 0.259335i
\(597\) −38.7177 −1.58461
\(598\) 0.0703627 1.60914i 0.00287735 0.0658026i
\(599\) 43.2542 1.76732 0.883658 0.468132i \(-0.155073\pi\)
0.883658 + 0.468132i \(0.155073\pi\)
\(600\) 0 0
\(601\) 2.89558 5.01529i 0.118113 0.204578i −0.800907 0.598789i \(-0.795649\pi\)
0.919020 + 0.394211i \(0.128982\pi\)
\(602\) 0.197048 + 0.341297i 0.00803107 + 0.0139102i
\(603\) 2.01500i 0.0820573i
\(604\) −17.5450 + 10.1296i −0.713896 + 0.412168i
\(605\) 0 0
\(606\) 22.8825i 0.929537i
\(607\) −11.6175 20.1221i −0.471540 0.816731i 0.527930 0.849288i \(-0.322968\pi\)
−0.999470 + 0.0325569i \(0.989635\pi\)
\(608\) 17.2889 29.9453i 0.701158 1.21444i
\(609\) −9.97450 5.75878i −0.404187 0.233358i
\(610\) 0 0
\(611\) 9.59739 + 6.11510i 0.388269 + 0.247391i
\(612\) 32.3842 1.30905
\(613\) 20.1997 + 11.6623i 0.815857 + 0.471035i 0.848986 0.528416i \(-0.177214\pi\)
−0.0331286 + 0.999451i \(0.510547\pi\)
\(614\) 5.14956 8.91930i 0.207819 0.359954i
\(615\) 0 0
\(616\) 4.15690i 0.167486i
\(617\) 15.8269 9.13768i 0.637168 0.367869i −0.146355 0.989232i \(-0.546754\pi\)
0.783523 + 0.621363i \(0.213421\pi\)
\(618\) 6.33135 3.65540i 0.254684 0.147042i
\(619\) 45.4589i 1.82715i 0.406675 + 0.913573i \(0.366688\pi\)
−0.406675 + 0.913573i \(0.633312\pi\)
\(620\) 0 0
\(621\) −0.137316 + 0.237839i −0.00551032 + 0.00954415i
\(622\) 4.90334 + 2.83095i 0.196606 + 0.113511i
\(623\) 5.42945 0.217526
\(624\) −13.7294 0.600344i −0.549615 0.0240330i
\(625\) 0 0
\(626\) 2.77654 + 1.60304i 0.110973 + 0.0640703i
\(627\) 22.2528 38.5430i 0.888692 1.53926i
\(628\) 9.58552 + 16.6026i 0.382504 + 0.662516i
\(629\) 50.9335i 2.03085i
\(630\) 0 0
\(631\) −33.5920 + 19.3944i −1.33728 + 0.772077i −0.986403 0.164346i \(-0.947449\pi\)
−0.350874 + 0.936423i \(0.614115\pi\)
\(632\) 35.7342i 1.42143i
\(633\) −21.0223 36.4117i −0.835561 1.44723i
\(634\) 1.11692 1.93456i 0.0443585 0.0768312i
\(635\) 0 0
\(636\) −19.1076 −0.757665
\(637\) 11.0775 + 21.2831i 0.438906 + 0.843267i
\(638\) 15.6957 0.621400
\(639\) 24.6858 + 14.2523i 0.976553 + 0.563813i
\(640\) 0 0
\(641\) 10.4454 + 18.0920i 0.412569 + 0.714591i 0.995170 0.0981679i \(-0.0312982\pi\)
−0.582601 + 0.812758i \(0.697965\pi\)
\(642\) 4.47621i 0.176662i
\(643\) 1.24581 0.719272i 0.0491301 0.0283653i −0.475234 0.879860i \(-0.657636\pi\)
0.524364 + 0.851494i \(0.324303\pi\)
\(644\) −0.531332 + 0.306765i −0.0209374 + 0.0120882i
\(645\) 0 0
\(646\) 13.1436 + 22.7654i 0.517129 + 0.895694i
\(647\) −24.0711 + 41.6923i −0.946331 + 1.63909i −0.193268 + 0.981146i \(0.561909\pi\)
−0.753063 + 0.657948i \(0.771425\pi\)
\(648\) 17.3917 + 10.0411i 0.683209 + 0.394451i
\(649\) 42.6244 1.67316
\(650\) 0 0
\(651\) −6.62134 −0.259511
\(652\) 2.87609 + 1.66051i 0.112636 + 0.0650305i
\(653\) 18.7787 32.5257i 0.734869 1.27283i −0.219911 0.975520i \(-0.570577\pi\)
0.954781 0.297311i \(-0.0960898\pi\)
\(654\) −9.36567 16.2218i −0.366227 0.634323i
\(655\) 0 0
\(656\) 0.966438 0.557973i 0.0377331 0.0217852i
\(657\) −46.1020 + 26.6170i −1.79861 + 1.03843i
\(658\) 1.23556i 0.0481672i
\(659\) 6.65871 + 11.5332i 0.259387 + 0.449271i 0.966078 0.258251i \(-0.0831463\pi\)
−0.706691 + 0.707522i \(0.749813\pi\)
\(660\) 0 0
\(661\) −32.4052 18.7091i −1.26041 0.727701i −0.287260 0.957853i \(-0.592744\pi\)
−0.973155 + 0.230152i \(0.926078\pi\)
\(662\) 13.6962 0.532320
\(663\) 31.6265 49.6365i 1.22827 1.92772i
\(664\) −0.877790 −0.0340649
\(665\) 0 0
\(666\) 8.16556 14.1432i 0.316409 0.548036i
\(667\) 2.64673 + 4.58427i 0.102482 + 0.177504i
\(668\) 0.170402i 0.00659304i
\(669\) 35.3277 20.3965i 1.36585 0.788573i
\(670\) 0 0
\(671\) 24.0699i 0.929208i
\(672\) −4.20276 7.27940i −0.162125 0.280809i
\(673\) 23.7113 41.0691i 0.914002 1.58310i 0.105647 0.994404i \(-0.466309\pi\)
0.808356 0.588695i \(-0.200358\pi\)
\(674\) −8.84509 5.10671i −0.340700 0.196703i
\(675\) 0 0
\(676\) −11.6073 + 16.5723i −0.446435 + 0.637397i
\(677\) −5.91735 −0.227422 −0.113711 0.993514i \(-0.536274\pi\)
−0.113711 + 0.993514i \(0.536274\pi\)
\(678\) 3.59348 + 2.07470i 0.138007 + 0.0796783i
\(679\) −2.03432 + 3.52354i −0.0780699 + 0.135221i
\(680\) 0 0
\(681\) 42.8186i 1.64081i
\(682\) 7.81443 4.51166i 0.299230 0.172761i
\(683\) 12.9911 7.50043i 0.497092 0.286996i −0.230420 0.973091i \(-0.574010\pi\)
0.727512 + 0.686095i \(0.240677\pi\)
\(684\) 29.5707i 1.13067i
\(685\) 0 0
\(686\) −2.67265 + 4.62916i −0.102042 + 0.176742i
\(687\) 21.6766 + 12.5150i 0.827014 + 0.477477i
\(688\) −1.54539 −0.0589175
\(689\) −9.57987 + 15.0352i −0.364964 + 0.572795i
\(690\) 0 0
\(691\) 28.2700 + 16.3217i 1.07544 + 0.620907i 0.929663 0.368410i \(-0.120098\pi\)
0.145779 + 0.989317i \(0.453431\pi\)
\(692\) 6.38066 11.0516i 0.242556 0.420120i
\(693\) −2.77707 4.81003i −0.105492 0.182718i
\(694\) 10.0252i 0.380550i
\(695\) 0 0
\(696\) −40.1991 + 23.2090i −1.52374 + 0.879734i
\(697\) 4.77934i 0.181030i
\(698\) −10.3353 17.9012i −0.391196 0.677571i
\(699\) −24.4696 + 42.3826i −0.925525 + 1.60306i
\(700\) 0 0
\(701\) −7.83225 −0.295820 −0.147910 0.989001i \(-0.547255\pi\)
−0.147910 + 0.989001i \(0.547255\pi\)
\(702\) −0.872252 + 0.453993i −0.0329210 + 0.0171349i
\(703\) −46.5086 −1.75410
\(704\) 1.98125 + 1.14387i 0.0746710 + 0.0431113i
\(705\) 0 0
\(706\) −9.50007 16.4546i −0.357540 0.619277i
\(707\) 8.13246i 0.305853i
\(708\) −47.7751 + 27.5830i −1.79550 + 1.03663i
\(709\) 27.3294 15.7786i 1.02638 0.592580i 0.110433 0.993884i \(-0.464776\pi\)
0.915945 + 0.401304i \(0.131443\pi\)
\(710\) 0 0
\(711\) −23.8727 41.3488i −0.895297 1.55070i
\(712\) 10.9408 18.9501i 0.410026 0.710185i
\(713\) 2.63546 + 1.52158i 0.0986987 + 0.0569837i
\(714\) 6.39017 0.239146
\(715\) 0 0
\(716\) 0.0468733 0.00175174
\(717\) 24.1630 + 13.9505i 0.902383 + 0.520991i
\(718\) −5.48606 + 9.50214i −0.204738 + 0.354617i
\(719\) −8.91325 15.4382i −0.332408 0.575748i 0.650575 0.759442i \(-0.274528\pi\)
−0.982984 + 0.183694i \(0.941195\pi\)
\(720\) 0 0
\(721\) −2.25017 + 1.29914i −0.0838007 + 0.0483824i
\(722\) −9.82816 + 5.67429i −0.365766 + 0.211175i
\(723\) 9.30803i 0.346169i
\(724\) −8.87816 15.3774i −0.329954 0.571498i
\(725\) 0 0
\(726\) −2.98574 1.72382i −0.110811 0.0639768i
\(727\) 4.62813 0.171648 0.0858240 0.996310i \(-0.472648\pi\)
0.0858240 + 0.996310i \(0.472648\pi\)
\(728\) −5.01486 0.219285i −0.185863 0.00812722i
\(729\) −29.8824 −1.10675
\(730\) 0 0
\(731\) 3.30928 5.73183i 0.122398 0.211999i
\(732\) 15.5760 + 26.9785i 0.575706 + 0.997152i
\(733\) 9.92820i 0.366706i −0.983047 0.183353i \(-0.941305\pi\)
0.983047 0.183353i \(-0.0586952\pi\)
\(734\) −2.17425 + 1.25531i −0.0802531 + 0.0463342i
\(735\) 0 0
\(736\) 3.86318i 0.142399i
\(737\) −0.950497 1.64631i −0.0350120 0.0606426i
\(738\) 0.766214 1.32712i 0.0282047 0.0488520i
\(739\) −24.7225 14.2735i −0.909432 0.525061i −0.0291834 0.999574i \(-0.509291\pi\)
−0.880248 + 0.474513i \(0.842624\pi\)
\(740\) 0 0
\(741\) 45.3243 + 28.8789i 1.66503 + 1.06089i
\(742\) −1.93562 −0.0710589
\(743\) 20.0170 + 11.5568i 0.734354 + 0.423979i 0.820013 0.572345i \(-0.193966\pi\)
−0.0856590 + 0.996325i \(0.527300\pi\)
\(744\) −13.3426 + 23.1101i −0.489165 + 0.847258i
\(745\) 0 0
\(746\) 8.83386i 0.323430i
\(747\) 1.01571 0.586420i 0.0371629 0.0214560i
\(748\) 26.4587 15.2759i 0.967425 0.558543i
\(749\) 1.59085i 0.0581285i
\(750\) 0 0
\(751\) 12.8691 22.2900i 0.469601 0.813372i −0.529795 0.848126i \(-0.677731\pi\)
0.999396 + 0.0347534i \(0.0110646\pi\)
\(752\) −4.19597 2.42254i −0.153011 0.0883410i
\(753\) −50.5878 −1.84352
\(754\) −0.827980 + 18.9353i −0.0301533 + 0.689581i
\(755\) 0 0
\(756\) 0.324381 + 0.187282i 0.0117976 + 0.00681137i
\(757\) 7.09047 12.2811i 0.257708 0.446363i −0.707920 0.706293i \(-0.750366\pi\)
0.965627 + 0.259930i \(0.0836996\pi\)
\(758\) −7.32332 12.6844i −0.265995 0.460717i
\(759\) 4.97235i 0.180485i
\(760\) 0 0
\(761\) 21.1030 12.1838i 0.764983 0.441663i −0.0660987 0.997813i \(-0.521055\pi\)
0.831082 + 0.556150i \(0.187722\pi\)
\(762\) 9.94026i 0.360098i
\(763\) 3.32857 + 5.76526i 0.120502 + 0.208716i
\(764\) 4.15243 7.19222i 0.150230 0.260206i
\(765\) 0 0
\(766\) −15.1033 −0.545704
\(767\) −2.24852 + 51.4220i −0.0811895 + 1.85674i
\(768\) −22.0116 −0.794276
\(769\) −10.2768 5.93333i −0.370592 0.213961i 0.303125 0.952951i \(-0.401970\pi\)
−0.673717 + 0.738989i \(0.735303\pi\)
\(770\) 0 0
\(771\) −17.8238 30.8717i −0.641909 1.11182i
\(772\) 16.5358i 0.595137i
\(773\) −1.52359 + 0.879642i −0.0547995 + 0.0316385i −0.527149 0.849773i \(-0.676739\pi\)
0.472350 + 0.881411i \(0.343406\pi\)
\(774\) −1.83783 + 1.06107i −0.0660595 + 0.0381395i
\(775\) 0 0
\(776\) 8.19867 + 14.2005i 0.294315 + 0.509769i
\(777\) −5.65289 + 9.79109i −0.202796 + 0.351253i
\(778\) 10.5743 + 6.10507i 0.379107 + 0.218877i
\(779\) −4.36413 −0.156361
\(780\) 0 0
\(781\) 26.8919 0.962266
\(782\) −2.54345 1.46846i −0.0909534 0.0525120i
\(783\) 1.61585 2.79873i 0.0577456 0.100018i
\(784\) −5.10763 8.84668i −0.182415 0.315953i
\(785\) 0 0
\(786\) 1.59858 0.922939i 0.0570194 0.0329202i
\(787\) −27.0347 + 15.6085i −0.963684 + 0.556383i −0.897305 0.441411i \(-0.854478\pi\)
−0.0663793 + 0.997794i \(0.521145\pi\)
\(788\) 8.78664i 0.313011i
\(789\) 33.1989 + 57.5022i 1.18191 + 2.04713i
\(790\) 0 0
\(791\) −1.27713 0.737351i −0.0454095 0.0262172i
\(792\) −22.3843 −0.795390
\(793\) 29.0378 + 1.26974i 1.03116 + 0.0450896i
\(794\) −3.56781 −0.126617
\(795\) 0 0
\(796\) 12.1348 21.0180i 0.430106 0.744965i
\(797\) −1.95382 3.38411i −0.0692077 0.119871i 0.829345 0.558737i \(-0.188714\pi\)
−0.898553 + 0.438866i \(0.855380\pi\)
\(798\) 5.83502i 0.206557i
\(799\) 17.9703 10.3752i 0.635745 0.367048i
\(800\) 0 0
\(801\) 29.2368i 1.03303i
\(802\) −3.82126 6.61861i −0.134933 0.233711i
\(803\) −25.1110 + 43.4935i −0.886148 + 1.53485i
\(804\) 2.13071 + 1.23016i 0.0751442 + 0.0433845i
\(805\) 0 0
\(806\) 5.03063 + 9.66530i 0.177196 + 0.340446i
\(807\) 1.06811 0.0375994
\(808\) −28.3843 16.3877i −0.998556 0.576517i
\(809\) 10.0804 17.4597i 0.354407 0.613851i −0.632609 0.774471i \(-0.718016\pi\)
0.987016 + 0.160620i \(0.0513493\pi\)
\(810\) 0 0
\(811\) 34.1631i 1.19963i 0.800139 + 0.599815i \(0.204759\pi\)
−0.800139 + 0.599815i \(0.795241\pi\)
\(812\) 6.25235 3.60980i 0.219415 0.126679i
\(813\) −25.2931 + 14.6030i −0.887069 + 0.512150i
\(814\) 15.4071i 0.540019i
\(815\) 0 0
\(816\) −12.5291 + 21.7010i −0.438605 + 0.759687i
\(817\) 5.23387 + 3.02178i 0.183110 + 0.105719i
\(818\) 11.5888 0.405194
\(819\) 5.94930 3.09651i 0.207885 0.108201i
\(820\) 0 0
\(821\) 44.8414 + 25.8892i 1.56497 + 0.903538i 0.996741 + 0.0806706i \(0.0257062\pi\)
0.568233 + 0.822868i \(0.307627\pi\)
\(822\) 16.2820 28.2012i 0.567899 0.983629i
\(823\) 14.0554 + 24.3447i 0.489941 + 0.848602i 0.999933 0.0115767i \(-0.00368507\pi\)
−0.509992 + 0.860179i \(0.670352\pi\)
\(824\) 10.4715i 0.364793i
\(825\) 0 0
\(826\) −4.83968 + 2.79419i −0.168394 + 0.0972223i
\(827\) 49.5177i 1.72190i 0.508691 + 0.860949i \(0.330130\pi\)
−0.508691 + 0.860949i \(0.669870\pi\)
\(828\) −1.65188 2.86114i −0.0574068 0.0994316i
\(829\) −10.8664 + 18.8212i −0.377406 + 0.653687i −0.990684 0.136180i \(-0.956517\pi\)
0.613278 + 0.789867i \(0.289851\pi\)
\(830\) 0 0
\(831\) 9.87177 0.342448
\(832\) −1.48448 + 2.32982i −0.0514650 + 0.0807721i
\(833\) 43.7496 1.51583
\(834\) −14.1362 8.16154i −0.489496 0.282611i
\(835\) 0 0
\(836\) 13.9488 + 24.1600i 0.482430 + 0.835593i
\(837\) 1.85787i 0.0642174i
\(838\) −12.9656 + 7.48567i −0.447888 + 0.258588i
\(839\) −31.2115 + 18.0199i −1.07754 + 0.622118i −0.930232 0.366973i \(-0.880394\pi\)
−0.147308 + 0.989091i \(0.547061\pi\)
\(840\) 0 0
\(841\) −16.6449 28.8299i −0.573963 0.994134i
\(842\) −1.72137 + 2.98149i −0.0593222 + 0.102749i
\(843\) 37.2573 + 21.5105i 1.28321 + 0.740861i
\(844\) 26.3550 0.907175
\(845\) 0 0
\(846\) −6.65332 −0.228746
\(847\) 1.06114 + 0.612647i 0.0364611 + 0.0210508i
\(848\) 3.79513 6.57337i 0.130325 0.225730i
\(849\) −11.1913 19.3838i −0.384083 0.665252i
\(850\) 0 0
\(851\) 4.49998 2.59806i 0.154257 0.0890605i
\(852\) −30.1414 + 17.4022i −1.03263 + 0.596188i
\(853\) 38.4465i 1.31638i −0.752851 0.658191i \(-0.771322\pi\)
0.752851 0.658191i \(-0.228678\pi\)
\(854\) 1.57787 + 2.73295i 0.0539936 + 0.0935197i
\(855\) 0 0
\(856\) 5.55247 + 3.20572i 0.189780 + 0.109569i
\(857\) 2.31635 0.0791251 0.0395625 0.999217i \(-0.487404\pi\)
0.0395625 + 0.999217i \(0.487404\pi\)
\(858\) −9.56685 + 15.0148i −0.326607 + 0.512596i
\(859\) −1.38239 −0.0471667 −0.0235833 0.999722i \(-0.507508\pi\)
−0.0235833 + 0.999722i \(0.507508\pi\)
\(860\) 0 0
\(861\) −0.530438 + 0.918746i −0.0180773 + 0.0313108i
\(862\) 8.76620 + 15.1835i 0.298578 + 0.517152i
\(863\) 10.5783i 0.360091i −0.983658 0.180046i \(-0.942375\pi\)
0.983658 0.180046i \(-0.0576245\pi\)
\(864\) 2.04251 1.17925i 0.0694877 0.0401187i
\(865\) 0 0
\(866\) 12.5956i 0.428015i
\(867\) −32.5543 56.3856i −1.10560 1.91496i
\(868\) 2.07524 3.59442i 0.0704382 0.122003i
\(869\) −39.0093 22.5220i −1.32330 0.764007i
\(870\) 0 0
\(871\) 2.03624 1.05983i 0.0689954 0.0359110i
\(872\) 26.8296 0.908563
\(873\) −18.9737 10.9545i −0.642163 0.370753i
\(874\) 1.34088 2.32248i 0.0453561 0.0785591i
\(875\) 0 0
\(876\) 64.9989i 2.19611i
\(877\) 16.2742 9.39590i 0.549540 0.317277i −0.199397 0.979919i \(-0.563898\pi\)
0.748936 + 0.662642i \(0.230565\pi\)
\(878\) −15.8572 + 9.15516i −0.535155 + 0.308972i
\(879\) 67.4900i 2.27638i
\(880\) 0 0
\(881\) 19.8767 34.4275i 0.669663 1.15989i −0.308335 0.951278i \(-0.599772\pi\)
0.977998 0.208613i \(-0.0668948\pi\)
\(882\) −12.1483 7.01385i −0.409056 0.236169i
\(883\) −17.2515 −0.580560 −0.290280 0.956942i \(-0.593748\pi\)
−0.290280 + 0.956942i \(0.593748\pi\)
\(884\) 17.0331 + 32.7255i 0.572884 + 1.10068i
\(885\) 0 0
\(886\) −11.1237 6.42224i −0.373706 0.215760i
\(887\) 18.2982 31.6934i 0.614394 1.06416i −0.376097 0.926580i \(-0.622734\pi\)
0.990491 0.137581i \(-0.0439327\pi\)
\(888\) 22.7822 + 39.4599i 0.764521 + 1.32419i
\(889\) 3.53279i 0.118486i
\(890\) 0 0
\(891\) −21.9227 + 12.6571i −0.734438 + 0.424028i
\(892\) 25.5704i 0.856160i
\(893\) 9.47382 + 16.4091i 0.317029 + 0.549111i
\(894\) −6.72724 + 11.6519i −0.224993 + 0.389699i
\(895\) 0 0
\(896\) 6.47073 0.216172
\(897\) −5.99862 0.262301i −0.200288 0.00875799i
\(898\) −4.35372 −0.145286
\(899\) −31.0123 17.9049i −1.03432 0.597163i
\(900\) 0 0
\(901\) 16.2537 + 28.1522i 0.541488 + 0.937885i
\(902\) 1.44572i 0.0481373i
\(903\) 1.27230 0.734564i 0.0423396 0.0244448i
\(904\) −5.14707 + 2.97166i −0.171189 + 0.0988361i
\(905\) 0 0
\(906\) −10.7633 18.6426i −0.357587 0.619360i
\(907\) 19.6178 33.9791i 0.651400 1.12826i −0.331384 0.943496i \(-0.607515\pi\)
0.982783 0.184762i \(-0.0591513\pi\)
\(908\) −23.2443 13.4201i −0.771388 0.445361i
\(909\) 43.7921 1.45249
\(910\) 0 0
\(911\) −7.66019 −0.253793 −0.126897 0.991916i \(-0.540502\pi\)
−0.126897 + 0.991916i \(0.540502\pi\)
\(912\) −19.8157 11.4406i −0.656163 0.378836i
\(913\) 0.553241 0.958241i 0.0183096 0.0317131i
\(914\) −4.79766 8.30978i −0.158692 0.274863i
\(915\) 0 0
\(916\) −13.5876 + 7.84482i −0.448948 + 0.259200i
\(917\) −0.568137 + 0.328014i −0.0187615 + 0.0108320i
\(918\) 1.79301i 0.0591780i
\(919\) −6.62625 11.4770i −0.218580 0.378592i 0.735794 0.677205i \(-0.236809\pi\)
−0.954374 + 0.298614i \(0.903476\pi\)
\(920\) 0 0
\(921\) −33.2498 19.1968i −1.09562 0.632555i
\(922\) −8.83137 −0.290846
\(923\) −1.41860 + 32.4422i −0.0466938 + 1.06785i
\(924\) 6.78164 0.223100
\(925\) 0 0
\(926\) −6.28319 + 10.8828i −0.206478 + 0.357631i
\(927\) −6.99565 12.1168i −0.229767 0.397969i
\(928\) 45.4592i 1.49227i
\(929\) 39.4042 22.7500i 1.29281 0.746405i 0.313659 0.949536i \(-0.398445\pi\)
0.979152 + 0.203131i \(0.0651117\pi\)
\(930\) 0 0
\(931\) 39.9488i 1.30927i
\(932\) −15.3384 26.5668i −0.502425 0.870225i
\(933\) 10.5533 18.2789i 0.345500 0.598424i
\(934\) 12.6248 + 7.28891i 0.413095 + 0.238500i
\(935\) 0 0
\(936\) 1.18081 27.0043i 0.0385961 0.882662i
\(937\) 16.8095 0.549141 0.274570 0.961567i \(-0.411464\pi\)
0.274570 + 0.961567i \(0.411464\pi\)
\(938\) 0.215843 + 0.124617i 0.00704753 + 0.00406889i
\(939\) 5.97588 10.3505i 0.195015 0.337777i
\(940\) 0 0
\(941\) 8.88910i 0.289776i −0.989448 0.144888i \(-0.953718\pi\)
0.989448 0.144888i \(-0.0462822\pi\)
\(942\) −17.6413 + 10.1852i −0.574784 + 0.331851i
\(943\) 0.422255 0.243789i 0.0137505 0.00793886i
\(944\) 21.9140i 0.713241i
\(945\) 0 0
\(946\) −1.00104 + 1.73385i −0.0325465 + 0.0563723i
\(947\) 26.3710 + 15.2253i 0.856942 + 0.494756i 0.862987 0.505226i \(-0.168591\pi\)
−0.00604474 + 0.999982i \(0.501924\pi\)
\(948\) 58.2974 1.89341
\(949\) −51.1457 32.5882i −1.66026 1.05786i
\(950\) 0 0
\(951\) −7.21174 4.16370i −0.233857 0.135017i
\(952\) −4.57643 + 7.92662i −0.148323 + 0.256903i
\(953\) −2.42924 4.20756i −0.0786907 0.136296i 0.823995 0.566598i \(-0.191741\pi\)
−0.902685 + 0.430301i \(0.858407\pi\)
\(954\) 10.4230i 0.337458i
\(955\) 0 0
\(956\) −15.1462 + 8.74464i −0.489862 + 0.282822i
\(957\) 58.5112i 1.89140i
\(958\) 9.35985 + 16.2117i 0.302403 + 0.523777i
\(959\) −5.78663 + 10.0227i −0.186860 + 0.323651i
\(960\) 0 0
\(961\) 10.4132 0.335910
\(962\) 18.5871 + 0.812755i 0.599271 + 0.0262043i
\(963\) −8.56651 −0.276052
\(964\) −5.05290 2.91729i −0.162743 0.0939597i
\(965\) 0 0
\(966\) −0.325956 0.564572i −0.0104875 0.0181648i
\(967\) 26.5631i 0.854211i −0.904202 0.427106i \(-0.859533\pi\)
0.904202 0.427106i \(-0.140467\pi\)
\(968\) 4.27658 2.46908i 0.137454 0.0793593i
\(969\) 84.8660 48.9974i 2.72629 1.57402i
\(970\) 0 0
\(971\) −21.6053 37.4216i −0.693349 1.20091i −0.970734 0.240156i \(-0.922801\pi\)
0.277386 0.960759i \(-0.410532\pi\)
\(972\) 17.3371 30.0288i 0.556089 0.963174i
\(973\) 5.02403 + 2.90062i 0.161063 + 0.0929897i
\(974\) 12.2037 0.391031
\(975\) 0 0
\(976\) −12.3748 −0.396107
\(977\) 39.3665 + 22.7283i 1.25945 + 0.727141i 0.972967 0.230945i \(-0.0741817\pi\)
0.286479 + 0.958086i \(0.407515\pi\)
\(978\) −1.76439 + 3.05601i −0.0564190 + 0.0977205i
\(979\) 13.7913 + 23.8872i 0.440771 + 0.763438i
\(980\) 0 0
\(981\) −31.0450 + 17.9239i −0.991192 + 0.572265i
\(982\) −12.5287 + 7.23347i −0.399808 + 0.230829i
\(983\) 9.31963i 0.297250i 0.988894 + 0.148625i \(0.0474847\pi\)
−0.988894 + 0.148625i \(0.952515\pi\)
\(984\) 2.13777 + 3.70272i 0.0681495 + 0.118038i
\(985\) 0 0
\(986\) 29.9295 + 17.2798i 0.953150 + 0.550302i
\(987\) 4.60599 0.146610
\(988\) −29.8824 + 15.5533i −0.950686 + 0.494816i
\(989\) −0.675210 −0.0214704
\(990\) 0 0
\(991\) 2.01694 3.49344i 0.0640702 0.110973i −0.832211 0.554459i \(-0.812925\pi\)
0.896281 + 0.443486i \(0.146258\pi\)
\(992\) −13.0670 22.6328i −0.414879 0.718592i
\(993\) 51.0575i 1.62026i
\(994\) −3.05336 + 1.76286i −0.0968468 + 0.0559145i
\(995\) 0 0
\(996\) 1.43204i 0.0453760i
\(997\) 27.5880 + 47.7839i 0.873722 + 1.51333i 0.858118 + 0.513452i \(0.171634\pi\)
0.0156032 + 0.999878i \(0.495033\pi\)
\(998\) −4.90937 + 8.50327i −0.155403 + 0.269166i
\(999\) −2.74726 1.58613i −0.0869195 0.0501830i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.n.f.251.3 yes 10
5.2 odd 4 325.2.m.d.199.6 20
5.3 odd 4 325.2.m.d.199.5 20
5.4 even 2 325.2.n.e.251.3 yes 10
13.6 odd 12 4225.2.a.bu.1.6 10
13.7 odd 12 4225.2.a.bu.1.5 10
13.10 even 6 inner 325.2.n.f.101.3 yes 10
65.19 odd 12 4225.2.a.bv.1.5 10
65.23 odd 12 325.2.m.d.49.6 20
65.49 even 6 325.2.n.e.101.3 10
65.59 odd 12 4225.2.a.bv.1.6 10
65.62 odd 12 325.2.m.d.49.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.m.d.49.5 20 65.62 odd 12
325.2.m.d.49.6 20 65.23 odd 12
325.2.m.d.199.5 20 5.3 odd 4
325.2.m.d.199.6 20 5.2 odd 4
325.2.n.e.101.3 10 65.49 even 6
325.2.n.e.251.3 yes 10 5.4 even 2
325.2.n.f.101.3 yes 10 13.10 even 6 inner
325.2.n.f.251.3 yes 10 1.1 even 1 trivial
4225.2.a.bu.1.5 10 13.7 odd 12
4225.2.a.bu.1.6 10 13.6 odd 12
4225.2.a.bv.1.5 10 65.19 odd 12
4225.2.a.bv.1.6 10 65.59 odd 12