Properties

Label 325.2.m.d.49.6
Level $325$
Weight $2$
Character 325.49
Analytic conductor $2.595$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(49,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 16 x^{18} + 172 x^{16} + 1018 x^{14} + 4330 x^{12} + 9943 x^{10} + 16225 x^{8} + 14698 x^{6} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.6
Root \(-0.333024 + 0.576815i\) of defining polynomial
Character \(\chi\) \(=\) 325.49
Dual form 325.2.m.d.199.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.333024 + 0.576815i) q^{2} +(2.15028 - 1.24146i) q^{3} +(0.778190 - 1.34786i) q^{4} +(1.43219 + 0.826874i) q^{6} +(-0.293872 + 0.509002i) q^{7} +2.36872 q^{8} +(1.58246 - 2.74090i) q^{9} +(-2.58582 + 1.49292i) q^{11} -3.86437i q^{12} +(-3.04076 + 1.93746i) q^{13} -0.391466 q^{14} +(-0.767539 - 1.32942i) q^{16} +(5.69358 + 3.28719i) q^{17} +2.10798 q^{18} +(-5.19894 - 3.00161i) q^{19} +1.45932i q^{21} +(-1.72228 - 0.994358i) q^{22} +(0.580847 - 0.335352i) q^{23} +(5.09340 - 2.94068i) q^{24} +(-2.13020 - 1.10874i) q^{26} -0.409469i q^{27} +(0.457377 + 0.792200i) q^{28} +(-3.94620 - 6.83501i) q^{29} +4.53727i q^{31} +(2.87994 - 4.98820i) q^{32} +(-3.70681 + 6.42039i) q^{33} +4.37886i q^{34} +(-2.46290 - 4.26588i) q^{36} +(3.87363 + 6.70933i) q^{37} -3.99844i q^{38} +(-4.13319 + 7.94107i) q^{39} +(-0.629569 + 0.363482i) q^{41} +(-0.841760 + 0.485990i) q^{42} +(0.871843 + 0.503359i) q^{43} +4.64711i q^{44} +(0.386872 + 0.223361i) q^{46} -3.15624 q^{47} +(-3.30084 - 1.90574i) q^{48} +(3.32728 + 5.76302i) q^{49} +16.3237 q^{51} +(0.245144 + 5.60625i) q^{52} -4.94455i q^{53} +(0.236188 - 0.136363i) q^{54} +(-0.696101 + 1.20568i) q^{56} -14.9056 q^{57} +(2.62836 - 4.55245i) q^{58} +(12.3630 + 7.13776i) q^{59} +(4.03067 - 6.98133i) q^{61} +(-2.61716 + 1.51102i) q^{62} +(0.930080 + 1.61095i) q^{63} +0.766197 q^{64} -4.93783 q^{66} +(-0.318335 - 0.551372i) q^{67} +(8.86138 - 5.11612i) q^{68} +(0.832654 - 1.44220i) q^{69} +(-7.79982 - 4.50323i) q^{71} +(3.74840 - 6.49242i) q^{72} -16.8200 q^{73} +(-2.58003 + 4.46874i) q^{74} +(-8.09153 + 4.67165i) q^{76} -1.75491i q^{77} +(-5.95698 + 0.260480i) q^{78} -15.0859 q^{79} +(4.23903 + 7.34222i) q^{81} +(-0.419323 - 0.242096i) q^{82} +0.370576 q^{83} +(1.96697 + 1.13563i) q^{84} +0.670523i q^{86} +(-16.9708 - 9.79811i) q^{87} +(-6.12507 + 3.53631i) q^{88} +(8.00015 - 4.61889i) q^{89} +(-0.0925751 - 2.11712i) q^{91} -1.04387i q^{92} +(5.63284 + 9.75637i) q^{93} +(-1.05111 - 1.82057i) q^{94} -14.3013i q^{96} +(3.46123 - 5.99502i) q^{97} +(-2.21613 + 3.83845i) q^{98} +9.44994i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 12 q^{4} + 18 q^{6} + 16 q^{9} - 18 q^{11} + 16 q^{14} - 24 q^{16} - 84 q^{24} - 34 q^{26} - 14 q^{29} - 6 q^{36} - 16 q^{39} + 24 q^{41} + 78 q^{46} + 2 q^{49} + 32 q^{51} + 18 q^{54} - 42 q^{56}+ \cdots - 10 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.333024 + 0.576815i 0.235484 + 0.407869i 0.959413 0.282004i \(-0.0909993\pi\)
−0.723930 + 0.689874i \(0.757666\pi\)
\(3\) 2.15028 1.24146i 1.24146 0.716759i 0.272070 0.962277i \(-0.412292\pi\)
0.969392 + 0.245519i \(0.0789583\pi\)
\(4\) 0.778190 1.34786i 0.389095 0.673932i
\(5\) 0 0
\(6\) 1.43219 + 0.826874i 0.584688 + 0.337570i
\(7\) −0.293872 + 0.509002i −0.111073 + 0.192384i −0.916203 0.400714i \(-0.868762\pi\)
0.805130 + 0.593098i \(0.202095\pi\)
\(8\) 2.36872 0.837469
\(9\) 1.58246 2.74090i 0.527486 0.913632i
\(10\) 0 0
\(11\) −2.58582 + 1.49292i −0.779653 + 0.450133i −0.836307 0.548261i \(-0.815290\pi\)
0.0566544 + 0.998394i \(0.481957\pi\)
\(12\) 3.86437i 1.11555i
\(13\) −3.04076 + 1.93746i −0.843356 + 0.537355i
\(14\) −0.391466 −0.104624
\(15\) 0 0
\(16\) −0.767539 1.32942i −0.191885 0.332354i
\(17\) 5.69358 + 3.28719i 1.38090 + 0.797261i 0.992266 0.124132i \(-0.0396148\pi\)
0.388631 + 0.921393i \(0.372948\pi\)
\(18\) 2.10798 0.496857
\(19\) −5.19894 3.00161i −1.19272 0.688617i −0.233797 0.972285i \(-0.575115\pi\)
−0.958922 + 0.283668i \(0.908448\pi\)
\(20\) 0 0
\(21\) 1.45932i 0.318451i
\(22\) −1.72228 0.994358i −0.367191 0.211998i
\(23\) 0.580847 0.335352i 0.121115 0.0699258i −0.438219 0.898868i \(-0.644390\pi\)
0.559334 + 0.828943i \(0.311057\pi\)
\(24\) 5.09340 2.94068i 1.03969 0.600263i
\(25\) 0 0
\(26\) −2.13020 1.10874i −0.417767 0.217441i
\(27\) 0.409469i 0.0788023i
\(28\) 0.457377 + 0.792200i 0.0864361 + 0.149712i
\(29\) −3.94620 6.83501i −0.732790 1.26923i −0.955686 0.294388i \(-0.904884\pi\)
0.222896 0.974842i \(-0.428449\pi\)
\(30\) 0 0
\(31\) 4.53727i 0.814917i 0.913224 + 0.407459i \(0.133585\pi\)
−0.913224 + 0.407459i \(0.866415\pi\)
\(32\) 2.87994 4.98820i 0.509106 0.881797i
\(33\) −3.70681 + 6.42039i −0.645273 + 1.11765i
\(34\) 4.37886i 0.750967i
\(35\) 0 0
\(36\) −2.46290 4.26588i −0.410484 0.710979i
\(37\) 3.87363 + 6.70933i 0.636821 + 1.10301i 0.986126 + 0.165998i \(0.0530844\pi\)
−0.349305 + 0.937009i \(0.613582\pi\)
\(38\) 3.99844i 0.648632i
\(39\) −4.13319 + 7.94107i −0.661841 + 1.27159i
\(40\) 0 0
\(41\) −0.629569 + 0.363482i −0.0983222 + 0.0567663i −0.548355 0.836246i \(-0.684746\pi\)
0.450033 + 0.893012i \(0.351412\pi\)
\(42\) −0.841760 + 0.485990i −0.129886 + 0.0749899i
\(43\) 0.871843 + 0.503359i 0.132955 + 0.0767615i 0.565002 0.825089i \(-0.308875\pi\)
−0.432047 + 0.901851i \(0.642209\pi\)
\(44\) 4.64711i 0.700578i
\(45\) 0 0
\(46\) 0.386872 + 0.223361i 0.0570412 + 0.0329327i
\(47\) −3.15624 −0.460386 −0.230193 0.973145i \(-0.573936\pi\)
−0.230193 + 0.973145i \(0.573936\pi\)
\(48\) −3.30084 1.90574i −0.476436 0.275070i
\(49\) 3.32728 + 5.76302i 0.475325 + 0.823288i
\(50\) 0 0
\(51\) 16.3237 2.28577
\(52\) 0.245144 + 5.60625i 0.0339954 + 0.777447i
\(53\) 4.94455i 0.679186i −0.940573 0.339593i \(-0.889711\pi\)
0.940573 0.339593i \(-0.110289\pi\)
\(54\) 0.236188 0.136363i 0.0321411 0.0185567i
\(55\) 0 0
\(56\) −0.696101 + 1.20568i −0.0930204 + 0.161116i
\(57\) −14.9056 −1.97429
\(58\) 2.62836 4.55245i 0.345120 0.597766i
\(59\) 12.3630 + 7.13776i 1.60952 + 0.929257i 0.989477 + 0.144689i \(0.0462181\pi\)
0.620043 + 0.784568i \(0.287115\pi\)
\(60\) 0 0
\(61\) 4.03067 6.98133i 0.516075 0.893867i −0.483751 0.875205i \(-0.660726\pi\)
0.999826 0.0186618i \(-0.00594058\pi\)
\(62\) −2.61716 + 1.51102i −0.332380 + 0.191900i
\(63\) 0.930080 + 1.61095i 0.117179 + 0.202960i
\(64\) 0.766197 0.0957747
\(65\) 0 0
\(66\) −4.93783 −0.607805
\(67\) −0.318335 0.551372i −0.0388908 0.0673608i 0.845925 0.533302i \(-0.179049\pi\)
−0.884816 + 0.465941i \(0.845716\pi\)
\(68\) 8.86138 5.11612i 1.07460 0.620421i
\(69\) 0.832654 1.44220i 0.100240 0.173620i
\(70\) 0 0
\(71\) −7.79982 4.50323i −0.925668 0.534435i −0.0402292 0.999190i \(-0.512809\pi\)
−0.885439 + 0.464756i \(0.846142\pi\)
\(72\) 3.74840 6.49242i 0.441753 0.765138i
\(73\) −16.8200 −1.96864 −0.984318 0.176403i \(-0.943554\pi\)
−0.984318 + 0.176403i \(0.943554\pi\)
\(74\) −2.58003 + 4.46874i −0.299922 + 0.519480i
\(75\) 0 0
\(76\) −8.09153 + 4.67165i −0.928162 + 0.535875i
\(77\) 1.75491i 0.199991i
\(78\) −5.95698 + 0.260480i −0.674495 + 0.0294936i
\(79\) −15.0859 −1.69729 −0.848646 0.528961i \(-0.822582\pi\)
−0.848646 + 0.528961i \(0.822582\pi\)
\(80\) 0 0
\(81\) 4.23903 + 7.34222i 0.471003 + 0.815802i
\(82\) −0.419323 0.242096i −0.0463065 0.0267351i
\(83\) 0.370576 0.0406760 0.0203380 0.999793i \(-0.493526\pi\)
0.0203380 + 0.999793i \(0.493526\pi\)
\(84\) 1.96697 + 1.13563i 0.214614 + 0.123908i
\(85\) 0 0
\(86\) 0.670523i 0.0723043i
\(87\) −16.9708 9.79811i −1.81946 1.05047i
\(88\) −6.12507 + 3.53631i −0.652935 + 0.376972i
\(89\) 8.00015 4.61889i 0.848014 0.489601i −0.0119665 0.999928i \(-0.503809\pi\)
0.859980 + 0.510327i \(0.170476\pi\)
\(90\) 0 0
\(91\) −0.0925751 2.11712i −0.00970451 0.221934i
\(92\) 1.04387i 0.108831i
\(93\) 5.63284 + 9.75637i 0.584099 + 1.01169i
\(94\) −1.05111 1.82057i −0.108413 0.187777i
\(95\) 0 0
\(96\) 14.3013i 1.45962i
\(97\) 3.46123 5.99502i 0.351434 0.608702i −0.635067 0.772457i \(-0.719027\pi\)
0.986501 + 0.163755i \(0.0523608\pi\)
\(98\) −2.21613 + 3.83845i −0.223863 + 0.387742i
\(99\) 9.44994i 0.949754i
\(100\) 0 0
\(101\) −6.91837 11.9830i −0.688403 1.19235i −0.972354 0.233511i \(-0.924979\pi\)
0.283951 0.958839i \(-0.408355\pi\)
\(102\) 5.43618 + 9.41575i 0.538262 + 0.932298i
\(103\) 4.42075i 0.435590i 0.975995 + 0.217795i \(0.0698864\pi\)
−0.975995 + 0.217795i \(0.930114\pi\)
\(104\) −7.20272 + 4.58930i −0.706285 + 0.450018i
\(105\) 0 0
\(106\) 2.85209 1.64665i 0.277019 0.159937i
\(107\) 2.34408 1.35336i 0.226611 0.130834i −0.382397 0.923998i \(-0.624901\pi\)
0.609008 + 0.793164i \(0.291568\pi\)
\(108\) −0.551909 0.318645i −0.0531074 0.0306616i
\(109\) 11.3266i 1.08489i −0.840091 0.542446i \(-0.817498\pi\)
0.840091 0.542446i \(-0.182502\pi\)
\(110\) 0 0
\(111\) 16.6588 + 9.61794i 1.58118 + 0.912894i
\(112\) 0.902234 0.0852531
\(113\) 2.17293 + 1.25454i 0.204413 + 0.118018i 0.598712 0.800964i \(-0.295679\pi\)
−0.394299 + 0.918982i \(0.629013\pi\)
\(114\) −4.96391 8.59774i −0.464912 0.805252i
\(115\) 0 0
\(116\) −12.2836 −1.14050
\(117\) 0.498503 + 11.4004i 0.0460866 + 1.05396i
\(118\) 9.50818i 0.875299i
\(119\) −3.34637 + 1.93203i −0.306761 + 0.177109i
\(120\) 0 0
\(121\) −1.04237 + 1.80544i −0.0947609 + 0.164131i
\(122\) 5.36924 0.486108
\(123\) −0.902498 + 1.56317i −0.0813755 + 0.140947i
\(124\) 6.11562 + 3.53085i 0.549199 + 0.317080i
\(125\) 0 0
\(126\) −0.619478 + 1.07297i −0.0551875 + 0.0955875i
\(127\) −5.20546 + 3.00538i −0.461910 + 0.266684i −0.712847 0.701319i \(-0.752595\pi\)
0.250937 + 0.968003i \(0.419261\pi\)
\(128\) −5.50471 9.53444i −0.486553 0.842734i
\(129\) 2.49961 0.220078
\(130\) 0 0
\(131\) 1.11618 0.0975211 0.0487605 0.998810i \(-0.484473\pi\)
0.0487605 + 0.998810i \(0.484473\pi\)
\(132\) 5.76921 + 9.99256i 0.502145 + 0.869741i
\(133\) 3.05565 1.76418i 0.264958 0.152974i
\(134\) 0.212026 0.367240i 0.0183163 0.0317247i
\(135\) 0 0
\(136\) 13.4865 + 7.78644i 1.15646 + 0.667681i
\(137\) 9.84550 17.0529i 0.841158 1.45693i −0.0477593 0.998859i \(-0.515208\pi\)
0.888917 0.458069i \(-0.151459\pi\)
\(138\) 1.10918 0.0944193
\(139\) 4.93518 8.54798i 0.418596 0.725030i −0.577202 0.816601i \(-0.695856\pi\)
0.995799 + 0.0915711i \(0.0291889\pi\)
\(140\) 0 0
\(141\) −6.78680 + 3.91836i −0.571551 + 0.329985i
\(142\) 5.99873i 0.503402i
\(143\) 4.97038 9.54954i 0.415644 0.798573i
\(144\) −4.85839 −0.404866
\(145\) 0 0
\(146\) −5.60148 9.70204i −0.463581 0.802946i
\(147\) 14.3091 + 8.26138i 1.18020 + 0.681387i
\(148\) 12.0577 0.991136
\(149\) 7.04577 + 4.06788i 0.577212 + 0.333254i 0.760025 0.649894i \(-0.225187\pi\)
−0.182813 + 0.983148i \(0.558520\pi\)
\(150\) 0 0
\(151\) 13.0169i 1.05930i 0.848216 + 0.529650i \(0.177677\pi\)
−0.848216 + 0.529650i \(0.822323\pi\)
\(152\) −12.3148 7.10998i −0.998866 0.576695i
\(153\) 18.0197 10.4037i 1.45681 0.841088i
\(154\) 1.01226 0.584428i 0.0815702 0.0470946i
\(155\) 0 0
\(156\) 7.48708 + 11.7506i 0.599446 + 0.940805i
\(157\) 12.3177i 0.983061i 0.870860 + 0.491530i \(0.163562\pi\)
−0.870860 + 0.491530i \(0.836438\pi\)
\(158\) −5.02395 8.70174i −0.399684 0.692274i
\(159\) −6.13847 10.6321i −0.486812 0.843184i
\(160\) 0 0
\(161\) 0.394203i 0.0310675i
\(162\) −2.82340 + 4.89027i −0.221827 + 0.384216i
\(163\) 1.06690 1.84793i 0.0835664 0.144741i −0.821213 0.570622i \(-0.806702\pi\)
0.904779 + 0.425880i \(0.140036\pi\)
\(164\) 1.13143i 0.0883500i
\(165\) 0 0
\(166\) 0.123411 + 0.213754i 0.00957852 + 0.0165905i
\(167\) −0.0547430 0.0948176i −0.00423614 0.00733720i 0.863900 0.503664i \(-0.168015\pi\)
−0.868136 + 0.496327i \(0.834682\pi\)
\(168\) 3.45673i 0.266693i
\(169\) 5.49249 11.7827i 0.422499 0.906363i
\(170\) 0 0
\(171\) −16.4542 + 9.49984i −1.25828 + 0.726471i
\(172\) 1.35692 0.783418i 0.103464 0.0597351i
\(173\) 7.10085 + 4.09968i 0.539868 + 0.311693i 0.745025 0.667036i \(-0.232437\pi\)
−0.205158 + 0.978729i \(0.565771\pi\)
\(174\) 13.0520i 0.989471i
\(175\) 0 0
\(176\) 3.96943 + 2.29175i 0.299207 + 0.172747i
\(177\) 35.4450 2.66421
\(178\) 5.32848 + 3.07640i 0.399387 + 0.230586i
\(179\) 0.0150584 + 0.0260820i 0.00112552 + 0.00194946i 0.866588 0.499025i \(-0.166308\pi\)
−0.865462 + 0.500974i \(0.832975\pi\)
\(180\) 0 0
\(181\) 11.4087 0.848004 0.424002 0.905661i \(-0.360625\pi\)
0.424002 + 0.905661i \(0.360625\pi\)
\(182\) 1.19036 0.758450i 0.0882350 0.0562201i
\(183\) 20.0157i 1.47960i
\(184\) 1.37586 0.794356i 0.101430 0.0585607i
\(185\) 0 0
\(186\) −3.75175 + 6.49821i −0.275091 + 0.476472i
\(187\) −19.6301 −1.43549
\(188\) −2.45616 + 4.25419i −0.179134 + 0.310269i
\(189\) 0.208420 + 0.120332i 0.0151603 + 0.00875283i
\(190\) 0 0
\(191\) 2.66801 4.62112i 0.193050 0.334373i −0.753209 0.657781i \(-0.771495\pi\)
0.946260 + 0.323408i \(0.104829\pi\)
\(192\) 1.64754 0.951205i 0.118901 0.0686473i
\(193\) 5.31227 + 9.20113i 0.382386 + 0.662312i 0.991403 0.130846i \(-0.0417692\pi\)
−0.609017 + 0.793157i \(0.708436\pi\)
\(194\) 4.61069 0.331028
\(195\) 0 0
\(196\) 10.3570 0.739787
\(197\) 2.82278 + 4.88920i 0.201115 + 0.348341i 0.948888 0.315613i \(-0.102210\pi\)
−0.747773 + 0.663954i \(0.768877\pi\)
\(198\) −5.45086 + 3.14706i −0.387376 + 0.223652i
\(199\) −7.79679 + 13.5044i −0.552700 + 0.957305i 0.445378 + 0.895342i \(0.353069\pi\)
−0.998079 + 0.0619621i \(0.980264\pi\)
\(200\) 0 0
\(201\) −1.36901 0.790401i −0.0965628 0.0557506i
\(202\) 4.60797 7.98123i 0.324215 0.561558i
\(203\) 4.63871 0.325574
\(204\) 12.7029 22.0021i 0.889383 1.54046i
\(205\) 0 0
\(206\) −2.54996 + 1.47222i −0.177664 + 0.102574i
\(207\) 2.12272i 0.147539i
\(208\) 4.90960 + 2.55536i 0.340419 + 0.177183i
\(209\) 17.9247 1.23988
\(210\) 0 0
\(211\) −8.46675 14.6648i −0.582875 1.00957i −0.995137 0.0985037i \(-0.968594\pi\)
0.412262 0.911066i \(-0.364739\pi\)
\(212\) −6.66458 3.84780i −0.457725 0.264268i
\(213\) −22.3623 −1.53224
\(214\) 1.56127 + 0.901400i 0.106726 + 0.0616184i
\(215\) 0 0
\(216\) 0.969917i 0.0659945i
\(217\) −2.30948 1.33338i −0.156777 0.0905155i
\(218\) 6.53335 3.77203i 0.442494 0.255474i
\(219\) −36.1677 + 20.8814i −2.44399 + 1.41104i
\(220\) 0 0
\(221\) −23.6816 + 1.03553i −1.59300 + 0.0696570i
\(222\) 12.8120i 0.859886i
\(223\) −8.21470 14.2283i −0.550097 0.952796i −0.998267 0.0588475i \(-0.981257\pi\)
0.448170 0.893948i \(-0.352076\pi\)
\(224\) 1.69267 + 2.93179i 0.113096 + 0.195888i
\(225\) 0 0
\(226\) 1.67117i 0.111165i
\(227\) 8.62262 14.9348i 0.572304 0.991259i −0.424025 0.905650i \(-0.639383\pi\)
0.996329 0.0856085i \(-0.0272834\pi\)
\(228\) −11.5993 + 20.0907i −0.768186 + 1.33054i
\(229\) 10.0809i 0.666162i −0.942898 0.333081i \(-0.891912\pi\)
0.942898 0.333081i \(-0.108088\pi\)
\(230\) 0 0
\(231\) −2.17866 3.77355i −0.143345 0.248281i
\(232\) −9.34744 16.1902i −0.613689 1.06294i
\(233\) 19.7103i 1.29126i 0.763648 + 0.645632i \(0.223406\pi\)
−0.763648 + 0.645632i \(0.776594\pi\)
\(234\) −6.40988 + 4.08414i −0.419027 + 0.266989i
\(235\) 0 0
\(236\) 19.2415 11.1091i 1.25251 0.723138i
\(237\) −32.4388 + 18.7285i −2.10712 + 1.21655i
\(238\) −2.22884 1.28682i −0.144474 0.0834124i
\(239\) 11.2372i 0.726871i −0.931619 0.363435i \(-0.881604\pi\)
0.931619 0.363435i \(-0.118396\pi\)
\(240\) 0 0
\(241\) 3.24657 + 1.87441i 0.209130 + 0.120741i 0.600907 0.799319i \(-0.294806\pi\)
−0.391777 + 0.920060i \(0.628140\pi\)
\(242\) −1.38854 −0.0892586
\(243\) 19.2940 + 11.1394i 1.23771 + 0.714593i
\(244\) −6.27326 10.8656i −0.401604 0.695599i
\(245\) 0 0
\(246\) −1.20221 −0.0766504
\(247\) 21.6243 0.945563i 1.37592 0.0601647i
\(248\) 10.7475i 0.682468i
\(249\) 0.796840 0.460056i 0.0504977 0.0291549i
\(250\) 0 0
\(251\) 10.1871 17.6446i 0.643007 1.11372i −0.341751 0.939790i \(-0.611020\pi\)
0.984758 0.173930i \(-0.0556466\pi\)
\(252\) 2.89512 0.182375
\(253\) −1.00131 + 1.73432i −0.0629518 + 0.109036i
\(254\) −3.46709 2.00172i −0.217545 0.125599i
\(255\) 0 0
\(256\) 4.43260 7.67749i 0.277038 0.479843i
\(257\) −12.4336 + 7.17856i −0.775588 + 0.447786i −0.834864 0.550456i \(-0.814454\pi\)
0.0592763 + 0.998242i \(0.481121\pi\)
\(258\) 0.832429 + 1.44181i 0.0518247 + 0.0897631i
\(259\) −4.55341 −0.282935
\(260\) 0 0
\(261\) −24.9787 −1.54615
\(262\) 0.371715 + 0.643829i 0.0229646 + 0.0397759i
\(263\) −23.1590 + 13.3709i −1.42805 + 0.824484i −0.996967 0.0778291i \(-0.975201\pi\)
−0.431081 + 0.902313i \(0.641868\pi\)
\(264\) −8.78040 + 15.2081i −0.540396 + 0.935994i
\(265\) 0 0
\(266\) 2.03521 + 1.17503i 0.124787 + 0.0720456i
\(267\) 11.4683 19.8638i 0.701851 1.21564i
\(268\) −0.990899 −0.0605288
\(269\) 0.215092 0.372550i 0.0131144 0.0227148i −0.859394 0.511314i \(-0.829159\pi\)
0.872508 + 0.488600i \(0.162492\pi\)
\(270\) 0 0
\(271\) 10.1868 5.88137i 0.618806 0.357268i −0.157598 0.987503i \(-0.550375\pi\)
0.776404 + 0.630235i \(0.217042\pi\)
\(272\) 10.0922i 0.611929i
\(273\) −2.82739 4.43746i −0.171121 0.268567i
\(274\) 13.1151 0.792315
\(275\) 0 0
\(276\) −1.29593 2.24461i −0.0780056 0.135110i
\(277\) 3.44320 + 1.98793i 0.206882 + 0.119443i 0.599861 0.800104i \(-0.295222\pi\)
−0.392980 + 0.919547i \(0.628556\pi\)
\(278\) 6.57413 0.394290
\(279\) 12.4362 + 7.18003i 0.744534 + 0.429857i
\(280\) 0 0
\(281\) 17.3267i 1.03363i 0.856098 + 0.516814i \(0.172882\pi\)
−0.856098 + 0.516814i \(0.827118\pi\)
\(282\) −4.52033 2.60982i −0.269182 0.155412i
\(283\) 7.80686 4.50729i 0.464070 0.267931i −0.249684 0.968327i \(-0.580327\pi\)
0.713754 + 0.700397i \(0.246994\pi\)
\(284\) −12.1395 + 7.00873i −0.720346 + 0.415892i
\(285\) 0 0
\(286\) 7.16357 0.313241i 0.423591 0.0185223i
\(287\) 0.427269i 0.0252209i
\(288\) −9.11476 15.7872i −0.537092 0.930271i
\(289\) 13.1113 + 22.7094i 0.771250 + 1.33584i
\(290\) 0 0
\(291\) 17.1879i 1.00757i
\(292\) −13.0892 + 22.6711i −0.765986 + 1.32673i
\(293\) 13.5908 23.5400i 0.793984 1.37522i −0.129498 0.991580i \(-0.541337\pi\)
0.923482 0.383641i \(-0.125330\pi\)
\(294\) 11.0050i 0.641822i
\(295\) 0 0
\(296\) 9.17555 + 15.8925i 0.533318 + 0.923734i
\(297\) 0.611305 + 1.05881i 0.0354715 + 0.0614385i
\(298\) 5.41881i 0.313903i
\(299\) −1.11649 + 2.14510i −0.0645681 + 0.124054i
\(300\) 0 0
\(301\) −0.512421 + 0.295846i −0.0295355 + 0.0170523i
\(302\) −7.50833 + 4.33494i −0.432056 + 0.249448i
\(303\) −29.7528 17.1778i −1.70925 0.986838i
\(304\) 9.21542i 0.528541i
\(305\) 0 0
\(306\) 12.0020 + 6.92935i 0.686108 + 0.396125i
\(307\) −15.4630 −0.882522 −0.441261 0.897379i \(-0.645469\pi\)
−0.441261 + 0.897379i \(0.645469\pi\)
\(308\) −2.36538 1.36566i −0.134780 0.0778154i
\(309\) 5.48820 + 9.50584i 0.312213 + 0.540768i
\(310\) 0 0
\(311\) −8.50072 −0.482032 −0.241016 0.970521i \(-0.577481\pi\)
−0.241016 + 0.970521i \(0.577481\pi\)
\(312\) −9.79038 + 18.8102i −0.554271 + 1.06492i
\(313\) 4.81358i 0.272080i −0.990703 0.136040i \(-0.956562\pi\)
0.990703 0.136040i \(-0.0434375\pi\)
\(314\) −7.10504 + 4.10209i −0.400960 + 0.231495i
\(315\) 0 0
\(316\) −11.7397 + 20.3337i −0.660408 + 1.14386i
\(317\) −3.35387 −0.188372 −0.0941860 0.995555i \(-0.530025\pi\)
−0.0941860 + 0.995555i \(0.530025\pi\)
\(318\) 4.08852 7.08152i 0.229273 0.397112i
\(319\) 20.4083 + 11.7827i 1.14264 + 0.659706i
\(320\) 0 0
\(321\) 3.36028 5.82017i 0.187552 0.324850i
\(322\) −0.227382 + 0.131279i −0.0126715 + 0.00731589i
\(323\) −19.7337 34.1798i −1.09801 1.90182i
\(324\) 13.1951 0.733060
\(325\) 0 0
\(326\) 1.42122 0.0787141
\(327\) −14.0616 24.3553i −0.777606 1.34685i
\(328\) −1.49127 + 0.860987i −0.0823418 + 0.0475400i
\(329\) 0.927533 1.60653i 0.0511365 0.0885711i
\(330\) 0 0
\(331\) −17.8085 10.2817i −0.978842 0.565135i −0.0769218 0.997037i \(-0.524509\pi\)
−0.901920 + 0.431902i \(0.857843\pi\)
\(332\) 0.288378 0.499486i 0.0158268 0.0274129i
\(333\) 24.5194 1.34366
\(334\) 0.0364614 0.0631531i 0.00199508 0.00345558i
\(335\) 0 0
\(336\) 1.94005 1.12009i 0.105838 0.0611059i
\(337\) 15.3344i 0.835316i −0.908604 0.417658i \(-0.862851\pi\)
0.908604 0.417658i \(-0.137149\pi\)
\(338\) 8.62558 0.755785i 0.469170 0.0411093i
\(339\) 6.22988 0.338361
\(340\) 0 0
\(341\) −6.77378 11.7325i −0.366821 0.635352i
\(342\) −10.9593 6.32735i −0.592611 0.342144i
\(343\) −8.02539 −0.433330
\(344\) 2.06515 + 1.19232i 0.111346 + 0.0642854i
\(345\) 0 0
\(346\) 5.46116i 0.293594i
\(347\) 13.0352 + 7.52585i 0.699764 + 0.404009i 0.807260 0.590197i \(-0.200950\pi\)
−0.107495 + 0.994206i \(0.534283\pi\)
\(348\) −26.4130 + 15.2496i −1.41589 + 0.817463i
\(349\) −26.8768 + 15.5173i −1.43868 + 0.830623i −0.997758 0.0669222i \(-0.978682\pi\)
−0.440923 + 0.897545i \(0.645349\pi\)
\(350\) 0 0
\(351\) 0.793330 + 1.24510i 0.0423448 + 0.0664584i
\(352\) 17.1981i 0.916661i
\(353\) 14.2633 + 24.7048i 0.759161 + 1.31491i 0.943279 + 0.332002i \(0.107724\pi\)
−0.184118 + 0.982904i \(0.558943\pi\)
\(354\) 11.8040 + 20.4452i 0.627378 + 1.08665i
\(355\) 0 0
\(356\) 14.3775i 0.762005i
\(357\) −4.79708 + 8.30879i −0.253888 + 0.439748i
\(358\) −0.0100296 + 0.0173718i −0.000530083 + 0.000918131i
\(359\) 16.4735i 0.869437i −0.900566 0.434718i \(-0.856848\pi\)
0.900566 0.434718i \(-0.143152\pi\)
\(360\) 0 0
\(361\) 8.51935 + 14.7559i 0.448387 + 0.776628i
\(362\) 3.79938 + 6.58072i 0.199691 + 0.345875i
\(363\) 5.17625i 0.271683i
\(364\) −2.92563 1.52274i −0.153345 0.0798134i
\(365\) 0 0
\(366\) 11.5453 6.66571i 0.603485 0.348422i
\(367\) 3.26441 1.88471i 0.170401 0.0983809i −0.412374 0.911015i \(-0.635300\pi\)
0.582775 + 0.812634i \(0.301967\pi\)
\(368\) −0.891646 0.514792i −0.0464803 0.0268354i
\(369\) 2.30078i 0.119774i
\(370\) 0 0
\(371\) 2.51678 + 1.45306i 0.130665 + 0.0754394i
\(372\) 17.5337 0.909080
\(373\) 11.4862 + 6.63155i 0.594732 + 0.343368i 0.766966 0.641688i \(-0.221765\pi\)
−0.172235 + 0.985056i \(0.555099\pi\)
\(374\) −6.53729 11.3229i −0.338035 0.585494i
\(375\) 0 0
\(376\) −7.47626 −0.385559
\(377\) 25.2420 + 13.1381i 1.30003 + 0.676644i
\(378\) 0.160293i 0.00824459i
\(379\) −19.0442 + 10.9952i −0.978235 + 0.564784i −0.901737 0.432285i \(-0.857707\pi\)
−0.0764985 + 0.997070i \(0.524374\pi\)
\(380\) 0 0
\(381\) −7.46212 + 12.9248i −0.382296 + 0.662156i
\(382\) 3.55404 0.181841
\(383\) −11.3380 + 19.6380i −0.579344 + 1.00345i 0.416211 + 0.909268i \(0.363358\pi\)
−0.995555 + 0.0941845i \(0.969976\pi\)
\(384\) −23.6733 13.6678i −1.20807 0.697481i
\(385\) 0 0
\(386\) −3.53823 + 6.12839i −0.180091 + 0.311927i
\(387\) 2.75931 1.59309i 0.140264 0.0809812i
\(388\) −5.38698 9.33053i −0.273483 0.473686i
\(389\) 18.3322 0.929480 0.464740 0.885447i \(-0.346148\pi\)
0.464740 + 0.885447i \(0.346148\pi\)
\(390\) 0 0
\(391\) 4.40947 0.222996
\(392\) 7.88139 + 13.6510i 0.398070 + 0.689478i
\(393\) 2.40009 1.38569i 0.121069 0.0698991i
\(394\) −1.88011 + 3.25644i −0.0947184 + 0.164057i
\(395\) 0 0
\(396\) 12.7372 + 7.35385i 0.640070 + 0.369545i
\(397\) 2.67834 4.63902i 0.134422 0.232826i −0.790954 0.611875i \(-0.790416\pi\)
0.925377 + 0.379049i \(0.123749\pi\)
\(398\) −10.3861 −0.520607
\(399\) 4.38033 7.58695i 0.219291 0.379822i
\(400\) 0 0
\(401\) 9.93714 5.73721i 0.496237 0.286503i −0.230921 0.972972i \(-0.574174\pi\)
0.727158 + 0.686470i \(0.240841\pi\)
\(402\) 1.05289i 0.0525134i
\(403\) −8.79078 13.7968i −0.437900 0.687265i
\(404\) −21.5352 −1.07142
\(405\) 0 0
\(406\) 1.54480 + 2.67568i 0.0766672 + 0.132792i
\(407\) −20.0330 11.5661i −0.992999 0.573308i
\(408\) 38.6663 1.91427
\(409\) 15.0683 + 8.69969i 0.745080 + 0.430172i 0.823913 0.566716i \(-0.191786\pi\)
−0.0788336 + 0.996888i \(0.525120\pi\)
\(410\) 0 0
\(411\) 48.8912i 2.41163i
\(412\) 5.95858 + 3.44019i 0.293558 + 0.169486i
\(413\) −7.26626 + 4.19518i −0.357549 + 0.206431i
\(414\) 1.22442 0.706918i 0.0601768 0.0347431i
\(415\) 0 0
\(416\) 0.907233 + 20.7477i 0.0444808 + 1.01724i
\(417\) 24.5073i 1.20013i
\(418\) 5.96935 + 10.3392i 0.291970 + 0.505708i
\(419\) −11.2389 19.4664i −0.549058 0.950996i −0.998339 0.0576056i \(-0.981653\pi\)
0.449282 0.893390i \(-0.351680\pi\)
\(420\) 0 0
\(421\) 5.16889i 0.251916i 0.992036 + 0.125958i \(0.0402005\pi\)
−0.992036 + 0.125958i \(0.959799\pi\)
\(422\) 5.63926 9.76749i 0.274515 0.475474i
\(423\) −4.99462 + 8.65094i −0.242847 + 0.420623i
\(424\) 11.7122i 0.568797i
\(425\) 0 0
\(426\) −7.44720 12.8989i −0.360818 0.624955i
\(427\) 2.36900 + 4.10324i 0.114644 + 0.198569i
\(428\) 4.21267i 0.203627i
\(429\) −1.16771 26.7047i −0.0563777 1.28931i
\(430\) 0 0
\(431\) −22.7964 + 13.1615i −1.09806 + 0.633968i −0.935712 0.352765i \(-0.885241\pi\)
−0.162352 + 0.986733i \(0.551908\pi\)
\(432\) −0.544355 + 0.314284i −0.0261903 + 0.0151210i
\(433\) 16.3773 + 9.45546i 0.787045 + 0.454401i 0.838921 0.544253i \(-0.183187\pi\)
−0.0518762 + 0.998654i \(0.516520\pi\)
\(434\) 1.77619i 0.0852596i
\(435\) 0 0
\(436\) −15.2667 8.81425i −0.731144 0.422126i
\(437\) −4.02639 −0.192608
\(438\) −24.0894 13.9080i −1.15104 0.664552i
\(439\) −13.7455 23.8079i −0.656037 1.13629i −0.981633 0.190780i \(-0.938898\pi\)
0.325596 0.945509i \(-0.394435\pi\)
\(440\) 0 0
\(441\) 21.0611 1.00291
\(442\) −8.48386 13.3151i −0.403536 0.633333i
\(443\) 19.2846i 0.916240i 0.888890 + 0.458120i \(0.151477\pi\)
−0.888890 + 0.458120i \(0.848523\pi\)
\(444\) 25.9274 14.9692i 1.23046 0.710405i
\(445\) 0 0
\(446\) 5.47138 9.47672i 0.259078 0.448735i
\(447\) 20.2005 0.955450
\(448\) −0.225164 + 0.389996i −0.0106380 + 0.0184256i
\(449\) −5.66090 3.26832i −0.267154 0.154242i 0.360439 0.932783i \(-0.382627\pi\)
−0.627594 + 0.778541i \(0.715960\pi\)
\(450\) 0 0
\(451\) 1.08530 1.87979i 0.0511048 0.0885161i
\(452\) 3.38191 1.95255i 0.159072 0.0918401i
\(453\) 16.1600 + 27.9899i 0.759262 + 1.31508i
\(454\) 11.4862 0.539072
\(455\) 0 0
\(456\) −35.3071 −1.65341
\(457\) −7.20317 12.4763i −0.336950 0.583614i 0.646907 0.762569i \(-0.276062\pi\)
−0.983857 + 0.178954i \(0.942729\pi\)
\(458\) 5.81478 3.35717i 0.271707 0.156870i
\(459\) 1.34600 2.33135i 0.0628260 0.108818i
\(460\) 0 0
\(461\) 11.4829 + 6.62968i 0.534814 + 0.308775i 0.742975 0.669320i \(-0.233414\pi\)
−0.208161 + 0.978095i \(0.566748\pi\)
\(462\) 1.45109 2.51336i 0.0675108 0.116932i
\(463\) −18.8671 −0.876827 −0.438413 0.898773i \(-0.644459\pi\)
−0.438413 + 0.898773i \(0.644459\pi\)
\(464\) −6.05772 + 10.4923i −0.281223 + 0.487092i
\(465\) 0 0
\(466\) −11.3692 + 6.56400i −0.526667 + 0.304072i
\(467\) 21.8870i 1.01281i 0.862295 + 0.506406i \(0.169026\pi\)
−0.862295 + 0.506406i \(0.830974\pi\)
\(468\) 15.7541 + 8.19974i 0.728233 + 0.379033i
\(469\) 0.374199 0.0172789
\(470\) 0 0
\(471\) 15.2920 + 26.4865i 0.704617 + 1.22043i
\(472\) 29.2844 + 16.9073i 1.34792 + 0.778224i
\(473\) −3.00590 −0.138212
\(474\) −21.6058 12.4741i −0.992386 0.572954i
\(475\) 0 0
\(476\) 6.01394i 0.275648i
\(477\) −13.5525 7.82453i −0.620526 0.358261i
\(478\) 6.48175 3.74224i 0.296468 0.171166i
\(479\) 24.3402 14.0528i 1.11213 0.642089i 0.172751 0.984966i \(-0.444734\pi\)
0.939381 + 0.342876i \(0.111401\pi\)
\(480\) 0 0
\(481\) −24.7779 12.8965i −1.12977 0.588028i
\(482\) 2.49689i 0.113730i
\(483\) 0.489388 + 0.847645i 0.0222679 + 0.0385692i
\(484\) 1.62232 + 2.80995i 0.0737420 + 0.127725i
\(485\) 0 0
\(486\) 14.8387i 0.673099i
\(487\) −9.16127 + 15.8678i −0.415137 + 0.719038i −0.995443 0.0953608i \(-0.969600\pi\)
0.580306 + 0.814398i \(0.302933\pi\)
\(488\) 9.54753 16.5368i 0.432196 0.748586i
\(489\) 5.29809i 0.239588i
\(490\) 0 0
\(491\) 10.8603 + 18.8106i 0.490118 + 0.848908i 0.999935 0.0113739i \(-0.00362052\pi\)
−0.509818 + 0.860282i \(0.670287\pi\)
\(492\) 1.40463 + 2.43289i 0.0633256 + 0.109683i
\(493\) 51.8876i 2.33690i
\(494\) 7.74681 + 12.1583i 0.348546 + 0.547028i
\(495\) 0 0
\(496\) 6.03192 3.48253i 0.270841 0.156370i
\(497\) 4.58430 2.64675i 0.205634 0.118723i
\(498\) 0.530734 + 0.306419i 0.0237828 + 0.0137310i
\(499\) 14.7418i 0.659933i −0.943993 0.329966i \(-0.892963\pi\)
0.943993 0.329966i \(-0.107037\pi\)
\(500\) 0 0
\(501\) −0.235425 0.135923i −0.0105180 0.00607257i
\(502\) 13.5703 0.605670
\(503\) 32.1631 + 18.5694i 1.43408 + 0.827969i 0.997429 0.0716604i \(-0.0228298\pi\)
0.436655 + 0.899629i \(0.356163\pi\)
\(504\) 2.20310 + 3.81588i 0.0981338 + 0.169973i
\(505\) 0 0
\(506\) −1.33384 −0.0592964
\(507\) −2.81745 32.1548i −0.125127 1.42805i
\(508\) 9.35501i 0.415062i
\(509\) 11.0110 6.35722i 0.488055 0.281779i −0.235712 0.971823i \(-0.575742\pi\)
0.723767 + 0.690044i \(0.242409\pi\)
\(510\) 0 0
\(511\) 4.94294 8.56142i 0.218663 0.378735i
\(512\) −16.1142 −0.712154
\(513\) −1.22907 + 2.12881i −0.0542646 + 0.0939891i
\(514\) −8.28139 4.78126i −0.365276 0.210892i
\(515\) 0 0
\(516\) 1.94517 3.36913i 0.0856312 0.148318i
\(517\) 8.16147 4.71203i 0.358941 0.207235i
\(518\) −1.51640 2.62647i −0.0666266 0.115401i
\(519\) 20.3584 0.893634
\(520\) 0 0
\(521\) 34.3347 1.50423 0.752116 0.659031i \(-0.229033\pi\)
0.752116 + 0.659031i \(0.229033\pi\)
\(522\) −8.31852 14.4081i −0.364092 0.630626i
\(523\) 20.6494 11.9219i 0.902934 0.521309i 0.0247827 0.999693i \(-0.492111\pi\)
0.878151 + 0.478384i \(0.158777\pi\)
\(524\) 0.868600 1.50446i 0.0379450 0.0657226i
\(525\) 0 0
\(526\) −15.4250 8.90565i −0.672564 0.388305i
\(527\) −14.9149 + 25.8333i −0.649702 + 1.12532i
\(528\) 11.3805 0.495272
\(529\) −11.2751 + 19.5290i −0.490221 + 0.849087i
\(530\) 0 0
\(531\) 39.1277 22.5904i 1.69800 0.980339i
\(532\) 5.49147i 0.238085i
\(533\) 1.21014 2.32503i 0.0524169 0.100708i
\(534\) 15.2769 0.661098
\(535\) 0 0
\(536\) −0.754046 1.30605i −0.0325698 0.0564126i
\(537\) 0.0647596 + 0.0373890i 0.00279458 + 0.00161345i
\(538\) 0.286523 0.0123529
\(539\) −17.2075 9.93473i −0.741178 0.427919i
\(540\) 0 0
\(541\) 16.3426i 0.702624i 0.936258 + 0.351312i \(0.114264\pi\)
−0.936258 + 0.351312i \(0.885736\pi\)
\(542\) 6.78492 + 3.91728i 0.291437 + 0.168261i
\(543\) 24.5319 14.1635i 1.05277 0.607814i
\(544\) 32.7943 18.9338i 1.40605 0.811781i
\(545\) 0 0
\(546\) 1.61801 3.10866i 0.0692442 0.133038i
\(547\) 3.13542i 0.134061i −0.997751 0.0670305i \(-0.978648\pi\)
0.997751 0.0670305i \(-0.0213525\pi\)
\(548\) −15.3233 26.5408i −0.654580 1.13377i
\(549\) −12.7567 22.0953i −0.544444 0.943004i
\(550\) 0 0
\(551\) 47.3798i 2.01845i
\(552\) 1.97233 3.41617i 0.0839477 0.145402i
\(553\) 4.43331 7.67873i 0.188524 0.326533i
\(554\) 2.64812i 0.112508i
\(555\) 0 0
\(556\) −7.68101 13.3039i −0.325747 0.564211i
\(557\) 11.7849 + 20.4120i 0.499341 + 0.864883i 1.00000 0.000761144i \(-0.000242280\pi\)
−0.500659 + 0.865645i \(0.666909\pi\)
\(558\) 9.56449i 0.404897i
\(559\) −3.62631 + 0.158567i −0.153377 + 0.00670668i
\(560\) 0 0
\(561\) −42.2101 + 24.3700i −1.78211 + 1.02890i
\(562\) −9.99432 + 5.77022i −0.421585 + 0.243402i
\(563\) −12.6564 7.30716i −0.533402 0.307960i 0.208999 0.977916i \(-0.432980\pi\)
−0.742401 + 0.669956i \(0.766313\pi\)
\(564\) 12.1969i 0.513583i
\(565\) 0 0
\(566\) 5.19974 + 3.00207i 0.218561 + 0.126187i
\(567\) −4.98293 −0.209263
\(568\) −18.4756 10.6669i −0.775218 0.447573i
\(569\) 8.80300 + 15.2472i 0.369041 + 0.639198i 0.989416 0.145108i \(-0.0463529\pi\)
−0.620375 + 0.784305i \(0.713020\pi\)
\(570\) 0 0
\(571\) −3.82424 −0.160039 −0.0800197 0.996793i \(-0.525498\pi\)
−0.0800197 + 0.996793i \(0.525498\pi\)
\(572\) −9.00359 14.1308i −0.376459 0.590836i
\(573\) 13.2489i 0.553482i
\(574\) 0.246455 0.142291i 0.0102868 0.00593910i
\(575\) 0 0
\(576\) 1.21247 2.10007i 0.0505198 0.0875028i
\(577\) 6.37523 0.265405 0.132702 0.991156i \(-0.457635\pi\)
0.132702 + 0.991156i \(0.457635\pi\)
\(578\) −8.73273 + 15.1255i −0.363234 + 0.629139i
\(579\) 22.8457 + 13.1900i 0.949435 + 0.548156i
\(580\) 0 0
\(581\) −0.108902 + 0.188624i −0.00451801 + 0.00782543i
\(582\) 9.91424 5.72399i 0.410959 0.237267i
\(583\) 7.38182 + 12.7857i 0.305724 + 0.529529i
\(584\) −39.8419 −1.64867
\(585\) 0 0
\(586\) 18.1043 0.747881
\(587\) 23.6306 + 40.9293i 0.975338 + 1.68933i 0.678816 + 0.734308i \(0.262493\pi\)
0.296522 + 0.955026i \(0.404173\pi\)
\(588\) 22.2704 12.8578i 0.918418 0.530249i
\(589\) 13.6191 23.5890i 0.561166 0.971967i
\(590\) 0 0
\(591\) 12.1395 + 7.00875i 0.499353 + 0.288301i
\(592\) 5.94633 10.2993i 0.244393 0.423301i
\(593\) 6.35373 0.260916 0.130458 0.991454i \(-0.458355\pi\)
0.130458 + 0.991454i \(0.458355\pi\)
\(594\) −0.407159 + 0.705219i −0.0167059 + 0.0289355i
\(595\) 0 0
\(596\) 10.9659 6.33117i 0.449181 0.259335i
\(597\) 38.7177i 1.58461i
\(598\) −1.60914 + 0.0703627i −0.0658026 + 0.00287735i
\(599\) −43.2542 −1.76732 −0.883658 0.468132i \(-0.844927\pi\)
−0.883658 + 0.468132i \(0.844927\pi\)
\(600\) 0 0
\(601\) 2.89558 + 5.01529i 0.118113 + 0.204578i 0.919020 0.394211i \(-0.128982\pi\)
−0.800907 + 0.598789i \(0.795649\pi\)
\(602\) −0.341297 0.197048i −0.0139102 0.00803107i
\(603\) −2.01500 −0.0820573
\(604\) 17.5450 + 10.1296i 0.713896 + 0.412168i
\(605\) 0 0
\(606\) 22.8825i 0.929537i
\(607\) 20.1221 + 11.6175i 0.816731 + 0.471540i 0.849288 0.527930i \(-0.177032\pi\)
−0.0325569 + 0.999470i \(0.510365\pi\)
\(608\) −29.9453 + 17.2889i −1.21444 + 0.701158i
\(609\) 9.97450 5.75878i 0.404187 0.233358i
\(610\) 0 0
\(611\) 9.59739 6.11510i 0.388269 0.247391i
\(612\) 32.3842i 1.30905i
\(613\) 11.6623 + 20.1997i 0.471035 + 0.815857i 0.999451 0.0331286i \(-0.0105471\pi\)
−0.528416 + 0.848986i \(0.677214\pi\)
\(614\) −5.14956 8.91930i −0.207819 0.359954i
\(615\) 0 0
\(616\) 4.15690i 0.167486i
\(617\) 9.13768 15.8269i 0.367869 0.637168i −0.621363 0.783523i \(-0.713421\pi\)
0.989232 + 0.146355i \(0.0467540\pi\)
\(618\) −3.65540 + 6.33135i −0.147042 + 0.254684i
\(619\) 45.4589i 1.82715i 0.406675 + 0.913573i \(0.366688\pi\)
−0.406675 + 0.913573i \(0.633312\pi\)
\(620\) 0 0
\(621\) −0.137316 0.237839i −0.00551032 0.00954415i
\(622\) −2.83095 4.90334i −0.113511 0.196606i
\(623\) 5.42945i 0.217526i
\(624\) 13.7294 0.600344i 0.549615 0.0240330i
\(625\) 0 0
\(626\) 2.77654 1.60304i 0.110973 0.0640703i
\(627\) 38.5430 22.2528i 1.53926 0.888692i
\(628\) 16.6026 + 9.58552i 0.662516 + 0.382504i
\(629\) 50.9335i 2.03085i
\(630\) 0 0
\(631\) −33.5920 19.3944i −1.33728 0.772077i −0.350874 0.936423i \(-0.614115\pi\)
−0.986403 + 0.164346i \(0.947449\pi\)
\(632\) −35.7342 −1.42143
\(633\) −36.4117 21.0223i −1.44723 0.835561i
\(634\) −1.11692 1.93456i −0.0443585 0.0768312i
\(635\) 0 0
\(636\) −19.1076 −0.757665
\(637\) −21.2831 11.0775i −0.843267 0.438906i
\(638\) 15.6957i 0.621400i
\(639\) −24.6858 + 14.2523i −0.976553 + 0.563813i
\(640\) 0 0
\(641\) 10.4454 18.0920i 0.412569 0.714591i −0.582601 0.812758i \(-0.697965\pi\)
0.995170 + 0.0981679i \(0.0312982\pi\)
\(642\) 4.47621 0.176662
\(643\) −0.719272 + 1.24581i −0.0283653 + 0.0491301i −0.879860 0.475234i \(-0.842364\pi\)
0.851494 + 0.524364i \(0.175697\pi\)
\(644\) 0.531332 + 0.306765i 0.0209374 + 0.0120882i
\(645\) 0 0
\(646\) 13.1436 22.7654i 0.517129 0.895694i
\(647\) −41.6923 + 24.0711i −1.63909 + 0.946331i −0.657948 + 0.753063i \(0.728575\pi\)
−0.981146 + 0.193268i \(0.938091\pi\)
\(648\) 10.0411 + 17.3917i 0.394451 + 0.683209i
\(649\) −42.6244 −1.67316
\(650\) 0 0
\(651\) −6.62134 −0.259511
\(652\) −1.66051 2.87609i −0.0650305 0.112636i
\(653\) −32.5257 + 18.7787i −1.27283 + 0.734869i −0.975520 0.219911i \(-0.929423\pi\)
−0.297311 + 0.954781i \(0.596090\pi\)
\(654\) 9.36567 16.2218i 0.366227 0.634323i
\(655\) 0 0
\(656\) 0.966438 + 0.557973i 0.0377331 + 0.0217852i
\(657\) −26.6170 + 46.1020i −1.03843 + 1.79861i
\(658\) 1.23556 0.0481672
\(659\) −6.65871 + 11.5332i −0.259387 + 0.449271i −0.966078 0.258251i \(-0.916854\pi\)
0.706691 + 0.707522i \(0.250187\pi\)
\(660\) 0 0
\(661\) −32.4052 + 18.7091i −1.26041 + 0.727701i −0.973155 0.230152i \(-0.926078\pi\)
−0.287260 + 0.957853i \(0.592744\pi\)
\(662\) 13.6962i 0.532320i
\(663\) −49.6365 + 31.6265i −1.92772 + 1.22827i
\(664\) 0.877790 0.0340649
\(665\) 0 0
\(666\) 8.16556 + 14.1432i 0.316409 + 0.548036i
\(667\) −4.58427 2.64673i −0.177504 0.102482i
\(668\) −0.170402 −0.00659304
\(669\) −35.3277 20.3965i −1.36585 0.788573i
\(670\) 0 0
\(671\) 24.0699i 0.929208i
\(672\) 7.27940 + 4.20276i 0.280809 + 0.162125i
\(673\) −41.0691 + 23.7113i −1.58310 + 0.914002i −0.588695 + 0.808356i \(0.700358\pi\)
−0.994404 + 0.105647i \(0.966309\pi\)
\(674\) 8.84509 5.10671i 0.340700 0.196703i
\(675\) 0 0
\(676\) −11.6073 16.5723i −0.446435 0.637397i
\(677\) 5.91735i 0.227422i 0.993514 + 0.113711i \(0.0362738\pi\)
−0.993514 + 0.113711i \(0.963726\pi\)
\(678\) 2.07470 + 3.59348i 0.0796783 + 0.138007i
\(679\) 2.03432 + 3.52354i 0.0780699 + 0.135221i
\(680\) 0 0
\(681\) 42.8186i 1.64081i
\(682\) 4.51166 7.81443i 0.172761 0.299230i
\(683\) −7.50043 + 12.9911i −0.286996 + 0.497092i −0.973091 0.230420i \(-0.925990\pi\)
0.686095 + 0.727512i \(0.259323\pi\)
\(684\) 29.5707i 1.13067i
\(685\) 0 0
\(686\) −2.67265 4.62916i −0.102042 0.176742i
\(687\) −12.5150 21.6766i −0.477477 0.827014i
\(688\) 1.54539i 0.0589175i
\(689\) 9.57987 + 15.0352i 0.364964 + 0.572795i
\(690\) 0 0
\(691\) 28.2700 16.3217i 1.07544 0.620907i 0.145779 0.989317i \(-0.453431\pi\)
0.929663 + 0.368410i \(0.120098\pi\)
\(692\) 11.0516 6.38066i 0.420120 0.242556i
\(693\) −4.81003 2.77707i −0.182718 0.105492i
\(694\) 10.0252i 0.380550i
\(695\) 0 0
\(696\) −40.1991 23.2090i −1.52374 0.879734i
\(697\) −4.77934 −0.181030
\(698\) −17.9012 10.3353i −0.677571 0.391196i
\(699\) 24.4696 + 42.3826i 0.925525 + 1.60306i
\(700\) 0 0
\(701\) −7.83225 −0.295820 −0.147910 0.989001i \(-0.547255\pi\)
−0.147910 + 0.989001i \(0.547255\pi\)
\(702\) −0.453993 + 0.872252i −0.0171349 + 0.0329210i
\(703\) 46.5086i 1.75410i
\(704\) −1.98125 + 1.14387i −0.0746710 + 0.0431113i
\(705\) 0 0
\(706\) −9.50007 + 16.4546i −0.357540 + 0.619277i
\(707\) 8.13246 0.305853
\(708\) 27.5830 47.7751i 1.03663 1.79550i
\(709\) −27.3294 15.7786i −1.02638 0.592580i −0.110433 0.993884i \(-0.535224\pi\)
−0.915945 + 0.401304i \(0.868557\pi\)
\(710\) 0 0
\(711\) −23.8727 + 41.3488i −0.895297 + 1.55070i
\(712\) 18.9501 10.9408i 0.710185 0.410026i
\(713\) 1.52158 + 2.63546i 0.0569837 + 0.0986987i
\(714\) −6.39017 −0.239146
\(715\) 0 0
\(716\) 0.0468733 0.00175174
\(717\) −13.9505 24.1630i −0.520991 0.902383i
\(718\) 9.50214 5.48606i 0.354617 0.204738i
\(719\) 8.91325 15.4382i 0.332408 0.575748i −0.650575 0.759442i \(-0.725472\pi\)
0.982984 + 0.183694i \(0.0588055\pi\)
\(720\) 0 0
\(721\) −2.25017 1.29914i −0.0838007 0.0483824i
\(722\) −5.67429 + 9.82816i −0.211175 + 0.365766i
\(723\) 9.30803 0.346169
\(724\) 8.87816 15.3774i 0.329954 0.571498i
\(725\) 0 0
\(726\) −2.98574 + 1.72382i −0.110811 + 0.0639768i
\(727\) 4.62813i 0.171648i −0.996310 0.0858240i \(-0.972648\pi\)
0.996310 0.0858240i \(-0.0273523\pi\)
\(728\) −0.219285 5.01486i −0.00812722 0.185863i
\(729\) 29.8824 1.10675
\(730\) 0 0
\(731\) 3.30928 + 5.73183i 0.122398 + 0.211999i
\(732\) −26.9785 15.5760i −0.997152 0.575706i
\(733\) −9.92820 −0.366706 −0.183353 0.983047i \(-0.558695\pi\)
−0.183353 + 0.983047i \(0.558695\pi\)
\(734\) 2.17425 + 1.25531i 0.0802531 + 0.0463342i
\(735\) 0 0
\(736\) 3.86318i 0.142399i
\(737\) 1.64631 + 0.950497i 0.0606426 + 0.0350120i
\(738\) −1.32712 + 0.766214i −0.0488520 + 0.0282047i
\(739\) 24.7225 14.2735i 0.909432 0.525061i 0.0291834 0.999574i \(-0.490709\pi\)
0.880248 + 0.474513i \(0.157376\pi\)
\(740\) 0 0
\(741\) 45.3243 28.8789i 1.66503 1.06089i
\(742\) 1.93562i 0.0710589i
\(743\) 11.5568 + 20.0170i 0.423979 + 0.734354i 0.996325 0.0856590i \(-0.0272996\pi\)
−0.572345 + 0.820013i \(0.693966\pi\)
\(744\) 13.3426 + 23.1101i 0.489165 + 0.847258i
\(745\) 0 0
\(746\) 8.83386i 0.323430i
\(747\) 0.586420 1.01571i 0.0214560 0.0371629i
\(748\) −15.2759 + 26.4587i −0.558543 + 0.967425i
\(749\) 1.59085i 0.0581285i
\(750\) 0 0
\(751\) 12.8691 + 22.2900i 0.469601 + 0.813372i 0.999396 0.0347534i \(-0.0110646\pi\)
−0.529795 + 0.848126i \(0.677731\pi\)
\(752\) 2.42254 + 4.19597i 0.0883410 + 0.153011i
\(753\) 50.5878i 1.84352i
\(754\) 0.827980 + 18.9353i 0.0301533 + 0.689581i
\(755\) 0 0
\(756\) 0.324381 0.187282i 0.0117976 0.00681137i
\(757\) 12.2811 7.09047i 0.446363 0.257708i −0.259930 0.965627i \(-0.583700\pi\)
0.706293 + 0.707920i \(0.250366\pi\)
\(758\) −12.6844 7.32332i −0.460717 0.265995i
\(759\) 4.97235i 0.180485i
\(760\) 0 0
\(761\) 21.1030 + 12.1838i 0.764983 + 0.441663i 0.831082 0.556150i \(-0.187722\pi\)
−0.0660987 + 0.997813i \(0.521055\pi\)
\(762\) −9.94026 −0.360098
\(763\) 5.76526 + 3.32857i 0.208716 + 0.120502i
\(764\) −4.15243 7.19222i −0.150230 0.260206i
\(765\) 0 0
\(766\) −15.1033 −0.545704
\(767\) −51.4220 + 2.24852i −1.85674 + 0.0811895i
\(768\) 22.0116i 0.794276i
\(769\) 10.2768 5.93333i 0.370592 0.213961i −0.303125 0.952951i \(-0.598030\pi\)
0.673717 + 0.738989i \(0.264697\pi\)
\(770\) 0 0
\(771\) −17.8238 + 30.8717i −0.641909 + 1.11182i
\(772\) 16.5358 0.595137
\(773\) 0.879642 1.52359i 0.0316385 0.0547995i −0.849773 0.527149i \(-0.823261\pi\)
0.881411 + 0.472350i \(0.156594\pi\)
\(774\) 1.83783 + 1.06107i 0.0660595 + 0.0381395i
\(775\) 0 0
\(776\) 8.19867 14.2005i 0.294315 0.509769i
\(777\) −9.79109 + 5.65289i −0.351253 + 0.202796i
\(778\) 6.10507 + 10.5743i 0.218877 + 0.379107i
\(779\) 4.36413 0.156361
\(780\) 0 0
\(781\) 26.8919 0.962266
\(782\) 1.46846 + 2.54345i 0.0525120 + 0.0909534i
\(783\) −2.79873 + 1.61585i −0.100018 + 0.0577456i
\(784\) 5.10763 8.84668i 0.182415 0.315953i
\(785\) 0 0
\(786\) 1.59858 + 0.922939i 0.0570194 + 0.0329202i
\(787\) −15.6085 + 27.0347i −0.556383 + 0.963684i 0.441411 + 0.897305i \(0.354478\pi\)
−0.997794 + 0.0663793i \(0.978855\pi\)
\(788\) 8.78664 0.313011
\(789\) −33.1989 + 57.5022i −1.18191 + 2.04713i
\(790\) 0 0
\(791\) −1.27713 + 0.737351i −0.0454095 + 0.0262172i
\(792\) 22.3843i 0.795390i
\(793\) 1.26974 + 29.0378i 0.0450896 + 1.03116i
\(794\) 3.56781 0.126617
\(795\) 0 0
\(796\) 12.1348 + 21.0180i 0.430106 + 0.744965i
\(797\) 3.38411 + 1.95382i 0.119871 + 0.0692077i 0.558737 0.829345i \(-0.311286\pi\)
−0.438866 + 0.898553i \(0.644620\pi\)
\(798\) 5.83502 0.206557
\(799\) −17.9703 10.3752i −0.635745 0.367048i
\(800\) 0 0
\(801\) 29.2368i 1.03303i
\(802\) 6.61861 + 3.82126i 0.233711 + 0.134933i
\(803\) 43.4935 25.1110i 1.53485 0.886148i
\(804\) −2.13071 + 1.23016i −0.0751442 + 0.0433845i
\(805\) 0 0
\(806\) 5.03063 9.66530i 0.177196 0.340446i
\(807\) 1.06811i 0.0375994i
\(808\) −16.3877 28.3843i −0.576517 0.998556i
\(809\) −10.0804 17.4597i −0.354407 0.613851i 0.632609 0.774471i \(-0.281984\pi\)
−0.987016 + 0.160620i \(0.948651\pi\)
\(810\) 0 0
\(811\) 34.1631i 1.19963i −0.800139 0.599815i \(-0.795241\pi\)
0.800139 0.599815i \(-0.204759\pi\)
\(812\) 3.60980 6.25235i 0.126679 0.219415i
\(813\) 14.6030 25.2931i 0.512150 0.887069i
\(814\) 15.4071i 0.540019i
\(815\) 0 0
\(816\) −12.5291 21.7010i −0.438605 0.759687i
\(817\) −3.02178 5.23387i −0.105719 0.183110i
\(818\) 11.5888i 0.405194i
\(819\) −5.94930 3.09651i −0.207885 0.108201i
\(820\) 0 0
\(821\) 44.8414 25.8892i 1.56497 0.903538i 0.568233 0.822868i \(-0.307627\pi\)
0.996741 0.0806706i \(-0.0257062\pi\)
\(822\) 28.2012 16.2820i 0.983629 0.567899i
\(823\) 24.3447 + 14.0554i 0.848602 + 0.489941i 0.860179 0.509992i \(-0.170352\pi\)
−0.0115767 + 0.999933i \(0.503685\pi\)
\(824\) 10.4715i 0.364793i
\(825\) 0 0
\(826\) −4.83968 2.79419i −0.168394 0.0972223i
\(827\) −49.5177 −1.72190 −0.860949 0.508691i \(-0.830130\pi\)
−0.860949 + 0.508691i \(0.830130\pi\)
\(828\) −2.86114 1.65188i −0.0994316 0.0574068i
\(829\) 10.8664 + 18.8212i 0.377406 + 0.653687i 0.990684 0.136180i \(-0.0434827\pi\)
−0.613278 + 0.789867i \(0.710149\pi\)
\(830\) 0 0
\(831\) 9.87177 0.342448
\(832\) −2.32982 + 1.48448i −0.0807721 + 0.0514650i
\(833\) 43.7496i 1.51583i
\(834\) 14.1362 8.16154i 0.489496 0.282611i
\(835\) 0 0
\(836\) 13.9488 24.1600i 0.482430 0.835593i
\(837\) 1.85787 0.0642174
\(838\) 7.48567 12.9656i 0.258588 0.447888i
\(839\) 31.2115 + 18.0199i 1.07754 + 0.622118i 0.930232 0.366973i \(-0.119606\pi\)
0.147308 + 0.989091i \(0.452939\pi\)
\(840\) 0 0
\(841\) −16.6449 + 28.8299i −0.573963 + 0.994134i
\(842\) −2.98149 + 1.72137i −0.102749 + 0.0593222i
\(843\) 21.5105 + 37.2573i 0.740861 + 1.28321i
\(844\) −26.3550 −0.907175
\(845\) 0 0
\(846\) −6.65332 −0.228746
\(847\) −0.612647 1.06114i −0.0210508 0.0364611i
\(848\) −6.57337 + 3.79513i −0.225730 + 0.130325i
\(849\) 11.1913 19.3838i 0.384083 0.665252i
\(850\) 0 0
\(851\) 4.49998 + 2.59806i 0.154257 + 0.0890605i
\(852\) −17.4022 + 30.1414i −0.596188 + 1.03263i
\(853\) −38.4465 −1.31638 −0.658191 0.752851i \(-0.728678\pi\)
−0.658191 + 0.752851i \(0.728678\pi\)
\(854\) −1.57787 + 2.73295i −0.0539936 + 0.0935197i
\(855\) 0 0
\(856\) 5.55247 3.20572i 0.189780 0.109569i
\(857\) 2.31635i 0.0791251i −0.999217 0.0395625i \(-0.987404\pi\)
0.999217 0.0395625i \(-0.0125964\pi\)
\(858\) 15.0148 9.56685i 0.512596 0.326607i
\(859\) 1.38239 0.0471667 0.0235833 0.999722i \(-0.492492\pi\)
0.0235833 + 0.999722i \(0.492492\pi\)
\(860\) 0 0
\(861\) −0.530438 0.918746i −0.0180773 0.0313108i
\(862\) −15.1835 8.76620i −0.517152 0.298578i
\(863\) −10.5783 −0.360091 −0.180046 0.983658i \(-0.557625\pi\)
−0.180046 + 0.983658i \(0.557625\pi\)
\(864\) −2.04251 1.17925i −0.0694877 0.0401187i
\(865\) 0 0
\(866\) 12.5956i 0.428015i
\(867\) 56.3856 + 32.5543i 1.91496 + 1.10560i
\(868\) −3.59442 + 2.07524i −0.122003 + 0.0704382i
\(869\) 39.0093 22.5220i 1.32330 0.764007i
\(870\) 0 0
\(871\) 2.03624 + 1.05983i 0.0689954 + 0.0359110i
\(872\) 26.8296i 0.908563i
\(873\) −10.9545 18.9737i −0.370753 0.642163i
\(874\) −1.34088 2.32248i −0.0453561 0.0785591i
\(875\) 0 0
\(876\) 64.9989i 2.19611i
\(877\) 9.39590 16.2742i 0.317277 0.549540i −0.662642 0.748936i \(-0.730565\pi\)
0.979919 + 0.199397i \(0.0638982\pi\)
\(878\) 9.15516 15.8572i 0.308972 0.535155i
\(879\) 67.4900i 2.27638i
\(880\) 0 0
\(881\) 19.8767 + 34.4275i 0.669663 + 1.15989i 0.977998 + 0.208613i \(0.0668948\pi\)
−0.308335 + 0.951278i \(0.599772\pi\)
\(882\) 7.01385 + 12.1483i 0.236169 + 0.409056i
\(883\) 17.2515i 0.580560i −0.956942 0.290280i \(-0.906252\pi\)
0.956942 0.290280i \(-0.0937484\pi\)
\(884\) −17.0331 + 32.7255i −0.572884 + 1.10068i
\(885\) 0 0
\(886\) −11.1237 + 6.42224i −0.373706 + 0.215760i
\(887\) 31.6934 18.2982i 1.06416 0.614394i 0.137581 0.990491i \(-0.456067\pi\)
0.926580 + 0.376097i \(0.122734\pi\)
\(888\) 39.4599 + 22.7822i 1.32419 + 0.764521i
\(889\) 3.53279i 0.118486i
\(890\) 0 0
\(891\) −21.9227 12.6571i −0.734438 0.424028i
\(892\) −25.5704 −0.856160
\(893\) 16.4091 + 9.47382i 0.549111 + 0.317029i
\(894\) 6.72724 + 11.6519i 0.224993 + 0.389699i
\(895\) 0 0
\(896\) 6.47073 0.216172
\(897\) 0.262301 + 5.99862i 0.00875799 + 0.200288i
\(898\) 4.35372i 0.145286i
\(899\) 31.0123 17.9049i 1.03432 0.597163i
\(900\) 0 0
\(901\) 16.2537 28.1522i 0.541488 0.937885i
\(902\) 1.44572 0.0481373
\(903\) −0.734564 + 1.27230i −0.0244448 + 0.0423396i
\(904\) 5.14707 + 2.97166i 0.171189 + 0.0988361i
\(905\) 0 0
\(906\) −10.7633 + 18.6426i −0.357587 + 0.619360i
\(907\) 33.9791 19.6178i 1.12826 0.651400i 0.184762 0.982783i \(-0.440849\pi\)
0.943496 + 0.331384i \(0.107515\pi\)
\(908\) −13.4201 23.2443i −0.445361 0.771388i
\(909\) −43.7921 −1.45249
\(910\) 0 0
\(911\) −7.66019 −0.253793 −0.126897 0.991916i \(-0.540502\pi\)
−0.126897 + 0.991916i \(0.540502\pi\)
\(912\) 11.4406 + 19.8157i 0.378836 + 0.656163i
\(913\) −0.958241 + 0.553241i −0.0317131 + 0.0183096i
\(914\) 4.79766 8.30978i 0.158692 0.274863i
\(915\) 0 0
\(916\) −13.5876 7.84482i −0.448948 0.259200i
\(917\) −0.328014 + 0.568137i −0.0108320 + 0.0187615i
\(918\) 1.79301 0.0591780
\(919\) 6.62625 11.4770i 0.218580 0.378592i −0.735794 0.677205i \(-0.763191\pi\)
0.954374 + 0.298614i \(0.0965242\pi\)
\(920\) 0 0
\(921\) −33.2498 + 19.1968i −1.09562 + 0.632555i
\(922\) 8.83137i 0.290846i
\(923\) 32.4422 1.41860i 1.06785 0.0466938i
\(924\) −6.78164 −0.223100
\(925\) 0 0
\(926\) −6.28319 10.8828i −0.206478 0.357631i
\(927\) 12.1168 + 6.99565i 0.397969 + 0.229767i
\(928\) −45.4592 −1.49227
\(929\) −39.4042 22.7500i −1.29281 0.746405i −0.313659 0.949536i \(-0.601555\pi\)
−0.979152 + 0.203131i \(0.934888\pi\)
\(930\) 0 0
\(931\) 39.9488i 1.30927i
\(932\) 26.5668 + 15.3384i 0.870225 + 0.502425i
\(933\) −18.2789 + 10.5533i −0.598424 + 0.345500i
\(934\) −12.6248 + 7.28891i −0.413095 + 0.238500i
\(935\) 0 0
\(936\) 1.18081 + 27.0043i 0.0385961 + 0.882662i
\(937\) 16.8095i 0.549141i −0.961567 0.274570i \(-0.911464\pi\)
0.961567 0.274570i \(-0.0885357\pi\)
\(938\) 0.124617 + 0.215843i 0.00406889 + 0.00704753i
\(939\) −5.97588 10.3505i −0.195015 0.337777i
\(940\) 0 0
\(941\) 8.88910i 0.289776i 0.989448 + 0.144888i \(0.0462822\pi\)
−0.989448 + 0.144888i \(0.953718\pi\)
\(942\) −10.1852 + 17.6413i −0.331851 + 0.574784i
\(943\) −0.243789 + 0.422255i −0.00793886 + 0.0137505i
\(944\) 21.9140i 0.713241i
\(945\) 0 0
\(946\) −1.00104 1.73385i −0.0325465 0.0563723i
\(947\) −15.2253 26.3710i −0.494756 0.856942i 0.505226 0.862987i \(-0.331409\pi\)
−0.999982 + 0.00604474i \(0.998076\pi\)
\(948\) 58.2974i 1.89341i
\(949\) 51.1457 32.5882i 1.66026 1.05786i
\(950\) 0 0
\(951\) −7.21174 + 4.16370i −0.233857 + 0.135017i
\(952\) −7.92662 + 4.57643i −0.256903 + 0.148323i
\(953\) −4.20756 2.42924i −0.136296 0.0786907i 0.430301 0.902685i \(-0.358407\pi\)
−0.566598 + 0.823995i \(0.691741\pi\)
\(954\) 10.4230i 0.337458i
\(955\) 0 0
\(956\) −15.1462 8.74464i −0.489862 0.282822i
\(957\) 58.5112 1.89140
\(958\) 16.2117 + 9.35985i 0.523777 + 0.302403i
\(959\) 5.78663 + 10.0227i 0.186860 + 0.323651i
\(960\) 0 0
\(961\) 10.4132 0.335910
\(962\) −0.812755 18.5871i −0.0262043 0.599271i
\(963\) 8.56651i 0.276052i
\(964\) 5.05290 2.91729i 0.162743 0.0939597i
\(965\) 0 0
\(966\) −0.325956 + 0.564572i −0.0104875 + 0.0181648i
\(967\) 26.5631 0.854211 0.427106 0.904202i \(-0.359533\pi\)
0.427106 + 0.904202i \(0.359533\pi\)
\(968\) −2.46908 + 4.27658i −0.0793593 + 0.137454i
\(969\) −84.8660 48.9974i −2.72629 1.57402i
\(970\) 0 0
\(971\) −21.6053 + 37.4216i −0.693349 + 1.20091i 0.277386 + 0.960759i \(0.410532\pi\)
−0.970734 + 0.240156i \(0.922801\pi\)
\(972\) 30.0288 17.3371i 0.963174 0.556089i
\(973\) 2.90062 + 5.02403i 0.0929897 + 0.161063i
\(974\) −12.2037 −0.391031
\(975\) 0 0
\(976\) −12.3748 −0.396107
\(977\) −22.7283 39.3665i −0.727141 1.25945i −0.958086 0.286479i \(-0.907515\pi\)
0.230945 0.972967i \(-0.425818\pi\)
\(978\) 3.05601 1.76439i 0.0977205 0.0564190i
\(979\) −13.7913 + 23.8872i −0.440771 + 0.763438i
\(980\) 0 0
\(981\) −31.0450 17.9239i −0.991192 0.572265i
\(982\) −7.23347 + 12.5287i −0.230829 + 0.399808i
\(983\) 9.31963 0.297250 0.148625 0.988894i \(-0.452515\pi\)
0.148625 + 0.988894i \(0.452515\pi\)
\(984\) −2.13777 + 3.70272i −0.0681495 + 0.118038i
\(985\) 0 0
\(986\) 29.9295 17.2798i 0.953150 0.550302i
\(987\) 4.60599i 0.146610i
\(988\) 15.5533 29.8824i 0.494816 0.950686i
\(989\) 0.675210 0.0214704
\(990\) 0 0
\(991\) 2.01694 + 3.49344i 0.0640702 + 0.110973i 0.896281 0.443486i \(-0.146258\pi\)
−0.832211 + 0.554459i \(0.812925\pi\)
\(992\) 22.6328 + 13.0670i 0.718592 + 0.414879i
\(993\) −51.0575 −1.62026
\(994\) 3.05336 + 1.76286i 0.0968468 + 0.0559145i
\(995\) 0 0
\(996\) 1.43204i 0.0453760i
\(997\) −47.7839 27.5880i −1.51333 0.873722i −0.999878 0.0156032i \(-0.995033\pi\)
−0.513452 0.858118i \(-0.671634\pi\)
\(998\) 8.50327 4.90937i 0.269166 0.155403i
\(999\) 2.74726 1.58613i 0.0869195 0.0501830i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.m.d.49.6 20
5.2 odd 4 325.2.n.f.101.3 yes 10
5.3 odd 4 325.2.n.e.101.3 10
5.4 even 2 inner 325.2.m.d.49.5 20
13.4 even 6 inner 325.2.m.d.199.5 20
65.2 even 12 4225.2.a.bu.1.5 10
65.4 even 6 inner 325.2.m.d.199.6 20
65.17 odd 12 325.2.n.f.251.3 yes 10
65.28 even 12 4225.2.a.bv.1.6 10
65.37 even 12 4225.2.a.bu.1.6 10
65.43 odd 12 325.2.n.e.251.3 yes 10
65.63 even 12 4225.2.a.bv.1.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.m.d.49.5 20 5.4 even 2 inner
325.2.m.d.49.6 20 1.1 even 1 trivial
325.2.m.d.199.5 20 13.4 even 6 inner
325.2.m.d.199.6 20 65.4 even 6 inner
325.2.n.e.101.3 10 5.3 odd 4
325.2.n.e.251.3 yes 10 65.43 odd 12
325.2.n.f.101.3 yes 10 5.2 odd 4
325.2.n.f.251.3 yes 10 65.17 odd 12
4225.2.a.bu.1.5 10 65.2 even 12
4225.2.a.bu.1.6 10 65.37 even 12
4225.2.a.bv.1.5 10 65.63 even 12
4225.2.a.bv.1.6 10 65.28 even 12