Properties

Label 325.2.b.e
Level $325$
Weight $2$
Character orbit 325.b
Analytic conductor $2.595$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(274,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.274"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + ( - \beta_{2} - \beta_1) q^{3} - q^{4} + ( - \beta_{3} - 3) q^{6} + 2 \beta_1 q^{7} - \beta_{2} q^{8} + ( - 2 \beta_{3} - 1) q^{9} + ( - \beta_{3} - 3) q^{11} + (\beta_{2} + \beta_1) q^{12}+ \cdots + (7 \beta_{3} + 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 12 q^{6} - 4 q^{9} - 12 q^{11} - 20 q^{16} + 4 q^{19} + 8 q^{21} - 12 q^{24} + 24 q^{29} + 20 q^{31} - 24 q^{34} + 4 q^{36} - 4 q^{39} + 12 q^{44} + 12 q^{46} + 12 q^{49} - 24 q^{51} + 12 q^{59}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{12}^{3} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\zeta_{12}^{2} - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{12}^{3} + 2\zeta_{12} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( ( \beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
274.1
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
1.73205i 2.73205i −1.00000 0 −4.73205 2.00000i 1.73205i −4.46410 0
274.2 1.73205i 0.732051i −1.00000 0 −1.26795 2.00000i 1.73205i 2.46410 0
274.3 1.73205i 0.732051i −1.00000 0 −1.26795 2.00000i 1.73205i 2.46410 0
274.4 1.73205i 2.73205i −1.00000 0 −4.73205 2.00000i 1.73205i −4.46410 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 325.2.b.e 4
3.b odd 2 1 2925.2.c.v 4
5.b even 2 1 inner 325.2.b.e 4
5.c odd 4 1 65.2.a.c 2
5.c odd 4 1 325.2.a.g 2
15.d odd 2 1 2925.2.c.v 4
15.e even 4 1 585.2.a.k 2
15.e even 4 1 2925.2.a.z 2
20.e even 4 1 1040.2.a.h 2
20.e even 4 1 5200.2.a.ca 2
35.f even 4 1 3185.2.a.k 2
40.i odd 4 1 4160.2.a.y 2
40.k even 4 1 4160.2.a.bj 2
55.e even 4 1 7865.2.a.h 2
60.l odd 4 1 9360.2.a.cm 2
65.f even 4 1 845.2.c.e 4
65.h odd 4 1 845.2.a.d 2
65.h odd 4 1 4225.2.a.w 2
65.k even 4 1 845.2.c.e 4
65.o even 12 1 845.2.m.a 4
65.o even 12 1 845.2.m.c 4
65.q odd 12 2 845.2.e.e 4
65.r odd 12 2 845.2.e.f 4
65.t even 12 1 845.2.m.a 4
65.t even 12 1 845.2.m.c 4
195.s even 4 1 7605.2.a.be 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.a.c 2 5.c odd 4 1
325.2.a.g 2 5.c odd 4 1
325.2.b.e 4 1.a even 1 1 trivial
325.2.b.e 4 5.b even 2 1 inner
585.2.a.k 2 15.e even 4 1
845.2.a.d 2 65.h odd 4 1
845.2.c.e 4 65.f even 4 1
845.2.c.e 4 65.k even 4 1
845.2.e.e 4 65.q odd 12 2
845.2.e.f 4 65.r odd 12 2
845.2.m.a 4 65.o even 12 1
845.2.m.a 4 65.t even 12 1
845.2.m.c 4 65.o even 12 1
845.2.m.c 4 65.t even 12 1
1040.2.a.h 2 20.e even 4 1
2925.2.a.z 2 15.e even 4 1
2925.2.c.v 4 3.b odd 2 1
2925.2.c.v 4 15.d odd 2 1
3185.2.a.k 2 35.f even 4 1
4160.2.a.y 2 40.i odd 4 1
4160.2.a.bj 2 40.k even 4 1
4225.2.a.w 2 65.h odd 4 1
5200.2.a.ca 2 20.e even 4 1
7605.2.a.be 2 195.s even 4 1
7865.2.a.h 2 55.e even 4 1
9360.2.a.cm 2 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(325, [\chi])\):

\( T_{2}^{2} + 3 \) Copy content Toggle raw display
\( T_{3}^{4} + 8T_{3}^{2} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 8T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 6 T + 6)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 2 T - 26)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 24T^{2} + 36 \) Copy content Toggle raw display
$29$ \( (T^{2} - 12 T + 24)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 10 T - 2)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 104T^{2} + 4 \) Copy content Toggle raw display
$47$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 108)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 6 T - 138)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 4 T - 104)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 248T^{2} + 8464 \) Copy content Toggle raw display
$71$ \( (T^{2} - 6 T + 6)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 4 T - 104)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 12 T - 12)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
show more
show less