Properties

Label 325.2.b
Level $325$
Weight $2$
Character orbit 325.b
Rep. character $\chi_{325}(274,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $6$
Sturm bound $70$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(70\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(325, [\chi])\).

Total New Old
Modular forms 42 18 24
Cusp forms 30 18 12
Eisenstein series 12 0 12

Trace form

\( 18 q - 10 q^{4} - 12 q^{6} - 14 q^{9} + 12 q^{11} - 4 q^{14} + 2 q^{16} + 8 q^{19} - 12 q^{21} + 8 q^{24} + 6 q^{26} + 28 q^{29} + 8 q^{31} + 18 q^{36} - 8 q^{39} - 76 q^{44} - 28 q^{46} - 22 q^{49} + 92 q^{54}+ \cdots - 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(325, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
325.2.b.a 325.b 5.b $2$ $2.595$ \(\Q(\sqrt{-1}) \) None 325.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}-i q^{3}-2 q^{4}+2 q^{6}+2 i q^{7}+\cdots\)
325.2.b.b 325.b 5.b $2$ $2.595$ \(\Q(\sqrt{-1}) \) None 65.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-2 i q^{3}+q^{4}+2 q^{6}+4 i q^{7}+\cdots\)
325.2.b.c 325.b 5.b $2$ $2.595$ \(\Q(\sqrt{-1}) \) None 325.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+2 q^{4}+4 i q^{7}+2 q^{9}-6 q^{11}+\cdots\)
325.2.b.d 325.b 5.b $4$ $2.595$ \(\Q(\zeta_{8})\) None 325.2.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta_{2}+\beta_1)q^{2}+2\beta_{2} q^{3}+(-2\beta_{3}-1)q^{4}+\cdots\)
325.2.b.e 325.b 5.b $4$ $2.595$ \(\Q(\zeta_{12})\) None 65.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_{2} q^{2}+(-\beta_{2}-\beta_1)q^{3}-q^{4}+\cdots\)
325.2.b.f 325.b 5.b $4$ $2.595$ \(\Q(\zeta_{8})\) None 65.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta_{2}+\beta_1)q^{2}-\beta_{2} q^{3}+(-2\beta_{3}-1)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(325, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(325, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)