Properties

Label 325.10.a.k.1.19
Level $325$
Weight $10$
Character 325.1
Self dual yes
Analytic conductor $167.387$
Analytic rank $1$
Dimension $27$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,10,Mod(1,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [27,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(167.386646753\)
Analytic rank: \(1\)
Dimension: \(27\)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.19
Character \(\chi\) \(=\) 325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+18.1415 q^{2} +10.3900 q^{3} -182.888 q^{4} +188.489 q^{6} +11293.6 q^{7} -12606.3 q^{8} -19575.0 q^{9} +60195.2 q^{11} -1900.20 q^{12} +28561.0 q^{13} +204883. q^{14} -135058. q^{16} -224981. q^{17} -355120. q^{18} -556885. q^{19} +117340. q^{21} +1.09203e6 q^{22} -1.16710e6 q^{23} -130979. q^{24} +518138. q^{26} -407890. q^{27} -2.06546e6 q^{28} -2.07628e6 q^{29} -2.19865e6 q^{31} +4.00427e6 q^{32} +625427. q^{33} -4.08148e6 q^{34} +3.58003e6 q^{36} +2.23731e7 q^{37} -1.01027e7 q^{38} +296748. q^{39} -1.66587e7 q^{41} +2.12873e6 q^{42} +4.07487e7 q^{43} -1.10090e7 q^{44} -2.11728e7 q^{46} -3.75678e7 q^{47} -1.40325e6 q^{48} +8.71922e7 q^{49} -2.33754e6 q^{51} -5.22345e6 q^{52} +1.84297e7 q^{53} -7.39972e6 q^{54} -1.42370e8 q^{56} -5.78602e6 q^{57} -3.76667e7 q^{58} -1.18597e8 q^{59} +3.63845e7 q^{61} -3.98868e7 q^{62} -2.21073e8 q^{63} +1.41793e8 q^{64} +1.13462e7 q^{66} -7.71724e7 q^{67} +4.11462e7 q^{68} -1.21261e7 q^{69} -3.52032e8 q^{71} +2.46768e8 q^{72} +8.03083e7 q^{73} +4.05880e8 q^{74} +1.01847e8 q^{76} +6.79822e8 q^{77} +5.38344e6 q^{78} -2.09520e8 q^{79} +3.81058e8 q^{81} -3.02213e8 q^{82} +3.40426e8 q^{83} -2.14601e7 q^{84} +7.39242e8 q^{86} -2.15725e7 q^{87} -7.58837e8 q^{88} -4.09952e8 q^{89} +3.22557e8 q^{91} +2.13448e8 q^{92} -2.28440e7 q^{93} -6.81534e8 q^{94} +4.16043e7 q^{96} -4.17219e8 q^{97} +1.58179e9 q^{98} -1.17832e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 27 q - 48 q^{2} - 324 q^{3} + 6570 q^{4} - 1786 q^{6} - 3736 q^{7} - 36864 q^{8} + 214173 q^{9} - 66096 q^{11} - 114398 q^{12} + 771147 q^{13} - 359458 q^{14} + 998622 q^{16} - 779040 q^{17} - 1709648 q^{18}+ \cdots + 2142297632 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 18.1415 0.801747 0.400873 0.916134i \(-0.368707\pi\)
0.400873 + 0.916134i \(0.368707\pi\)
\(3\) 10.3900 0.0740575 0.0370287 0.999314i \(-0.488211\pi\)
0.0370287 + 0.999314i \(0.488211\pi\)
\(4\) −182.888 −0.357202
\(5\) 0 0
\(6\) 188.489 0.0593753
\(7\) 11293.6 1.77784 0.888918 0.458065i \(-0.151457\pi\)
0.888918 + 0.458065i \(0.151457\pi\)
\(8\) −12606.3 −1.08813
\(9\) −19575.0 −0.994515
\(10\) 0 0
\(11\) 60195.2 1.23964 0.619819 0.784745i \(-0.287206\pi\)
0.619819 + 0.784745i \(0.287206\pi\)
\(12\) −1900.20 −0.0264535
\(13\) 28561.0 0.277350
\(14\) 204883. 1.42537
\(15\) 0 0
\(16\) −135058. −0.515204
\(17\) −224981. −0.653319 −0.326659 0.945142i \(-0.605923\pi\)
−0.326659 + 0.945142i \(0.605923\pi\)
\(18\) −355120. −0.797349
\(19\) −556885. −0.980335 −0.490167 0.871628i \(-0.663064\pi\)
−0.490167 + 0.871628i \(0.663064\pi\)
\(20\) 0 0
\(21\) 117340. 0.131662
\(22\) 1.09203e6 0.993875
\(23\) −1.16710e6 −0.869625 −0.434812 0.900521i \(-0.643185\pi\)
−0.434812 + 0.900521i \(0.643185\pi\)
\(24\) −130979. −0.0805843
\(25\) 0 0
\(26\) 518138. 0.222364
\(27\) −407890. −0.147709
\(28\) −2.06546e6 −0.635048
\(29\) −2.07628e6 −0.545123 −0.272562 0.962138i \(-0.587871\pi\)
−0.272562 + 0.962138i \(0.587871\pi\)
\(30\) 0 0
\(31\) −2.19865e6 −0.427592 −0.213796 0.976878i \(-0.568583\pi\)
−0.213796 + 0.976878i \(0.568583\pi\)
\(32\) 4.00427e6 0.675069
\(33\) 625427. 0.0918044
\(34\) −4.08148e6 −0.523796
\(35\) 0 0
\(36\) 3.58003e6 0.355243
\(37\) 2.23731e7 1.96254 0.981268 0.192646i \(-0.0617068\pi\)
0.981268 + 0.192646i \(0.0617068\pi\)
\(38\) −1.01027e7 −0.785980
\(39\) 296748. 0.0205398
\(40\) 0 0
\(41\) −1.66587e7 −0.920691 −0.460346 0.887740i \(-0.652274\pi\)
−0.460346 + 0.887740i \(0.652274\pi\)
\(42\) 2.12873e6 0.105560
\(43\) 4.07487e7 1.81763 0.908817 0.417196i \(-0.136987\pi\)
0.908817 + 0.417196i \(0.136987\pi\)
\(44\) −1.10090e7 −0.442802
\(45\) 0 0
\(46\) −2.11728e7 −0.697219
\(47\) −3.75678e7 −1.12299 −0.561494 0.827481i \(-0.689773\pi\)
−0.561494 + 0.827481i \(0.689773\pi\)
\(48\) −1.40325e6 −0.0381547
\(49\) 8.71922e7 2.16070
\(50\) 0 0
\(51\) −2.33754e6 −0.0483831
\(52\) −5.22345e6 −0.0990701
\(53\) 1.84297e7 0.320832 0.160416 0.987050i \(-0.448716\pi\)
0.160416 + 0.987050i \(0.448716\pi\)
\(54\) −7.39972e6 −0.118425
\(55\) 0 0
\(56\) −1.42370e8 −1.93452
\(57\) −5.78602e6 −0.0726011
\(58\) −3.76667e7 −0.437051
\(59\) −1.18597e8 −1.27420 −0.637101 0.770780i \(-0.719867\pi\)
−0.637101 + 0.770780i \(0.719867\pi\)
\(60\) 0 0
\(61\) 3.63845e7 0.336459 0.168229 0.985748i \(-0.446195\pi\)
0.168229 + 0.985748i \(0.446195\pi\)
\(62\) −3.98868e7 −0.342820
\(63\) −2.21073e8 −1.76809
\(64\) 1.41793e8 1.05644
\(65\) 0 0
\(66\) 1.13462e7 0.0736039
\(67\) −7.71724e7 −0.467870 −0.233935 0.972252i \(-0.575160\pi\)
−0.233935 + 0.972252i \(0.575160\pi\)
\(68\) 4.11462e7 0.233367
\(69\) −1.21261e7 −0.0644022
\(70\) 0 0
\(71\) −3.52032e8 −1.64407 −0.822034 0.569439i \(-0.807161\pi\)
−0.822034 + 0.569439i \(0.807161\pi\)
\(72\) 2.46768e8 1.08216
\(73\) 8.03083e7 0.330984 0.165492 0.986211i \(-0.447079\pi\)
0.165492 + 0.986211i \(0.447079\pi\)
\(74\) 4.05880e8 1.57346
\(75\) 0 0
\(76\) 1.01847e8 0.350178
\(77\) 6.79822e8 2.20387
\(78\) 5.38344e6 0.0164678
\(79\) −2.09520e8 −0.605208 −0.302604 0.953116i \(-0.597856\pi\)
−0.302604 + 0.953116i \(0.597856\pi\)
\(80\) 0 0
\(81\) 3.81058e8 0.983577
\(82\) −3.02213e8 −0.738161
\(83\) 3.40426e8 0.787355 0.393678 0.919249i \(-0.371203\pi\)
0.393678 + 0.919249i \(0.371203\pi\)
\(84\) −2.14601e7 −0.0470300
\(85\) 0 0
\(86\) 7.39242e8 1.45728
\(87\) −2.15725e7 −0.0403705
\(88\) −7.58837e8 −1.34889
\(89\) −4.09952e8 −0.692593 −0.346297 0.938125i \(-0.612561\pi\)
−0.346297 + 0.938125i \(0.612561\pi\)
\(90\) 0 0
\(91\) 3.22557e8 0.493083
\(92\) 2.13448e8 0.310632
\(93\) −2.28440e7 −0.0316664
\(94\) −6.81534e8 −0.900352
\(95\) 0 0
\(96\) 4.16043e7 0.0499939
\(97\) −4.17219e8 −0.478510 −0.239255 0.970957i \(-0.576903\pi\)
−0.239255 + 0.970957i \(0.576903\pi\)
\(98\) 1.58179e9 1.73234
\(99\) −1.17832e9 −1.23284
\(100\) 0 0
\(101\) −1.66183e9 −1.58906 −0.794529 0.607227i \(-0.792282\pi\)
−0.794529 + 0.607227i \(0.792282\pi\)
\(102\) −4.24064e7 −0.0387910
\(103\) 6.57408e8 0.575529 0.287765 0.957701i \(-0.407088\pi\)
0.287765 + 0.957701i \(0.407088\pi\)
\(104\) −3.60048e8 −0.301794
\(105\) 0 0
\(106\) 3.34342e8 0.257226
\(107\) −2.26707e9 −1.67200 −0.836002 0.548726i \(-0.815113\pi\)
−0.836002 + 0.548726i \(0.815113\pi\)
\(108\) 7.45981e7 0.0527619
\(109\) −2.58265e9 −1.75246 −0.876228 0.481897i \(-0.839948\pi\)
−0.876228 + 0.481897i \(0.839948\pi\)
\(110\) 0 0
\(111\) 2.32456e8 0.145341
\(112\) −1.52529e9 −0.915949
\(113\) −1.04027e9 −0.600197 −0.300099 0.953908i \(-0.597020\pi\)
−0.300099 + 0.953908i \(0.597020\pi\)
\(114\) −1.04967e8 −0.0582077
\(115\) 0 0
\(116\) 3.79726e8 0.194719
\(117\) −5.59083e8 −0.275829
\(118\) −2.15152e9 −1.02159
\(119\) −2.54085e9 −1.16149
\(120\) 0 0
\(121\) 1.26552e9 0.536702
\(122\) 6.60067e8 0.269755
\(123\) −1.73084e8 −0.0681841
\(124\) 4.02107e8 0.152737
\(125\) 0 0
\(126\) −4.01059e9 −1.41756
\(127\) 4.10884e9 1.40153 0.700766 0.713391i \(-0.252842\pi\)
0.700766 + 0.713391i \(0.252842\pi\)
\(128\) 5.22141e8 0.171927
\(129\) 4.23378e8 0.134609
\(130\) 0 0
\(131\) −3.20548e9 −0.950982 −0.475491 0.879721i \(-0.657730\pi\)
−0.475491 + 0.879721i \(0.657730\pi\)
\(132\) −1.14383e8 −0.0327928
\(133\) −6.28925e9 −1.74288
\(134\) −1.40002e9 −0.375114
\(135\) 0 0
\(136\) 2.83617e9 0.710897
\(137\) −1.55645e9 −0.377479 −0.188740 0.982027i \(-0.560440\pi\)
−0.188740 + 0.982027i \(0.560440\pi\)
\(138\) −2.19985e8 −0.0516342
\(139\) −1.87975e9 −0.427103 −0.213551 0.976932i \(-0.568503\pi\)
−0.213551 + 0.976932i \(0.568503\pi\)
\(140\) 0 0
\(141\) −3.90328e8 −0.0831656
\(142\) −6.38637e9 −1.31813
\(143\) 1.71924e9 0.343814
\(144\) 2.64376e9 0.512378
\(145\) 0 0
\(146\) 1.45691e9 0.265366
\(147\) 9.05925e8 0.160016
\(148\) −4.09176e9 −0.701023
\(149\) −2.06267e9 −0.342840 −0.171420 0.985198i \(-0.554835\pi\)
−0.171420 + 0.985198i \(0.554835\pi\)
\(150\) 0 0
\(151\) −8.25715e9 −1.29251 −0.646255 0.763121i \(-0.723666\pi\)
−0.646255 + 0.763121i \(0.723666\pi\)
\(152\) 7.02025e9 1.06673
\(153\) 4.40401e9 0.649736
\(154\) 1.23330e10 1.76695
\(155\) 0 0
\(156\) −5.42716e7 −0.00733688
\(157\) −2.86960e8 −0.0376941 −0.0188470 0.999822i \(-0.506000\pi\)
−0.0188470 + 0.999822i \(0.506000\pi\)
\(158\) −3.80101e9 −0.485223
\(159\) 1.91484e8 0.0237600
\(160\) 0 0
\(161\) −1.31808e10 −1.54605
\(162\) 6.91294e9 0.788579
\(163\) −1.28538e10 −1.42623 −0.713114 0.701048i \(-0.752716\pi\)
−0.713114 + 0.701048i \(0.752716\pi\)
\(164\) 3.04667e9 0.328873
\(165\) 0 0
\(166\) 6.17582e9 0.631260
\(167\) −1.28563e9 −0.127906 −0.0639530 0.997953i \(-0.520371\pi\)
−0.0639530 + 0.997953i \(0.520371\pi\)
\(168\) −1.47923e9 −0.143266
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 1.09011e10 0.974958
\(172\) −7.45244e9 −0.649263
\(173\) 1.48032e10 1.25646 0.628231 0.778027i \(-0.283779\pi\)
0.628231 + 0.778027i \(0.283779\pi\)
\(174\) −3.91356e8 −0.0323669
\(175\) 0 0
\(176\) −8.12982e9 −0.638666
\(177\) −1.23222e9 −0.0943642
\(178\) −7.43713e9 −0.555284
\(179\) −8.22798e9 −0.599038 −0.299519 0.954090i \(-0.596826\pi\)
−0.299519 + 0.954090i \(0.596826\pi\)
\(180\) 0 0
\(181\) 2.76654e10 1.91594 0.957972 0.286861i \(-0.0926119\pi\)
0.957972 + 0.286861i \(0.0926119\pi\)
\(182\) 5.85165e9 0.395328
\(183\) 3.78034e8 0.0249173
\(184\) 1.47127e10 0.946267
\(185\) 0 0
\(186\) −4.14423e8 −0.0253884
\(187\) −1.35428e10 −0.809879
\(188\) 6.87068e9 0.401134
\(189\) −4.60656e9 −0.262602
\(190\) 0 0
\(191\) −8.08599e9 −0.439625 −0.219813 0.975542i \(-0.570545\pi\)
−0.219813 + 0.975542i \(0.570545\pi\)
\(192\) 1.47322e9 0.0782372
\(193\) −9.37272e9 −0.486248 −0.243124 0.969995i \(-0.578172\pi\)
−0.243124 + 0.969995i \(0.578172\pi\)
\(194\) −7.56895e9 −0.383644
\(195\) 0 0
\(196\) −1.59464e10 −0.771809
\(197\) −7.19857e9 −0.340524 −0.170262 0.985399i \(-0.554461\pi\)
−0.170262 + 0.985399i \(0.554461\pi\)
\(198\) −2.13765e10 −0.988425
\(199\) −2.27057e10 −1.02635 −0.513175 0.858284i \(-0.671531\pi\)
−0.513175 + 0.858284i \(0.671531\pi\)
\(200\) 0 0
\(201\) −8.01820e8 −0.0346493
\(202\) −3.01480e10 −1.27402
\(203\) −2.34487e10 −0.969141
\(204\) 4.27508e8 0.0172826
\(205\) 0 0
\(206\) 1.19263e10 0.461429
\(207\) 2.28460e10 0.864855
\(208\) −3.85738e9 −0.142892
\(209\) −3.35218e10 −1.21526
\(210\) 0 0
\(211\) 1.39078e10 0.483043 0.241522 0.970395i \(-0.422354\pi\)
0.241522 + 0.970395i \(0.422354\pi\)
\(212\) −3.37057e9 −0.114602
\(213\) −3.65760e9 −0.121755
\(214\) −4.11279e10 −1.34052
\(215\) 0 0
\(216\) 5.14197e9 0.160727
\(217\) −2.48308e10 −0.760188
\(218\) −4.68531e10 −1.40503
\(219\) 8.34401e8 0.0245119
\(220\) 0 0
\(221\) −6.42567e9 −0.181198
\(222\) 4.21708e9 0.116526
\(223\) −1.53075e10 −0.414506 −0.207253 0.978287i \(-0.566452\pi\)
−0.207253 + 0.978287i \(0.566452\pi\)
\(224\) 4.52227e10 1.20016
\(225\) 0 0
\(226\) −1.88721e10 −0.481206
\(227\) −3.16606e10 −0.791412 −0.395706 0.918377i \(-0.629500\pi\)
−0.395706 + 0.918377i \(0.629500\pi\)
\(228\) 1.05819e9 0.0259333
\(229\) 2.89545e10 0.695755 0.347878 0.937540i \(-0.386902\pi\)
0.347878 + 0.937540i \(0.386902\pi\)
\(230\) 0 0
\(231\) 7.06333e9 0.163213
\(232\) 2.61741e10 0.593166
\(233\) −4.54048e9 −0.100925 −0.0504627 0.998726i \(-0.516070\pi\)
−0.0504627 + 0.998726i \(0.516070\pi\)
\(234\) −1.01426e10 −0.221145
\(235\) 0 0
\(236\) 2.16899e10 0.455148
\(237\) −2.17691e9 −0.0448202
\(238\) −4.60946e10 −0.931224
\(239\) −1.35092e10 −0.267818 −0.133909 0.990994i \(-0.542753\pi\)
−0.133909 + 0.990994i \(0.542753\pi\)
\(240\) 0 0
\(241\) 2.53954e10 0.484928 0.242464 0.970160i \(-0.422044\pi\)
0.242464 + 0.970160i \(0.422044\pi\)
\(242\) 2.29583e10 0.430299
\(243\) 1.19877e10 0.220550
\(244\) −6.65427e9 −0.120184
\(245\) 0 0
\(246\) −3.13999e9 −0.0546663
\(247\) −1.59052e10 −0.271896
\(248\) 2.77168e10 0.465276
\(249\) 3.53701e9 0.0583095
\(250\) 0 0
\(251\) 8.82045e10 1.40268 0.701340 0.712827i \(-0.252585\pi\)
0.701340 + 0.712827i \(0.252585\pi\)
\(252\) 4.04315e10 0.631565
\(253\) −7.02537e10 −1.07802
\(254\) 7.45404e10 1.12367
\(255\) 0 0
\(256\) −6.31255e10 −0.918597
\(257\) −7.90254e10 −1.12997 −0.564986 0.825100i \(-0.691119\pi\)
−0.564986 + 0.825100i \(0.691119\pi\)
\(258\) 7.68070e9 0.107923
\(259\) 2.52673e11 3.48907
\(260\) 0 0
\(261\) 4.06433e10 0.542134
\(262\) −5.81521e10 −0.762446
\(263\) −3.69673e10 −0.476449 −0.238225 0.971210i \(-0.576565\pi\)
−0.238225 + 0.971210i \(0.576565\pi\)
\(264\) −7.88430e9 −0.0998954
\(265\) 0 0
\(266\) −1.14096e11 −1.39734
\(267\) −4.25939e9 −0.0512917
\(268\) 1.41139e10 0.167124
\(269\) 5.36192e10 0.624361 0.312180 0.950023i \(-0.398941\pi\)
0.312180 + 0.950023i \(0.398941\pi\)
\(270\) 0 0
\(271\) 1.30113e11 1.46541 0.732705 0.680547i \(-0.238258\pi\)
0.732705 + 0.680547i \(0.238258\pi\)
\(272\) 3.03854e10 0.336592
\(273\) 3.35136e9 0.0365165
\(274\) −2.82363e10 −0.302643
\(275\) 0 0
\(276\) 2.21772e9 0.0230046
\(277\) 4.80139e10 0.490014 0.245007 0.969521i \(-0.421210\pi\)
0.245007 + 0.969521i \(0.421210\pi\)
\(278\) −3.41013e10 −0.342428
\(279\) 4.30388e10 0.425247
\(280\) 0 0
\(281\) −1.87376e11 −1.79282 −0.896408 0.443229i \(-0.853833\pi\)
−0.896408 + 0.443229i \(0.853833\pi\)
\(282\) −7.08112e9 −0.0666778
\(283\) −1.50406e11 −1.39388 −0.696941 0.717129i \(-0.745456\pi\)
−0.696941 + 0.717129i \(0.745456\pi\)
\(284\) 6.43823e10 0.587265
\(285\) 0 0
\(286\) 3.11894e10 0.275651
\(287\) −1.88137e11 −1.63684
\(288\) −7.83838e10 −0.671367
\(289\) −6.79716e10 −0.573175
\(290\) 0 0
\(291\) −4.33489e9 −0.0354372
\(292\) −1.46874e10 −0.118228
\(293\) −1.47660e11 −1.17047 −0.585234 0.810865i \(-0.698997\pi\)
−0.585234 + 0.810865i \(0.698997\pi\)
\(294\) 1.64348e10 0.128292
\(295\) 0 0
\(296\) −2.82041e11 −2.13550
\(297\) −2.45530e10 −0.183105
\(298\) −3.74198e10 −0.274871
\(299\) −3.33335e10 −0.241191
\(300\) 0 0
\(301\) 4.60201e11 3.23146
\(302\) −1.49797e11 −1.03627
\(303\) −1.72663e10 −0.117682
\(304\) 7.52116e10 0.505072
\(305\) 0 0
\(306\) 7.98951e10 0.520923
\(307\) 2.66838e11 1.71445 0.857226 0.514941i \(-0.172186\pi\)
0.857226 + 0.514941i \(0.172186\pi\)
\(308\) −1.24331e11 −0.787229
\(309\) 6.83045e9 0.0426222
\(310\) 0 0
\(311\) −1.74684e11 −1.05885 −0.529423 0.848358i \(-0.677591\pi\)
−0.529423 + 0.848358i \(0.677591\pi\)
\(312\) −3.74089e9 −0.0223501
\(313\) −2.00516e11 −1.18086 −0.590431 0.807088i \(-0.701042\pi\)
−0.590431 + 0.807088i \(0.701042\pi\)
\(314\) −5.20587e9 −0.0302211
\(315\) 0 0
\(316\) 3.83187e10 0.216182
\(317\) −6.12644e9 −0.0340754 −0.0170377 0.999855i \(-0.505424\pi\)
−0.0170377 + 0.999855i \(0.505424\pi\)
\(318\) 3.47381e9 0.0190495
\(319\) −1.24982e11 −0.675756
\(320\) 0 0
\(321\) −2.35548e10 −0.123824
\(322\) −2.39118e11 −1.23954
\(323\) 1.25288e11 0.640471
\(324\) −6.96908e10 −0.351336
\(325\) 0 0
\(326\) −2.33187e11 −1.14347
\(327\) −2.68337e10 −0.129782
\(328\) 2.10004e11 1.00183
\(329\) −4.24276e11 −1.99649
\(330\) 0 0
\(331\) −1.52746e11 −0.699428 −0.349714 0.936857i \(-0.613721\pi\)
−0.349714 + 0.936857i \(0.613721\pi\)
\(332\) −6.22596e10 −0.281245
\(333\) −4.37954e11 −1.95177
\(334\) −2.33231e10 −0.102548
\(335\) 0 0
\(336\) −1.58477e10 −0.0678328
\(337\) −1.29233e11 −0.545808 −0.272904 0.962041i \(-0.587984\pi\)
−0.272904 + 0.962041i \(0.587984\pi\)
\(338\) 1.47985e10 0.0616728
\(339\) −1.08084e10 −0.0444491
\(340\) 0 0
\(341\) −1.32348e11 −0.530059
\(342\) 1.97761e11 0.781669
\(343\) 5.28977e11 2.06354
\(344\) −5.13690e11 −1.97783
\(345\) 0 0
\(346\) 2.68552e11 1.00736
\(347\) 3.18336e11 1.17870 0.589350 0.807878i \(-0.299384\pi\)
0.589350 + 0.807878i \(0.299384\pi\)
\(348\) 3.94534e9 0.0144204
\(349\) 1.13814e10 0.0410658 0.0205329 0.999789i \(-0.493464\pi\)
0.0205329 + 0.999789i \(0.493464\pi\)
\(350\) 0 0
\(351\) −1.16498e10 −0.0409670
\(352\) 2.41038e11 0.836842
\(353\) −5.50331e10 −0.188642 −0.0943209 0.995542i \(-0.530068\pi\)
−0.0943209 + 0.995542i \(0.530068\pi\)
\(354\) −2.23542e10 −0.0756562
\(355\) 0 0
\(356\) 7.49752e10 0.247396
\(357\) −2.63993e10 −0.0860173
\(358\) −1.49267e11 −0.480277
\(359\) 3.66360e11 1.16408 0.582040 0.813160i \(-0.302255\pi\)
0.582040 + 0.813160i \(0.302255\pi\)
\(360\) 0 0
\(361\) −1.25666e10 −0.0389436
\(362\) 5.01890e11 1.53610
\(363\) 1.31487e10 0.0397468
\(364\) −5.89917e10 −0.176131
\(365\) 0 0
\(366\) 6.85808e9 0.0199773
\(367\) −6.91629e10 −0.199010 −0.0995052 0.995037i \(-0.531726\pi\)
−0.0995052 + 0.995037i \(0.531726\pi\)
\(368\) 1.57625e11 0.448034
\(369\) 3.26095e11 0.915642
\(370\) 0 0
\(371\) 2.08138e11 0.570387
\(372\) 4.17788e9 0.0113113
\(373\) 3.83893e11 1.02688 0.513441 0.858125i \(-0.328370\pi\)
0.513441 + 0.858125i \(0.328370\pi\)
\(374\) −2.45685e11 −0.649317
\(375\) 0 0
\(376\) 4.73589e11 1.22196
\(377\) −5.93006e10 −0.151190
\(378\) −8.35696e10 −0.210540
\(379\) 1.84827e10 0.0460140 0.0230070 0.999735i \(-0.492676\pi\)
0.0230070 + 0.999735i \(0.492676\pi\)
\(380\) 0 0
\(381\) 4.26908e10 0.103794
\(382\) −1.46692e11 −0.352468
\(383\) 3.17940e11 0.755007 0.377503 0.926008i \(-0.376783\pi\)
0.377503 + 0.926008i \(0.376783\pi\)
\(384\) 5.42503e9 0.0127324
\(385\) 0 0
\(386\) −1.70035e11 −0.389847
\(387\) −7.97659e11 −1.80766
\(388\) 7.63041e10 0.170925
\(389\) −1.98361e11 −0.439221 −0.219611 0.975588i \(-0.570479\pi\)
−0.219611 + 0.975588i \(0.570479\pi\)
\(390\) 0 0
\(391\) 2.62574e11 0.568142
\(392\) −1.09917e12 −2.35113
\(393\) −3.33049e10 −0.0704273
\(394\) −1.30593e11 −0.273014
\(395\) 0 0
\(396\) 2.15501e11 0.440373
\(397\) −3.13360e11 −0.633121 −0.316560 0.948572i \(-0.602528\pi\)
−0.316560 + 0.948572i \(0.602528\pi\)
\(398\) −4.11914e11 −0.822872
\(399\) −6.53451e10 −0.129073
\(400\) 0 0
\(401\) −1.39874e11 −0.270138 −0.135069 0.990836i \(-0.543126\pi\)
−0.135069 + 0.990836i \(0.543126\pi\)
\(402\) −1.45462e10 −0.0277800
\(403\) −6.27958e10 −0.118593
\(404\) 3.03928e11 0.567615
\(405\) 0 0
\(406\) −4.25394e11 −0.777005
\(407\) 1.34675e12 2.43284
\(408\) 2.94677e10 0.0526472
\(409\) −5.75115e11 −1.01625 −0.508124 0.861284i \(-0.669661\pi\)
−0.508124 + 0.861284i \(0.669661\pi\)
\(410\) 0 0
\(411\) −1.61715e10 −0.0279552
\(412\) −1.20232e11 −0.205580
\(413\) −1.33939e12 −2.26532
\(414\) 4.14459e11 0.693395
\(415\) 0 0
\(416\) 1.14366e11 0.187231
\(417\) −1.95305e10 −0.0316301
\(418\) −6.08135e11 −0.974331
\(419\) 8.76921e11 1.38994 0.694972 0.719036i \(-0.255417\pi\)
0.694972 + 0.719036i \(0.255417\pi\)
\(420\) 0 0
\(421\) 4.75911e11 0.738340 0.369170 0.929362i \(-0.379642\pi\)
0.369170 + 0.929362i \(0.379642\pi\)
\(422\) 2.52307e11 0.387278
\(423\) 7.35391e11 1.11683
\(424\) −2.32330e11 −0.349108
\(425\) 0 0
\(426\) −6.63543e10 −0.0976170
\(427\) 4.10912e11 0.598169
\(428\) 4.14619e11 0.597244
\(429\) 1.78628e10 0.0254620
\(430\) 0 0
\(431\) −6.24144e11 −0.871239 −0.435620 0.900131i \(-0.643471\pi\)
−0.435620 + 0.900131i \(0.643471\pi\)
\(432\) 5.50887e10 0.0761001
\(433\) 7.79305e11 1.06540 0.532699 0.846305i \(-0.321178\pi\)
0.532699 + 0.846305i \(0.321178\pi\)
\(434\) −4.50466e11 −0.609478
\(435\) 0 0
\(436\) 4.72336e11 0.625982
\(437\) 6.49939e11 0.852523
\(438\) 1.51373e10 0.0196523
\(439\) −4.84490e11 −0.622579 −0.311289 0.950315i \(-0.600761\pi\)
−0.311289 + 0.950315i \(0.600761\pi\)
\(440\) 0 0
\(441\) −1.70679e12 −2.14885
\(442\) −1.16571e11 −0.145275
\(443\) 1.77743e11 0.219268 0.109634 0.993972i \(-0.465032\pi\)
0.109634 + 0.993972i \(0.465032\pi\)
\(444\) −4.25133e10 −0.0519160
\(445\) 0 0
\(446\) −2.77699e11 −0.332329
\(447\) −2.14311e10 −0.0253898
\(448\) 1.60135e12 1.87818
\(449\) 3.05737e11 0.355009 0.177504 0.984120i \(-0.443198\pi\)
0.177504 + 0.984120i \(0.443198\pi\)
\(450\) 0 0
\(451\) −1.00277e12 −1.14132
\(452\) 1.90253e11 0.214392
\(453\) −8.57916e10 −0.0957200
\(454\) −5.74369e11 −0.634512
\(455\) 0 0
\(456\) 7.29402e10 0.0789996
\(457\) −6.59511e11 −0.707293 −0.353646 0.935379i \(-0.615058\pi\)
−0.353646 + 0.935379i \(0.615058\pi\)
\(458\) 5.25277e11 0.557819
\(459\) 9.17674e10 0.0965009
\(460\) 0 0
\(461\) −9.46343e11 −0.975876 −0.487938 0.872878i \(-0.662251\pi\)
−0.487938 + 0.872878i \(0.662251\pi\)
\(462\) 1.28139e11 0.130856
\(463\) −4.26878e11 −0.431707 −0.215854 0.976426i \(-0.569253\pi\)
−0.215854 + 0.976426i \(0.569253\pi\)
\(464\) 2.80417e11 0.280850
\(465\) 0 0
\(466\) −8.23710e10 −0.0809166
\(467\) 1.49321e12 1.45277 0.726384 0.687289i \(-0.241200\pi\)
0.726384 + 0.687289i \(0.241200\pi\)
\(468\) 1.02249e11 0.0985268
\(469\) −8.71556e11 −0.831797
\(470\) 0 0
\(471\) −2.98151e9 −0.00279153
\(472\) 1.49506e12 1.38650
\(473\) 2.45288e12 2.25321
\(474\) −3.94924e10 −0.0359344
\(475\) 0 0
\(476\) 4.64689e11 0.414889
\(477\) −3.60763e11 −0.319072
\(478\) −2.45076e11 −0.214722
\(479\) −1.16369e11 −0.101001 −0.0505006 0.998724i \(-0.516082\pi\)
−0.0505006 + 0.998724i \(0.516082\pi\)
\(480\) 0 0
\(481\) 6.38997e11 0.544310
\(482\) 4.60709e11 0.388790
\(483\) −1.36948e11 −0.114497
\(484\) −2.31447e11 −0.191711
\(485\) 0 0
\(486\) 2.17474e11 0.176825
\(487\) 3.00620e11 0.242179 0.121090 0.992642i \(-0.461361\pi\)
0.121090 + 0.992642i \(0.461361\pi\)
\(488\) −4.58673e11 −0.366112
\(489\) −1.33551e11 −0.105623
\(490\) 0 0
\(491\) 1.72579e11 0.134005 0.0670024 0.997753i \(-0.478656\pi\)
0.0670024 + 0.997753i \(0.478656\pi\)
\(492\) 3.16548e10 0.0243555
\(493\) 4.67123e11 0.356139
\(494\) −2.88543e11 −0.217992
\(495\) 0 0
\(496\) 2.96945e11 0.220297
\(497\) −3.97572e12 −2.92288
\(498\) 6.41666e10 0.0467495
\(499\) 1.95665e12 1.41274 0.706368 0.707845i \(-0.250332\pi\)
0.706368 + 0.707845i \(0.250332\pi\)
\(500\) 0 0
\(501\) −1.33576e10 −0.00947239
\(502\) 1.60016e12 1.12459
\(503\) −1.26777e12 −0.883051 −0.441526 0.897249i \(-0.645563\pi\)
−0.441526 + 0.897249i \(0.645563\pi\)
\(504\) 2.78691e12 1.92391
\(505\) 0 0
\(506\) −1.27450e12 −0.864299
\(507\) 8.47542e9 0.00569673
\(508\) −7.51457e11 −0.500631
\(509\) 9.72804e10 0.0642385 0.0321192 0.999484i \(-0.489774\pi\)
0.0321192 + 0.999484i \(0.489774\pi\)
\(510\) 0 0
\(511\) 9.06971e11 0.588436
\(512\) −1.41252e12 −0.908409
\(513\) 2.27148e11 0.144804
\(514\) −1.43364e12 −0.905951
\(515\) 0 0
\(516\) −7.74307e10 −0.0480828
\(517\) −2.26140e12 −1.39210
\(518\) 4.58385e12 2.79735
\(519\) 1.53805e11 0.0930503
\(520\) 0 0
\(521\) 2.76982e12 1.64696 0.823479 0.567347i \(-0.192030\pi\)
0.823479 + 0.567347i \(0.192030\pi\)
\(522\) 7.37328e11 0.434654
\(523\) 1.17979e12 0.689518 0.344759 0.938691i \(-0.387961\pi\)
0.344759 + 0.938691i \(0.387961\pi\)
\(524\) 5.86243e11 0.339693
\(525\) 0 0
\(526\) −6.70640e11 −0.381992
\(527\) 4.94655e11 0.279354
\(528\) −8.44686e10 −0.0472980
\(529\) −4.39036e11 −0.243753
\(530\) 0 0
\(531\) 2.32153e12 1.26721
\(532\) 1.15023e12 0.622559
\(533\) −4.75789e11 −0.255354
\(534\) −7.72716e10 −0.0411229
\(535\) 0 0
\(536\) 9.72857e11 0.509105
\(537\) −8.54885e10 −0.0443632
\(538\) 9.72731e11 0.500579
\(539\) 5.24855e12 2.67849
\(540\) 0 0
\(541\) 2.03947e12 1.02360 0.511799 0.859105i \(-0.328979\pi\)
0.511799 + 0.859105i \(0.328979\pi\)
\(542\) 2.36044e12 1.17489
\(543\) 2.87442e11 0.141890
\(544\) −9.00883e11 −0.441035
\(545\) 0 0
\(546\) 6.07985e10 0.0292770
\(547\) −3.88695e10 −0.0185638 −0.00928189 0.999957i \(-0.502955\pi\)
−0.00928189 + 0.999957i \(0.502955\pi\)
\(548\) 2.84656e11 0.134837
\(549\) −7.12228e11 −0.334613
\(550\) 0 0
\(551\) 1.15625e12 0.534403
\(552\) 1.52865e11 0.0700781
\(553\) −2.36624e12 −1.07596
\(554\) 8.71043e11 0.392867
\(555\) 0 0
\(556\) 3.43782e11 0.152562
\(557\) 3.92981e12 1.72991 0.864955 0.501850i \(-0.167347\pi\)
0.864955 + 0.501850i \(0.167347\pi\)
\(558\) 7.80786e11 0.340940
\(559\) 1.16382e12 0.504121
\(560\) 0 0
\(561\) −1.40709e11 −0.0599776
\(562\) −3.39928e12 −1.43738
\(563\) 7.21665e11 0.302725 0.151362 0.988478i \(-0.451634\pi\)
0.151362 + 0.988478i \(0.451634\pi\)
\(564\) 7.13862e10 0.0297070
\(565\) 0 0
\(566\) −2.72858e12 −1.11754
\(567\) 4.30352e12 1.74864
\(568\) 4.43781e12 1.78896
\(569\) −2.75023e12 −1.09993 −0.549964 0.835188i \(-0.685359\pi\)
−0.549964 + 0.835188i \(0.685359\pi\)
\(570\) 0 0
\(571\) 3.90328e12 1.53662 0.768311 0.640076i \(-0.221097\pi\)
0.768311 + 0.640076i \(0.221097\pi\)
\(572\) −3.14427e11 −0.122811
\(573\) −8.40132e10 −0.0325575
\(574\) −3.41308e12 −1.31233
\(575\) 0 0
\(576\) −2.77560e12 −1.05064
\(577\) 1.25866e12 0.472735 0.236367 0.971664i \(-0.424043\pi\)
0.236367 + 0.971664i \(0.424043\pi\)
\(578\) −1.23310e12 −0.459541
\(579\) −9.73823e10 −0.0360103
\(580\) 0 0
\(581\) 3.84464e12 1.39979
\(582\) −7.86412e10 −0.0284117
\(583\) 1.10938e12 0.397715
\(584\) −1.01239e12 −0.360155
\(585\) 0 0
\(586\) −2.67877e12 −0.938419
\(587\) −2.64664e12 −0.920074 −0.460037 0.887900i \(-0.652164\pi\)
−0.460037 + 0.887900i \(0.652164\pi\)
\(588\) −1.65682e11 −0.0571582
\(589\) 1.22440e12 0.419183
\(590\) 0 0
\(591\) −7.47930e10 −0.0252184
\(592\) −3.02165e12 −1.01111
\(593\) 2.75964e12 0.916444 0.458222 0.888838i \(-0.348486\pi\)
0.458222 + 0.888838i \(0.348486\pi\)
\(594\) −4.45428e11 −0.146804
\(595\) 0 0
\(596\) 3.77237e11 0.122463
\(597\) −2.35911e11 −0.0760088
\(598\) −6.04718e11 −0.193374
\(599\) 1.40559e12 0.446106 0.223053 0.974806i \(-0.428398\pi\)
0.223053 + 0.974806i \(0.428398\pi\)
\(600\) 0 0
\(601\) 8.92614e11 0.279080 0.139540 0.990216i \(-0.455438\pi\)
0.139540 + 0.990216i \(0.455438\pi\)
\(602\) 8.34871e12 2.59081
\(603\) 1.51065e12 0.465304
\(604\) 1.51013e12 0.461688
\(605\) 0 0
\(606\) −3.13237e11 −0.0943508
\(607\) −2.63701e12 −0.788430 −0.394215 0.919018i \(-0.628983\pi\)
−0.394215 + 0.919018i \(0.628983\pi\)
\(608\) −2.22992e12 −0.661794
\(609\) −2.43631e11 −0.0717721
\(610\) 0 0
\(611\) −1.07297e12 −0.311461
\(612\) −8.05439e11 −0.232087
\(613\) −1.47284e12 −0.421291 −0.210645 0.977563i \(-0.567557\pi\)
−0.210645 + 0.977563i \(0.567557\pi\)
\(614\) 4.84083e12 1.37456
\(615\) 0 0
\(616\) −8.57002e12 −2.39811
\(617\) −2.88683e12 −0.801933 −0.400966 0.916093i \(-0.631326\pi\)
−0.400966 + 0.916093i \(0.631326\pi\)
\(618\) 1.23914e11 0.0341722
\(619\) −3.40763e12 −0.932921 −0.466461 0.884542i \(-0.654471\pi\)
−0.466461 + 0.884542i \(0.654471\pi\)
\(620\) 0 0
\(621\) 4.76048e11 0.128451
\(622\) −3.16903e12 −0.848926
\(623\) −4.62984e12 −1.23132
\(624\) −4.00781e10 −0.0105822
\(625\) 0 0
\(626\) −3.63765e12 −0.946752
\(627\) −3.48291e11 −0.0899991
\(628\) 5.24815e10 0.0134644
\(629\) −5.03351e12 −1.28216
\(630\) 0 0
\(631\) −5.62075e12 −1.41144 −0.705719 0.708492i \(-0.749376\pi\)
−0.705719 + 0.708492i \(0.749376\pi\)
\(632\) 2.64127e12 0.658546
\(633\) 1.44501e11 0.0357730
\(634\) −1.11143e11 −0.0273199
\(635\) 0 0
\(636\) −3.50201e10 −0.00848713
\(637\) 2.49030e12 0.599271
\(638\) −2.26736e12 −0.541785
\(639\) 6.89105e12 1.63505
\(640\) 0 0
\(641\) 3.27017e12 0.765083 0.382542 0.923938i \(-0.375049\pi\)
0.382542 + 0.923938i \(0.375049\pi\)
\(642\) −4.27318e11 −0.0992758
\(643\) 5.51761e12 1.27292 0.636461 0.771309i \(-0.280398\pi\)
0.636461 + 0.771309i \(0.280398\pi\)
\(644\) 2.41060e12 0.552253
\(645\) 0 0
\(646\) 2.27291e12 0.513495
\(647\) −4.89879e12 −1.09906 −0.549528 0.835475i \(-0.685192\pi\)
−0.549528 + 0.835475i \(0.685192\pi\)
\(648\) −4.80372e12 −1.07026
\(649\) −7.13895e12 −1.57955
\(650\) 0 0
\(651\) −2.57991e11 −0.0562976
\(652\) 2.35081e12 0.509452
\(653\) 8.27175e12 1.78028 0.890139 0.455689i \(-0.150607\pi\)
0.890139 + 0.455689i \(0.150607\pi\)
\(654\) −4.86803e11 −0.104053
\(655\) 0 0
\(656\) 2.24989e12 0.474344
\(657\) −1.57204e12 −0.329169
\(658\) −7.69698e12 −1.60068
\(659\) 3.49908e12 0.722719 0.361359 0.932427i \(-0.382313\pi\)
0.361359 + 0.932427i \(0.382313\pi\)
\(660\) 0 0
\(661\) −7.95593e12 −1.62100 −0.810502 0.585735i \(-0.800806\pi\)
−0.810502 + 0.585735i \(0.800806\pi\)
\(662\) −2.77103e12 −0.560764
\(663\) −6.67626e10 −0.0134191
\(664\) −4.29150e12 −0.856747
\(665\) 0 0
\(666\) −7.94512e12 −1.56483
\(667\) 2.42322e12 0.474053
\(668\) 2.35125e11 0.0456883
\(669\) −1.59044e11 −0.0306973
\(670\) 0 0
\(671\) 2.19017e12 0.417087
\(672\) 4.69863e11 0.0888811
\(673\) 1.21071e12 0.227495 0.113748 0.993510i \(-0.463714\pi\)
0.113748 + 0.993510i \(0.463714\pi\)
\(674\) −2.34448e12 −0.437600
\(675\) 0 0
\(676\) −1.49187e11 −0.0274771
\(677\) 7.92478e12 1.44990 0.724950 0.688802i \(-0.241863\pi\)
0.724950 + 0.688802i \(0.241863\pi\)
\(678\) −1.96080e11 −0.0356369
\(679\) −4.71191e12 −0.850713
\(680\) 0 0
\(681\) −3.28953e11 −0.0586100
\(682\) −2.40099e12 −0.424973
\(683\) 3.03429e12 0.533536 0.266768 0.963761i \(-0.414044\pi\)
0.266768 + 0.963761i \(0.414044\pi\)
\(684\) −1.99367e12 −0.348257
\(685\) 0 0
\(686\) 9.59642e12 1.65444
\(687\) 3.00837e11 0.0515259
\(688\) −5.50343e12 −0.936452
\(689\) 5.26371e11 0.0889828
\(690\) 0 0
\(691\) 5.11513e12 0.853503 0.426752 0.904369i \(-0.359658\pi\)
0.426752 + 0.904369i \(0.359658\pi\)
\(692\) −2.70733e12 −0.448811
\(693\) −1.33075e13 −2.19179
\(694\) 5.77508e12 0.945019
\(695\) 0 0
\(696\) 2.71949e11 0.0439284
\(697\) 3.74789e12 0.601505
\(698\) 2.06475e11 0.0329244
\(699\) −4.71755e10 −0.00747428
\(700\) 0 0
\(701\) 6.81685e12 1.06624 0.533118 0.846041i \(-0.321020\pi\)
0.533118 + 0.846041i \(0.321020\pi\)
\(702\) −2.11343e11 −0.0328452
\(703\) −1.24592e13 −1.92394
\(704\) 8.53525e12 1.30960
\(705\) 0 0
\(706\) −9.98381e11 −0.151243
\(707\) −1.87680e13 −2.82509
\(708\) 2.25357e11 0.0337071
\(709\) 8.86632e11 0.131776 0.0658878 0.997827i \(-0.479012\pi\)
0.0658878 + 0.997827i \(0.479012\pi\)
\(710\) 0 0
\(711\) 4.10137e12 0.601889
\(712\) 5.16797e12 0.753633
\(713\) 2.56604e12 0.371844
\(714\) −4.78922e11 −0.0689641
\(715\) 0 0
\(716\) 1.50480e12 0.213978
\(717\) −1.40360e11 −0.0198339
\(718\) 6.64630e12 0.933298
\(719\) 8.70793e12 1.21516 0.607582 0.794257i \(-0.292139\pi\)
0.607582 + 0.794257i \(0.292139\pi\)
\(720\) 0 0
\(721\) 7.42451e12 1.02320
\(722\) −2.27977e11 −0.0312229
\(723\) 2.63857e11 0.0359126
\(724\) −5.05965e12 −0.684380
\(725\) 0 0
\(726\) 2.38536e11 0.0318669
\(727\) −2.20524e12 −0.292786 −0.146393 0.989227i \(-0.546766\pi\)
−0.146393 + 0.989227i \(0.546766\pi\)
\(728\) −4.06624e12 −0.536540
\(729\) −7.37581e12 −0.967243
\(730\) 0 0
\(731\) −9.16768e12 −1.18749
\(732\) −6.91377e10 −0.00890051
\(733\) 7.14820e12 0.914595 0.457297 0.889314i \(-0.348817\pi\)
0.457297 + 0.889314i \(0.348817\pi\)
\(734\) −1.25472e12 −0.159556
\(735\) 0 0
\(736\) −4.67337e12 −0.587057
\(737\) −4.64541e12 −0.579990
\(738\) 5.91584e12 0.734112
\(739\) 8.77288e12 1.08204 0.541019 0.841011i \(-0.318039\pi\)
0.541019 + 0.841011i \(0.318039\pi\)
\(740\) 0 0
\(741\) −1.65255e11 −0.0201359
\(742\) 3.77593e12 0.457306
\(743\) −8.90048e12 −1.07143 −0.535715 0.844399i \(-0.679958\pi\)
−0.535715 + 0.844399i \(0.679958\pi\)
\(744\) 2.87977e11 0.0344572
\(745\) 0 0
\(746\) 6.96438e12 0.823300
\(747\) −6.66385e12 −0.783037
\(748\) 2.47680e12 0.289291
\(749\) −2.56034e13 −2.97255
\(750\) 0 0
\(751\) −3.55908e12 −0.408280 −0.204140 0.978942i \(-0.565440\pi\)
−0.204140 + 0.978942i \(0.565440\pi\)
\(752\) 5.07381e12 0.578568
\(753\) 9.16442e11 0.103879
\(754\) −1.07580e12 −0.121216
\(755\) 0 0
\(756\) 8.42482e11 0.0938021
\(757\) −1.36105e13 −1.50641 −0.753205 0.657786i \(-0.771493\pi\)
−0.753205 + 0.657786i \(0.771493\pi\)
\(758\) 3.35304e11 0.0368915
\(759\) −7.29934e11 −0.0798354
\(760\) 0 0
\(761\) 5.95073e11 0.0643190 0.0321595 0.999483i \(-0.489762\pi\)
0.0321595 + 0.999483i \(0.489762\pi\)
\(762\) 7.74473e11 0.0832164
\(763\) −2.91675e13 −3.11558
\(764\) 1.47883e12 0.157035
\(765\) 0 0
\(766\) 5.76789e12 0.605324
\(767\) −3.38724e12 −0.353400
\(768\) −6.55872e11 −0.0680290
\(769\) −1.44263e13 −1.48760 −0.743799 0.668404i \(-0.766978\pi\)
−0.743799 + 0.668404i \(0.766978\pi\)
\(770\) 0 0
\(771\) −8.21072e11 −0.0836829
\(772\) 1.71415e12 0.173689
\(773\) −1.59316e11 −0.0160491 −0.00802455 0.999968i \(-0.502554\pi\)
−0.00802455 + 0.999968i \(0.502554\pi\)
\(774\) −1.44707e13 −1.44929
\(775\) 0 0
\(776\) 5.25957e12 0.520682
\(777\) 2.62527e12 0.258392
\(778\) −3.59856e12 −0.352144
\(779\) 9.27699e12 0.902586
\(780\) 0 0
\(781\) −2.11906e13 −2.03805
\(782\) 4.76348e12 0.455506
\(783\) 8.46894e11 0.0805195
\(784\) −1.17760e13 −1.11320
\(785\) 0 0
\(786\) −6.04199e11 −0.0564649
\(787\) 1.43791e13 1.33612 0.668062 0.744106i \(-0.267124\pi\)
0.668062 + 0.744106i \(0.267124\pi\)
\(788\) 1.31653e12 0.121636
\(789\) −3.84089e11 −0.0352846
\(790\) 0 0
\(791\) −1.17484e13 −1.06705
\(792\) 1.48543e13 1.34149
\(793\) 1.03918e12 0.0933169
\(794\) −5.68481e12 −0.507603
\(795\) 0 0
\(796\) 4.15258e12 0.366615
\(797\) −1.59429e13 −1.39960 −0.699801 0.714338i \(-0.746728\pi\)
−0.699801 + 0.714338i \(0.746728\pi\)
\(798\) −1.18546e12 −0.103484
\(799\) 8.45202e12 0.733669
\(800\) 0 0
\(801\) 8.02483e12 0.688795
\(802\) −2.53751e12 −0.216582
\(803\) 4.83418e12 0.410301
\(804\) 1.46643e11 0.0123768
\(805\) 0 0
\(806\) −1.13921e12 −0.0950812
\(807\) 5.57103e11 0.0462386
\(808\) 2.09494e13 1.72910
\(809\) −8.36659e12 −0.686720 −0.343360 0.939204i \(-0.611565\pi\)
−0.343360 + 0.939204i \(0.611565\pi\)
\(810\) 0 0
\(811\) −3.93687e12 −0.319564 −0.159782 0.987152i \(-0.551079\pi\)
−0.159782 + 0.987152i \(0.551079\pi\)
\(812\) 4.28848e12 0.346179
\(813\) 1.35187e12 0.108525
\(814\) 2.44320e13 1.95052
\(815\) 0 0
\(816\) 3.15703e11 0.0249272
\(817\) −2.26924e13 −1.78189
\(818\) −1.04334e13 −0.814774
\(819\) −6.31407e12 −0.490379
\(820\) 0 0
\(821\) 4.48730e12 0.344700 0.172350 0.985036i \(-0.444864\pi\)
0.172350 + 0.985036i \(0.444864\pi\)
\(822\) −2.93375e11 −0.0224130
\(823\) −1.71862e13 −1.30581 −0.652907 0.757438i \(-0.726451\pi\)
−0.652907 + 0.757438i \(0.726451\pi\)
\(824\) −8.28746e12 −0.626252
\(825\) 0 0
\(826\) −2.42984e13 −1.81622
\(827\) −1.26065e13 −0.937172 −0.468586 0.883418i \(-0.655236\pi\)
−0.468586 + 0.883418i \(0.655236\pi\)
\(828\) −4.17825e12 −0.308928
\(829\) 1.39995e13 1.02948 0.514739 0.857347i \(-0.327889\pi\)
0.514739 + 0.857347i \(0.327889\pi\)
\(830\) 0 0
\(831\) 4.98864e11 0.0362892
\(832\) 4.04974e12 0.293003
\(833\) −1.96166e13 −1.41163
\(834\) −3.54312e11 −0.0253594
\(835\) 0 0
\(836\) 6.13073e12 0.434094
\(837\) 8.96809e11 0.0631591
\(838\) 1.59086e13 1.11438
\(839\) 1.42265e13 0.991217 0.495608 0.868546i \(-0.334945\pi\)
0.495608 + 0.868546i \(0.334945\pi\)
\(840\) 0 0
\(841\) −1.01962e13 −0.702840
\(842\) 8.63372e12 0.591962
\(843\) −1.94683e12 −0.132771
\(844\) −2.54356e12 −0.172544
\(845\) 0 0
\(846\) 1.33411e13 0.895414
\(847\) 1.42923e13 0.954169
\(848\) −2.48908e12 −0.165294
\(849\) −1.56271e12 −0.103227
\(850\) 0 0
\(851\) −2.61116e13 −1.70667
\(852\) 6.68931e11 0.0434914
\(853\) −2.21914e13 −1.43521 −0.717603 0.696452i \(-0.754761\pi\)
−0.717603 + 0.696452i \(0.754761\pi\)
\(854\) 7.45455e12 0.479580
\(855\) 0 0
\(856\) 2.85793e13 1.81936
\(857\) 9.68268e12 0.613171 0.306586 0.951843i \(-0.400813\pi\)
0.306586 + 0.951843i \(0.400813\pi\)
\(858\) 3.24057e11 0.0204140
\(859\) 2.58740e13 1.62142 0.810708 0.585450i \(-0.199082\pi\)
0.810708 + 0.585450i \(0.199082\pi\)
\(860\) 0 0
\(861\) −1.95474e12 −0.121220
\(862\) −1.13229e13 −0.698513
\(863\) −4.92056e12 −0.301972 −0.150986 0.988536i \(-0.548245\pi\)
−0.150986 + 0.988536i \(0.548245\pi\)
\(864\) −1.63330e12 −0.0997137
\(865\) 0 0
\(866\) 1.41377e13 0.854179
\(867\) −7.06223e11 −0.0424479
\(868\) 4.54124e12 0.271541
\(869\) −1.26121e13 −0.750239
\(870\) 0 0
\(871\) −2.20412e12 −0.129764
\(872\) 3.25576e13 1.90690
\(873\) 8.16708e12 0.475885
\(874\) 1.17908e13 0.683508
\(875\) 0 0
\(876\) −1.52602e11 −0.00875570
\(877\) −2.87925e12 −0.164354 −0.0821772 0.996618i \(-0.526187\pi\)
−0.0821772 + 0.996618i \(0.526187\pi\)
\(878\) −8.78935e12 −0.499150
\(879\) −1.53419e12 −0.0866819
\(880\) 0 0
\(881\) −6.65889e12 −0.372401 −0.186200 0.982512i \(-0.559617\pi\)
−0.186200 + 0.982512i \(0.559617\pi\)
\(882\) −3.09637e13 −1.72284
\(883\) −3.08529e13 −1.70794 −0.853971 0.520321i \(-0.825812\pi\)
−0.853971 + 0.520321i \(0.825812\pi\)
\(884\) 1.17518e12 0.0647244
\(885\) 0 0
\(886\) 3.22452e12 0.175798
\(887\) 1.18791e10 0.000644358 0 0.000322179 1.00000i \(-0.499897\pi\)
0.000322179 1.00000i \(0.499897\pi\)
\(888\) −2.93040e12 −0.158150
\(889\) 4.64037e13 2.49169
\(890\) 0 0
\(891\) 2.29379e13 1.21928
\(892\) 2.79954e12 0.148063
\(893\) 2.09209e13 1.10090
\(894\) −3.88791e11 −0.0203562
\(895\) 0 0
\(896\) 5.89686e12 0.305657
\(897\) −3.46334e11 −0.0178620
\(898\) 5.54651e12 0.284627
\(899\) 4.56502e12 0.233090
\(900\) 0 0
\(901\) −4.14633e12 −0.209605
\(902\) −1.81918e13 −0.915052
\(903\) 4.78147e12 0.239313
\(904\) 1.31140e13 0.653094
\(905\) 0 0
\(906\) −1.55638e12 −0.0767432
\(907\) 3.04467e13 1.49385 0.746925 0.664908i \(-0.231529\pi\)
0.746925 + 0.664908i \(0.231529\pi\)
\(908\) 5.79033e12 0.282694
\(909\) 3.25303e13 1.58034
\(910\) 0 0
\(911\) 2.66394e13 1.28142 0.640709 0.767784i \(-0.278640\pi\)
0.640709 + 0.767784i \(0.278640\pi\)
\(912\) 7.81446e11 0.0374044
\(913\) 2.04920e13 0.976036
\(914\) −1.19645e13 −0.567070
\(915\) 0 0
\(916\) −5.29542e12 −0.248525
\(917\) −3.62015e13 −1.69069
\(918\) 1.66479e12 0.0773693
\(919\) −1.74445e13 −0.806749 −0.403374 0.915035i \(-0.632163\pi\)
−0.403374 + 0.915035i \(0.632163\pi\)
\(920\) 0 0
\(921\) 2.77244e12 0.126968
\(922\) −1.71680e13 −0.782405
\(923\) −1.00544e13 −0.455982
\(924\) −1.29180e12 −0.0583002
\(925\) 0 0
\(926\) −7.74419e12 −0.346120
\(927\) −1.28688e13 −0.572373
\(928\) −8.31398e12 −0.367996
\(929\) 9.41088e11 0.0414533 0.0207267 0.999785i \(-0.493402\pi\)
0.0207267 + 0.999785i \(0.493402\pi\)
\(930\) 0 0
\(931\) −4.85560e13 −2.11821
\(932\) 8.30398e11 0.0360508
\(933\) −1.81497e12 −0.0784154
\(934\) 2.70891e13 1.16475
\(935\) 0 0
\(936\) 7.04795e12 0.300138
\(937\) 2.62108e13 1.11084 0.555421 0.831569i \(-0.312557\pi\)
0.555421 + 0.831569i \(0.312557\pi\)
\(938\) −1.58113e13 −0.666891
\(939\) −2.08335e12 −0.0874516
\(940\) 0 0
\(941\) 1.51403e13 0.629478 0.314739 0.949178i \(-0.398083\pi\)
0.314739 + 0.949178i \(0.398083\pi\)
\(942\) −5.40889e10 −0.00223810
\(943\) 1.94423e13 0.800656
\(944\) 1.60174e13 0.656474
\(945\) 0 0
\(946\) 4.44988e13 1.80650
\(947\) −2.72173e13 −1.09969 −0.549844 0.835267i \(-0.685313\pi\)
−0.549844 + 0.835267i \(0.685313\pi\)
\(948\) 3.98130e11 0.0160099
\(949\) 2.29369e12 0.0917986
\(950\) 0 0
\(951\) −6.36535e10 −0.00252354
\(952\) 3.20306e13 1.26386
\(953\) 1.23445e13 0.484791 0.242395 0.970178i \(-0.422067\pi\)
0.242395 + 0.970178i \(0.422067\pi\)
\(954\) −6.54476e12 −0.255815
\(955\) 0 0
\(956\) 2.47067e12 0.0956651
\(957\) −1.29856e12 −0.0500448
\(958\) −2.11110e12 −0.0809774
\(959\) −1.75780e13 −0.671097
\(960\) 0 0
\(961\) −2.16055e13 −0.817165
\(962\) 1.15923e13 0.436398
\(963\) 4.43780e13 1.66283
\(964\) −4.64450e12 −0.173218
\(965\) 0 0
\(966\) −2.48443e12 −0.0917973
\(967\) −6.76105e12 −0.248654 −0.124327 0.992241i \(-0.539677\pi\)
−0.124327 + 0.992241i \(0.539677\pi\)
\(968\) −1.59534e13 −0.584003
\(969\) 1.30174e12 0.0474317
\(970\) 0 0
\(971\) −1.26803e13 −0.457764 −0.228882 0.973454i \(-0.573507\pi\)
−0.228882 + 0.973454i \(0.573507\pi\)
\(972\) −2.19240e12 −0.0787810
\(973\) −2.12291e13 −0.759319
\(974\) 5.45368e12 0.194166
\(975\) 0 0
\(976\) −4.91400e12 −0.173345
\(977\) 3.66498e13 1.28690 0.643452 0.765487i \(-0.277502\pi\)
0.643452 + 0.765487i \(0.277502\pi\)
\(978\) −2.42281e12 −0.0846827
\(979\) −2.46772e13 −0.858565
\(980\) 0 0
\(981\) 5.05556e13 1.74284
\(982\) 3.13083e12 0.107438
\(983\) 1.15392e13 0.394172 0.197086 0.980386i \(-0.436852\pi\)
0.197086 + 0.980386i \(0.436852\pi\)
\(984\) 2.18194e12 0.0741933
\(985\) 0 0
\(986\) 8.47429e12 0.285533
\(987\) −4.40822e12 −0.147855
\(988\) 2.90886e12 0.0971219
\(989\) −4.75578e13 −1.58066
\(990\) 0 0
\(991\) −4.69768e13 −1.54722 −0.773610 0.633663i \(-0.781551\pi\)
−0.773610 + 0.633663i \(0.781551\pi\)
\(992\) −8.80401e12 −0.288654
\(993\) −1.58702e12 −0.0517979
\(994\) −7.21253e13 −2.34341
\(995\) 0 0
\(996\) −6.46876e11 −0.0208283
\(997\) −1.57384e13 −0.504467 −0.252233 0.967666i \(-0.581165\pi\)
−0.252233 + 0.967666i \(0.581165\pi\)
\(998\) 3.54965e13 1.13266
\(999\) −9.12575e12 −0.289884
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.10.a.k.1.19 27
5.2 odd 4 65.10.b.a.14.37 yes 54
5.3 odd 4 65.10.b.a.14.18 54
5.4 even 2 325.10.a.l.1.9 27
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.10.b.a.14.18 54 5.3 odd 4
65.10.b.a.14.37 yes 54 5.2 odd 4
325.10.a.k.1.19 27 1.1 even 1 trivial
325.10.a.l.1.9 27 5.4 even 2