Properties

Label 325.10
Level 325
Weight 10
Dimension 34199
Nonzero newspaces 24
Sturm bound 84000
Trace bound 3

Downloads

Learn more

Defining parameters

Level: N N = 325=5213 325 = 5^{2} \cdot 13
Weight: k k = 10 10
Nonzero newspaces: 24 24
Sturm bound: 8400084000
Trace bound: 33

Dimensions

The following table gives the dimensions of various subspaces of M10(Γ1(325))M_{10}(\Gamma_1(325)).

Total New Old
Modular forms 38136 34649 3487
Cusp forms 37464 34199 3265
Eisenstein series 672 450 222

Trace form

34199q130q2+526q33146q4+3454q56554q6+21658q787322q8+29730q9140896q10+332466q11+493824q12110328q133231592q14326016q15++20930729670q99+O(q100) 34199 q - 130 q^{2} + 526 q^{3} - 3146 q^{4} + 3454 q^{5} - 6554 q^{6} + 21658 q^{7} - 87322 q^{8} + 29730 q^{9} - 140896 q^{10} + 332466 q^{11} + 493824 q^{12} - 110328 q^{13} - 3231592 q^{14} - 326016 q^{15}+ \cdots + 20930729670 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S10new(Γ1(325))S_{10}^{\mathrm{new}}(\Gamma_1(325))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
325.10.a χ325(1,)\chi_{325}(1, \cdot) 325.10.a.a 4 1
325.10.a.b 5
325.10.a.c 7
325.10.a.d 9
325.10.a.e 10
325.10.a.f 10
325.10.a.g 17
325.10.a.h 17
325.10.a.i 19
325.10.a.j 19
325.10.a.k 27
325.10.a.l 27
325.10.b χ325(274,)\chi_{325}(274, \cdot) n/a 162 1
325.10.c χ325(51,)\chi_{325}(51, \cdot) n/a 196 1
325.10.d χ325(324,)\chi_{325}(324, \cdot) n/a 188 1
325.10.e χ325(126,)\chi_{325}(126, \cdot) n/a 394 2
325.10.f χ325(18,)\chi_{325}(18, \cdot) n/a 374 2
325.10.k χ325(57,)\chi_{325}(57, \cdot) n/a 374 2
325.10.l χ325(66,)\chi_{325}(66, \cdot) n/a 1080 4
325.10.m χ325(49,)\chi_{325}(49, \cdot) n/a 376 2
325.10.n χ325(101,)\chi_{325}(101, \cdot) n/a 392 2
325.10.o χ325(74,)\chi_{325}(74, \cdot) n/a 372 2
325.10.p χ325(64,)\chi_{325}(64, \cdot) n/a 1248 4
325.10.q χ325(116,)\chi_{325}(116, \cdot) n/a 1256 4
325.10.r χ325(14,)\chi_{325}(14, \cdot) n/a 1080 4
325.10.s χ325(32,)\chi_{325}(32, \cdot) n/a 748 4
325.10.x χ325(7,)\chi_{325}(7, \cdot) n/a 748 4
325.10.y χ325(16,)\chi_{325}(16, \cdot) n/a 2496 8
325.10.z χ325(8,)\chi_{325}(8, \cdot) n/a 2504 8
325.10.be χ325(47,)\chi_{325}(47, \cdot) n/a 2504 8
325.10.bf χ325(9,)\chi_{325}(9, \cdot) n/a 2512 8
325.10.bg χ325(36,)\chi_{325}(36, \cdot) n/a 2512 8
325.10.bh χ325(4,)\chi_{325}(4, \cdot) n/a 2496 8
325.10.bi χ325(28,)\chi_{325}(28, \cdot) n/a 5008 16
325.10.bn χ325(2,)\chi_{325}(2, \cdot) n/a 5008 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S10old(Γ1(325))S_{10}^{\mathrm{old}}(\Gamma_1(325)) into lower level spaces

S10old(Γ1(325)) S_{10}^{\mathrm{old}}(\Gamma_1(325)) \cong S10new(Γ1(1))S_{10}^{\mathrm{new}}(\Gamma_1(1))6^{\oplus 6}\oplusS10new(Γ1(5))S_{10}^{\mathrm{new}}(\Gamma_1(5))4^{\oplus 4}\oplusS10new(Γ1(13))S_{10}^{\mathrm{new}}(\Gamma_1(13))3^{\oplus 3}\oplusS10new(Γ1(25))S_{10}^{\mathrm{new}}(\Gamma_1(25))2^{\oplus 2}\oplusS10new(Γ1(65))S_{10}^{\mathrm{new}}(\Gamma_1(65))2^{\oplus 2}