Properties

Label 325.be
Modulus $325$
Conductor $325$
Order $20$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([17,5])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(47,325)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(325\)
Conductor: \(325\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.20.148970555205860748537816107273101806640625.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(11\) \(12\) \(14\)
\(\chi_{325}(47,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{325}(83,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{325}(112,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(1\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{325}(148,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{325}(177,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{325}(213,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(1\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{325}(242,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{9}{20}\right)\) \(1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{325}(278,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{10}\right)\)