Properties

Label 325.10.a.k.1.14
Level $325$
Weight $10$
Character 325.1
Self dual yes
Analytic conductor $167.387$
Analytic rank $1$
Dimension $27$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,10,Mod(1,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [27,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(167.386646753\)
Analytic rank: \(1\)
Dimension: \(27\)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Character \(\chi\) \(=\) 325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.55822 q^{2} -263.202 q^{3} -499.339 q^{4} +936.531 q^{6} +8747.23 q^{7} +3598.56 q^{8} +49592.5 q^{9} -74426.3 q^{11} +131427. q^{12} +28561.0 q^{13} -31124.5 q^{14} +242857. q^{16} -107923. q^{17} -176461. q^{18} -1.00971e6 q^{19} -2.30229e6 q^{21} +264825. q^{22} -449477. q^{23} -947151. q^{24} -101626. q^{26} -7.87224e6 q^{27} -4.36783e6 q^{28} -931512. q^{29} +9.30775e6 q^{31} -2.70660e6 q^{32} +1.95892e7 q^{33} +384015. q^{34} -2.47635e7 q^{36} -3.37801e6 q^{37} +3.59277e6 q^{38} -7.51732e6 q^{39} -856311. q^{41} +8.19205e6 q^{42} -1.05883e7 q^{43} +3.71640e7 q^{44} +1.59934e6 q^{46} +1.54223e7 q^{47} -6.39206e7 q^{48} +3.61604e7 q^{49} +2.84057e7 q^{51} -1.42616e7 q^{52} -4.22527e7 q^{53} +2.80111e7 q^{54} +3.14775e7 q^{56} +2.65758e8 q^{57} +3.31452e6 q^{58} +1.10312e8 q^{59} -3.74008e7 q^{61} -3.31190e7 q^{62} +4.33797e8 q^{63} -1.14712e8 q^{64} -6.97026e7 q^{66} +2.02507e7 q^{67} +5.38904e7 q^{68} +1.18303e8 q^{69} +1.96727e8 q^{71} +1.78462e8 q^{72} +2.15616e8 q^{73} +1.20197e7 q^{74} +5.04188e8 q^{76} -6.51024e8 q^{77} +2.67483e7 q^{78} +2.10291e8 q^{79} +1.09586e9 q^{81} +3.04694e6 q^{82} -1.77837e8 q^{83} +1.14962e9 q^{84} +3.76756e7 q^{86} +2.45176e8 q^{87} -2.67828e8 q^{88} +4.06464e8 q^{89} +2.49830e8 q^{91} +2.24441e8 q^{92} -2.44982e9 q^{93} -5.48759e7 q^{94} +7.12384e8 q^{96} -2.02283e8 q^{97} -1.28667e8 q^{98} -3.69098e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 27 q - 48 q^{2} - 324 q^{3} + 6570 q^{4} - 1786 q^{6} - 3736 q^{7} - 36864 q^{8} + 214173 q^{9} - 66096 q^{11} - 114398 q^{12} + 771147 q^{13} - 359458 q^{14} + 998622 q^{16} - 779040 q^{17} - 1709648 q^{18}+ \cdots + 2142297632 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.55822 −0.157252 −0.0786262 0.996904i \(-0.525053\pi\)
−0.0786262 + 0.996904i \(0.525053\pi\)
\(3\) −263.202 −1.87605 −0.938024 0.346570i \(-0.887346\pi\)
−0.938024 + 0.346570i \(0.887346\pi\)
\(4\) −499.339 −0.975272
\(5\) 0 0
\(6\) 936.531 0.295013
\(7\) 8747.23 1.37699 0.688493 0.725243i \(-0.258273\pi\)
0.688493 + 0.725243i \(0.258273\pi\)
\(8\) 3598.56 0.310616
\(9\) 49592.5 2.51956
\(10\) 0 0
\(11\) −74426.3 −1.53271 −0.766354 0.642418i \(-0.777931\pi\)
−0.766354 + 0.642418i \(0.777931\pi\)
\(12\) 131427. 1.82966
\(13\) 28561.0 0.277350
\(14\) −31124.5 −0.216534
\(15\) 0 0
\(16\) 242857. 0.926426
\(17\) −107923. −0.313398 −0.156699 0.987646i \(-0.550085\pi\)
−0.156699 + 0.987646i \(0.550085\pi\)
\(18\) −176461. −0.396207
\(19\) −1.00971e6 −1.77749 −0.888743 0.458407i \(-0.848420\pi\)
−0.888743 + 0.458407i \(0.848420\pi\)
\(20\) 0 0
\(21\) −2.30229e6 −2.58329
\(22\) 264825. 0.241022
\(23\) −449477. −0.334913 −0.167456 0.985879i \(-0.553555\pi\)
−0.167456 + 0.985879i \(0.553555\pi\)
\(24\) −947151. −0.582731
\(25\) 0 0
\(26\) −101626. −0.0436140
\(27\) −7.87224e6 −2.85076
\(28\) −4.36783e6 −1.34293
\(29\) −931512. −0.244567 −0.122283 0.992495i \(-0.539022\pi\)
−0.122283 + 0.992495i \(0.539022\pi\)
\(30\) 0 0
\(31\) 9.30775e6 1.81016 0.905081 0.425240i \(-0.139810\pi\)
0.905081 + 0.425240i \(0.139810\pi\)
\(32\) −2.70660e6 −0.456299
\(33\) 1.95892e7 2.87543
\(34\) 384015. 0.0492825
\(35\) 0 0
\(36\) −2.47635e7 −2.45725
\(37\) −3.37801e6 −0.296315 −0.148158 0.988964i \(-0.547334\pi\)
−0.148158 + 0.988964i \(0.547334\pi\)
\(38\) 3.59277e6 0.279514
\(39\) −7.51732e6 −0.520322
\(40\) 0 0
\(41\) −856311. −0.0473265 −0.0236632 0.999720i \(-0.507533\pi\)
−0.0236632 + 0.999720i \(0.507533\pi\)
\(42\) 8.19205e6 0.406229
\(43\) −1.05883e7 −0.472301 −0.236151 0.971716i \(-0.575886\pi\)
−0.236151 + 0.971716i \(0.575886\pi\)
\(44\) 3.71640e7 1.49481
\(45\) 0 0
\(46\) 1.59934e6 0.0526659
\(47\) 1.54223e7 0.461009 0.230504 0.973071i \(-0.425962\pi\)
0.230504 + 0.973071i \(0.425962\pi\)
\(48\) −6.39206e7 −1.73802
\(49\) 3.61604e7 0.896088
\(50\) 0 0
\(51\) 2.84057e7 0.587949
\(52\) −1.42616e7 −0.270492
\(53\) −4.22527e7 −0.735552 −0.367776 0.929915i \(-0.619881\pi\)
−0.367776 + 0.929915i \(0.619881\pi\)
\(54\) 2.80111e7 0.448290
\(55\) 0 0
\(56\) 3.14775e7 0.427714
\(57\) 2.65758e8 3.33465
\(58\) 3.31452e6 0.0384587
\(59\) 1.10312e8 1.18519 0.592595 0.805501i \(-0.298103\pi\)
0.592595 + 0.805501i \(0.298103\pi\)
\(60\) 0 0
\(61\) −3.74008e7 −0.345857 −0.172929 0.984934i \(-0.555323\pi\)
−0.172929 + 0.984934i \(0.555323\pi\)
\(62\) −3.31190e7 −0.284652
\(63\) 4.33797e8 3.46939
\(64\) −1.14712e8 −0.854672
\(65\) 0 0
\(66\) −6.97026e7 −0.452169
\(67\) 2.02507e7 0.122773 0.0613866 0.998114i \(-0.480448\pi\)
0.0613866 + 0.998114i \(0.480448\pi\)
\(68\) 5.38904e7 0.305648
\(69\) 1.18303e8 0.628313
\(70\) 0 0
\(71\) 1.96727e8 0.918758 0.459379 0.888240i \(-0.348072\pi\)
0.459379 + 0.888240i \(0.348072\pi\)
\(72\) 1.78462e8 0.782616
\(73\) 2.15616e8 0.888646 0.444323 0.895867i \(-0.353444\pi\)
0.444323 + 0.895867i \(0.353444\pi\)
\(74\) 1.20197e7 0.0465963
\(75\) 0 0
\(76\) 5.04188e8 1.73353
\(77\) −6.51024e8 −2.11052
\(78\) 2.67483e7 0.0818220
\(79\) 2.10291e8 0.607434 0.303717 0.952762i \(-0.401772\pi\)
0.303717 + 0.952762i \(0.401772\pi\)
\(80\) 0 0
\(81\) 1.09586e9 2.82862
\(82\) 3.04694e6 0.00744221
\(83\) −1.77837e8 −0.411312 −0.205656 0.978624i \(-0.565933\pi\)
−0.205656 + 0.978624i \(0.565933\pi\)
\(84\) 1.14962e9 2.51941
\(85\) 0 0
\(86\) 3.76756e7 0.0742706
\(87\) 2.45176e8 0.458819
\(88\) −2.67828e8 −0.476084
\(89\) 4.06464e8 0.686701 0.343350 0.939207i \(-0.388438\pi\)
0.343350 + 0.939207i \(0.388438\pi\)
\(90\) 0 0
\(91\) 2.49830e8 0.381907
\(92\) 2.24441e8 0.326631
\(93\) −2.44982e9 −3.39595
\(94\) −5.48759e7 −0.0724947
\(95\) 0 0
\(96\) 7.12384e8 0.856040
\(97\) −2.02283e8 −0.232000 −0.116000 0.993249i \(-0.537007\pi\)
−0.116000 + 0.993249i \(0.537007\pi\)
\(98\) −1.28667e8 −0.140912
\(99\) −3.69098e9 −3.86175
\(100\) 0 0
\(101\) 2.63043e8 0.251525 0.125762 0.992060i \(-0.459862\pi\)
0.125762 + 0.992060i \(0.459862\pi\)
\(102\) −1.01074e8 −0.0924565
\(103\) −1.38407e9 −1.21169 −0.605843 0.795584i \(-0.707164\pi\)
−0.605843 + 0.795584i \(0.707164\pi\)
\(104\) 1.02779e8 0.0861495
\(105\) 0 0
\(106\) 1.50344e8 0.115667
\(107\) −1.62418e9 −1.19786 −0.598932 0.800800i \(-0.704408\pi\)
−0.598932 + 0.800800i \(0.704408\pi\)
\(108\) 3.93092e9 2.78027
\(109\) 2.62866e9 1.78367 0.891836 0.452359i \(-0.149418\pi\)
0.891836 + 0.452359i \(0.149418\pi\)
\(110\) 0 0
\(111\) 8.89101e8 0.555901
\(112\) 2.12433e9 1.27568
\(113\) 1.16175e9 0.670286 0.335143 0.942167i \(-0.391215\pi\)
0.335143 + 0.942167i \(0.391215\pi\)
\(114\) −9.45626e8 −0.524382
\(115\) 0 0
\(116\) 4.65140e8 0.238519
\(117\) 1.41641e9 0.698800
\(118\) −3.92513e8 −0.186374
\(119\) −9.44031e8 −0.431544
\(120\) 0 0
\(121\) 3.18133e9 1.34919
\(122\) 1.33080e8 0.0543869
\(123\) 2.25383e8 0.0887868
\(124\) −4.64773e9 −1.76540
\(125\) 0 0
\(126\) −1.54354e9 −0.545571
\(127\) 2.39453e9 0.816776 0.408388 0.912808i \(-0.366091\pi\)
0.408388 + 0.912808i \(0.366091\pi\)
\(128\) 1.79395e9 0.590699
\(129\) 2.78687e9 0.886060
\(130\) 0 0
\(131\) −3.42878e9 −1.01723 −0.508614 0.860995i \(-0.669842\pi\)
−0.508614 + 0.860995i \(0.669842\pi\)
\(132\) −9.78164e9 −2.80433
\(133\) −8.83217e9 −2.44757
\(134\) −7.20564e7 −0.0193064
\(135\) 0 0
\(136\) −3.88369e8 −0.0973464
\(137\) 2.75246e9 0.667541 0.333770 0.942654i \(-0.391679\pi\)
0.333770 + 0.942654i \(0.391679\pi\)
\(138\) −4.20949e8 −0.0988037
\(139\) −1.00310e9 −0.227917 −0.113958 0.993486i \(-0.536353\pi\)
−0.113958 + 0.993486i \(0.536353\pi\)
\(140\) 0 0
\(141\) −4.05919e9 −0.864874
\(142\) −6.99997e8 −0.144477
\(143\) −2.12569e9 −0.425097
\(144\) 1.20439e10 2.33419
\(145\) 0 0
\(146\) −7.67210e8 −0.139742
\(147\) −9.51750e9 −1.68110
\(148\) 1.68677e9 0.288988
\(149\) 1.67656e9 0.278665 0.139332 0.990246i \(-0.455504\pi\)
0.139332 + 0.990246i \(0.455504\pi\)
\(150\) 0 0
\(151\) −4.91436e9 −0.769256 −0.384628 0.923072i \(-0.625670\pi\)
−0.384628 + 0.923072i \(0.625670\pi\)
\(152\) −3.63351e9 −0.552116
\(153\) −5.35219e9 −0.789623
\(154\) 2.31648e9 0.331884
\(155\) 0 0
\(156\) 3.75369e9 0.507456
\(157\) 5.01168e9 0.658317 0.329158 0.944275i \(-0.393235\pi\)
0.329158 + 0.944275i \(0.393235\pi\)
\(158\) −7.48262e8 −0.0955205
\(159\) 1.11210e10 1.37993
\(160\) 0 0
\(161\) −3.93167e9 −0.461170
\(162\) −3.89932e9 −0.444807
\(163\) 7.58951e9 0.842111 0.421056 0.907035i \(-0.361660\pi\)
0.421056 + 0.907035i \(0.361660\pi\)
\(164\) 4.27590e8 0.0461562
\(165\) 0 0
\(166\) 6.32784e8 0.0646799
\(167\) 2.19717e9 0.218595 0.109297 0.994009i \(-0.465140\pi\)
0.109297 + 0.994009i \(0.465140\pi\)
\(168\) −8.28494e9 −0.802412
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −5.00741e10 −4.47848
\(172\) 5.28716e9 0.460622
\(173\) −1.66473e10 −1.41298 −0.706488 0.707725i \(-0.749722\pi\)
−0.706488 + 0.707725i \(0.749722\pi\)
\(174\) −8.72390e8 −0.0721504
\(175\) 0 0
\(176\) −1.80750e10 −1.41994
\(177\) −2.90343e10 −2.22347
\(178\) −1.44629e9 −0.107985
\(179\) −1.94126e10 −1.41333 −0.706667 0.707547i \(-0.749802\pi\)
−0.706667 + 0.707547i \(0.749802\pi\)
\(180\) 0 0
\(181\) 2.35303e10 1.62957 0.814785 0.579763i \(-0.196855\pi\)
0.814785 + 0.579763i \(0.196855\pi\)
\(182\) −8.88948e8 −0.0600558
\(183\) 9.84399e9 0.648845
\(184\) −1.61747e9 −0.104029
\(185\) 0 0
\(186\) 8.71700e9 0.534022
\(187\) 8.03234e9 0.480347
\(188\) −7.70096e9 −0.449609
\(189\) −6.88603e10 −3.92546
\(190\) 0 0
\(191\) 2.17944e10 1.18493 0.592467 0.805595i \(-0.298154\pi\)
0.592467 + 0.805595i \(0.298154\pi\)
\(192\) 3.01925e10 1.60341
\(193\) 7.49566e9 0.388868 0.194434 0.980916i \(-0.437713\pi\)
0.194434 + 0.980916i \(0.437713\pi\)
\(194\) 7.19769e8 0.0364825
\(195\) 0 0
\(196\) −1.80563e10 −0.873929
\(197\) 3.42067e10 1.61813 0.809064 0.587721i \(-0.199975\pi\)
0.809064 + 0.587721i \(0.199975\pi\)
\(198\) 1.31333e10 0.607269
\(199\) 5.86712e9 0.265208 0.132604 0.991169i \(-0.457666\pi\)
0.132604 + 0.991169i \(0.457666\pi\)
\(200\) 0 0
\(201\) −5.33003e9 −0.230329
\(202\) −9.35965e8 −0.0395529
\(203\) −8.14815e9 −0.336765
\(204\) −1.41841e10 −0.573410
\(205\) 0 0
\(206\) 4.92482e9 0.190541
\(207\) −2.22907e10 −0.843832
\(208\) 6.93624e9 0.256944
\(209\) 7.51491e10 2.72437
\(210\) 0 0
\(211\) 1.22862e10 0.426722 0.213361 0.976973i \(-0.431559\pi\)
0.213361 + 0.976973i \(0.431559\pi\)
\(212\) 2.10984e10 0.717363
\(213\) −5.17790e10 −1.72364
\(214\) 5.77919e9 0.188367
\(215\) 0 0
\(216\) −2.83288e10 −0.885494
\(217\) 8.14170e10 2.49257
\(218\) −9.35334e9 −0.280487
\(219\) −5.67507e10 −1.66714
\(220\) 0 0
\(221\) −3.08240e9 −0.0869208
\(222\) −3.16362e9 −0.0874169
\(223\) 4.25294e10 1.15164 0.575820 0.817576i \(-0.304683\pi\)
0.575820 + 0.817576i \(0.304683\pi\)
\(224\) −2.36753e10 −0.628317
\(225\) 0 0
\(226\) −4.13376e9 −0.105404
\(227\) −7.41525e10 −1.85357 −0.926786 0.375590i \(-0.877440\pi\)
−0.926786 + 0.375590i \(0.877440\pi\)
\(228\) −1.32704e11 −3.25219
\(229\) 2.04402e10 0.491164 0.245582 0.969376i \(-0.421021\pi\)
0.245582 + 0.969376i \(0.421021\pi\)
\(230\) 0 0
\(231\) 1.71351e11 3.95943
\(232\) −3.35211e9 −0.0759664
\(233\) −2.07650e10 −0.461563 −0.230781 0.973006i \(-0.574128\pi\)
−0.230781 + 0.973006i \(0.574128\pi\)
\(234\) −5.03990e9 −0.109888
\(235\) 0 0
\(236\) −5.50830e10 −1.15588
\(237\) −5.53491e10 −1.13958
\(238\) 3.35907e9 0.0678613
\(239\) 3.32052e10 0.658286 0.329143 0.944280i \(-0.393240\pi\)
0.329143 + 0.944280i \(0.393240\pi\)
\(240\) 0 0
\(241\) 8.15806e10 1.55779 0.778897 0.627151i \(-0.215779\pi\)
0.778897 + 0.627151i \(0.215779\pi\)
\(242\) −1.13199e10 −0.212164
\(243\) −1.33485e11 −2.45585
\(244\) 1.86757e10 0.337305
\(245\) 0 0
\(246\) −8.01962e8 −0.0139619
\(247\) −2.88384e10 −0.492986
\(248\) 3.34946e10 0.562266
\(249\) 4.68072e10 0.771642
\(250\) 0 0
\(251\) 8.31580e10 1.32243 0.661214 0.750197i \(-0.270041\pi\)
0.661214 + 0.750197i \(0.270041\pi\)
\(252\) −2.16612e11 −3.38360
\(253\) 3.34529e10 0.513324
\(254\) −8.52025e9 −0.128440
\(255\) 0 0
\(256\) 5.23494e10 0.761783
\(257\) −6.69121e10 −0.956766 −0.478383 0.878151i \(-0.658777\pi\)
−0.478383 + 0.878151i \(0.658777\pi\)
\(258\) −9.91629e9 −0.139335
\(259\) −2.95483e10 −0.408021
\(260\) 0 0
\(261\) −4.61960e10 −0.616200
\(262\) 1.22003e10 0.159962
\(263\) −9.63829e10 −1.24222 −0.621111 0.783723i \(-0.713318\pi\)
−0.621111 + 0.783723i \(0.713318\pi\)
\(264\) 7.04929e10 0.893157
\(265\) 0 0
\(266\) 3.14268e10 0.384887
\(267\) −1.06982e11 −1.28828
\(268\) −1.01120e10 −0.119737
\(269\) −1.09673e11 −1.27706 −0.638532 0.769595i \(-0.720458\pi\)
−0.638532 + 0.769595i \(0.720458\pi\)
\(270\) 0 0
\(271\) −3.45412e10 −0.389023 −0.194511 0.980900i \(-0.562312\pi\)
−0.194511 + 0.980900i \(0.562312\pi\)
\(272\) −2.62100e10 −0.290340
\(273\) −6.57557e10 −0.716476
\(274\) −9.79384e9 −0.104972
\(275\) 0 0
\(276\) −5.90735e10 −0.612776
\(277\) 1.60561e11 1.63863 0.819316 0.573342i \(-0.194353\pi\)
0.819316 + 0.573342i \(0.194353\pi\)
\(278\) 3.56924e9 0.0358405
\(279\) 4.61594e11 4.56081
\(280\) 0 0
\(281\) −1.25292e11 −1.19879 −0.599397 0.800452i \(-0.704593\pi\)
−0.599397 + 0.800452i \(0.704593\pi\)
\(282\) 1.44435e10 0.136004
\(283\) −6.18119e10 −0.572840 −0.286420 0.958104i \(-0.592465\pi\)
−0.286420 + 0.958104i \(0.592465\pi\)
\(284\) −9.82335e10 −0.896039
\(285\) 0 0
\(286\) 7.56367e9 0.0668475
\(287\) −7.49035e9 −0.0651678
\(288\) −1.34227e11 −1.14967
\(289\) −1.06940e11 −0.901782
\(290\) 0 0
\(291\) 5.32415e10 0.435243
\(292\) −1.07666e11 −0.866671
\(293\) 1.54895e11 1.22782 0.613908 0.789378i \(-0.289597\pi\)
0.613908 + 0.789378i \(0.289597\pi\)
\(294\) 3.38653e10 0.264358
\(295\) 0 0
\(296\) −1.21560e10 −0.0920403
\(297\) 5.85902e11 4.36939
\(298\) −5.96558e9 −0.0438207
\(299\) −1.28375e10 −0.0928881
\(300\) 0 0
\(301\) −9.26185e10 −0.650352
\(302\) 1.74864e10 0.120967
\(303\) −6.92336e10 −0.471873
\(304\) −2.45216e11 −1.64671
\(305\) 0 0
\(306\) 1.90443e10 0.124170
\(307\) −2.15986e11 −1.38772 −0.693861 0.720109i \(-0.744092\pi\)
−0.693861 + 0.720109i \(0.744092\pi\)
\(308\) 3.25082e11 2.05833
\(309\) 3.64290e11 2.27318
\(310\) 0 0
\(311\) −2.65425e10 −0.160886 −0.0804432 0.996759i \(-0.525634\pi\)
−0.0804432 + 0.996759i \(0.525634\pi\)
\(312\) −2.70516e10 −0.161621
\(313\) −2.86302e11 −1.68606 −0.843032 0.537863i \(-0.819232\pi\)
−0.843032 + 0.537863i \(0.819232\pi\)
\(314\) −1.78327e10 −0.103522
\(315\) 0 0
\(316\) −1.05007e11 −0.592413
\(317\) 1.72511e11 0.959513 0.479756 0.877402i \(-0.340725\pi\)
0.479756 + 0.877402i \(0.340725\pi\)
\(318\) −3.95710e10 −0.216997
\(319\) 6.93290e10 0.374849
\(320\) 0 0
\(321\) 4.27488e11 2.24725
\(322\) 1.39898e10 0.0725201
\(323\) 1.08972e11 0.557060
\(324\) −5.47207e11 −2.75867
\(325\) 0 0
\(326\) −2.70051e10 −0.132424
\(327\) −6.91869e11 −3.34625
\(328\) −3.08149e9 −0.0147004
\(329\) 1.34902e11 0.634802
\(330\) 0 0
\(331\) 3.89419e11 1.78316 0.891582 0.452860i \(-0.149596\pi\)
0.891582 + 0.452860i \(0.149596\pi\)
\(332\) 8.88012e10 0.401141
\(333\) −1.67524e11 −0.746583
\(334\) −7.81801e9 −0.0343745
\(335\) 0 0
\(336\) −5.59128e11 −2.39323
\(337\) −4.19557e11 −1.77197 −0.885985 0.463714i \(-0.846517\pi\)
−0.885985 + 0.463714i \(0.846517\pi\)
\(338\) −2.90255e9 −0.0120963
\(339\) −3.05776e11 −1.25749
\(340\) 0 0
\(341\) −6.92742e11 −2.77445
\(342\) 1.78174e11 0.704252
\(343\) −3.66791e10 −0.143085
\(344\) −3.81028e10 −0.146705
\(345\) 0 0
\(346\) 5.92345e10 0.222194
\(347\) −7.83183e10 −0.289988 −0.144994 0.989433i \(-0.546316\pi\)
−0.144994 + 0.989433i \(0.546316\pi\)
\(348\) −1.22426e11 −0.447473
\(349\) −2.44848e11 −0.883450 −0.441725 0.897151i \(-0.645633\pi\)
−0.441725 + 0.897151i \(0.645633\pi\)
\(350\) 0 0
\(351\) −2.24839e11 −0.790660
\(352\) 2.01443e11 0.699374
\(353\) −6.86294e10 −0.235247 −0.117623 0.993058i \(-0.537528\pi\)
−0.117623 + 0.993058i \(0.537528\pi\)
\(354\) 1.03310e11 0.349647
\(355\) 0 0
\(356\) −2.02964e11 −0.669720
\(357\) 2.48471e11 0.809597
\(358\) 6.90742e10 0.222250
\(359\) −2.01872e10 −0.0641432 −0.0320716 0.999486i \(-0.510210\pi\)
−0.0320716 + 0.999486i \(0.510210\pi\)
\(360\) 0 0
\(361\) 6.96829e11 2.15945
\(362\) −8.37258e10 −0.256254
\(363\) −8.37333e11 −2.53115
\(364\) −1.24750e11 −0.372463
\(365\) 0 0
\(366\) −3.50270e10 −0.102033
\(367\) −3.34629e11 −0.962868 −0.481434 0.876482i \(-0.659884\pi\)
−0.481434 + 0.876482i \(0.659884\pi\)
\(368\) −1.09159e11 −0.310272
\(369\) −4.24666e10 −0.119242
\(370\) 0 0
\(371\) −3.69594e11 −1.01284
\(372\) 1.22329e12 3.31197
\(373\) −3.35332e11 −0.896985 −0.448493 0.893786i \(-0.648039\pi\)
−0.448493 + 0.893786i \(0.648039\pi\)
\(374\) −2.85808e10 −0.0755358
\(375\) 0 0
\(376\) 5.54982e10 0.143197
\(377\) −2.66049e10 −0.0678306
\(378\) 2.45020e11 0.617288
\(379\) −3.08926e11 −0.769091 −0.384545 0.923106i \(-0.625642\pi\)
−0.384545 + 0.923106i \(0.625642\pi\)
\(380\) 0 0
\(381\) −6.30245e11 −1.53231
\(382\) −7.75491e10 −0.186334
\(383\) 1.34899e11 0.320342 0.160171 0.987089i \(-0.448795\pi\)
0.160171 + 0.987089i \(0.448795\pi\)
\(384\) −4.72172e11 −1.10818
\(385\) 0 0
\(386\) −2.66712e10 −0.0611504
\(387\) −5.25101e11 −1.18999
\(388\) 1.01008e11 0.226263
\(389\) 3.95179e11 0.875026 0.437513 0.899212i \(-0.355859\pi\)
0.437513 + 0.899212i \(0.355859\pi\)
\(390\) 0 0
\(391\) 4.85091e10 0.104961
\(392\) 1.30125e11 0.278340
\(393\) 9.02462e11 1.90837
\(394\) −1.21715e11 −0.254455
\(395\) 0 0
\(396\) 1.84305e12 3.76625
\(397\) 4.02134e11 0.812481 0.406241 0.913766i \(-0.366839\pi\)
0.406241 + 0.913766i \(0.366839\pi\)
\(398\) −2.08765e10 −0.0417046
\(399\) 2.32465e12 4.59176
\(400\) 0 0
\(401\) −4.51492e11 −0.871968 −0.435984 0.899954i \(-0.643600\pi\)
−0.435984 + 0.899954i \(0.643600\pi\)
\(402\) 1.89654e10 0.0362197
\(403\) 2.65839e11 0.502048
\(404\) −1.31348e11 −0.245305
\(405\) 0 0
\(406\) 2.89929e10 0.0529571
\(407\) 2.51413e11 0.454164
\(408\) 1.02220e11 0.182627
\(409\) −3.71071e11 −0.655695 −0.327848 0.944731i \(-0.606323\pi\)
−0.327848 + 0.944731i \(0.606323\pi\)
\(410\) 0 0
\(411\) −7.24453e11 −1.25234
\(412\) 6.91120e11 1.18172
\(413\) 9.64923e11 1.63199
\(414\) 7.93150e10 0.132695
\(415\) 0 0
\(416\) −7.73033e10 −0.126555
\(417\) 2.64018e11 0.427583
\(418\) −2.67397e11 −0.428413
\(419\) −4.49207e11 −0.712006 −0.356003 0.934485i \(-0.615861\pi\)
−0.356003 + 0.934485i \(0.615861\pi\)
\(420\) 0 0
\(421\) 2.51498e11 0.390180 0.195090 0.980785i \(-0.437500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(422\) −4.37169e10 −0.0671031
\(423\) 7.64830e11 1.16154
\(424\) −1.52049e11 −0.228474
\(425\) 0 0
\(426\) 1.84241e11 0.271046
\(427\) −3.27154e11 −0.476241
\(428\) 8.11017e11 1.16824
\(429\) 5.59487e11 0.797502
\(430\) 0 0
\(431\) −1.16599e12 −1.62760 −0.813799 0.581147i \(-0.802604\pi\)
−0.813799 + 0.581147i \(0.802604\pi\)
\(432\) −1.91183e12 −2.64102
\(433\) 1.28482e11 0.175649 0.0878247 0.996136i \(-0.472008\pi\)
0.0878247 + 0.996136i \(0.472008\pi\)
\(434\) −2.89700e11 −0.391962
\(435\) 0 0
\(436\) −1.31259e12 −1.73956
\(437\) 4.53842e11 0.595303
\(438\) 2.01931e11 0.262162
\(439\) −3.01414e11 −0.387322 −0.193661 0.981068i \(-0.562036\pi\)
−0.193661 + 0.981068i \(0.562036\pi\)
\(440\) 0 0
\(441\) 1.79328e12 2.25775
\(442\) 1.09679e10 0.0136685
\(443\) −1.16765e12 −1.44044 −0.720222 0.693744i \(-0.755960\pi\)
−0.720222 + 0.693744i \(0.755960\pi\)
\(444\) −4.43963e11 −0.542155
\(445\) 0 0
\(446\) −1.51329e11 −0.181098
\(447\) −4.41276e11 −0.522789
\(448\) −1.00341e12 −1.17687
\(449\) 1.24861e12 1.44984 0.724919 0.688834i \(-0.241877\pi\)
0.724919 + 0.688834i \(0.241877\pi\)
\(450\) 0 0
\(451\) 6.37321e10 0.0725377
\(452\) −5.80108e11 −0.653711
\(453\) 1.29347e12 1.44316
\(454\) 2.63851e11 0.291479
\(455\) 0 0
\(456\) 9.56349e11 1.03580
\(457\) 3.93084e11 0.421563 0.210781 0.977533i \(-0.432399\pi\)
0.210781 + 0.977533i \(0.432399\pi\)
\(458\) −7.27308e10 −0.0772367
\(459\) 8.49599e11 0.893423
\(460\) 0 0
\(461\) 1.47557e12 1.52162 0.760810 0.648974i \(-0.224802\pi\)
0.760810 + 0.648974i \(0.224802\pi\)
\(462\) −6.09704e11 −0.622630
\(463\) −1.02517e12 −1.03677 −0.518385 0.855147i \(-0.673466\pi\)
−0.518385 + 0.855147i \(0.673466\pi\)
\(464\) −2.26224e11 −0.226573
\(465\) 0 0
\(466\) 7.38864e10 0.0725819
\(467\) 1.15145e12 1.12026 0.560128 0.828406i \(-0.310752\pi\)
0.560128 + 0.828406i \(0.310752\pi\)
\(468\) −7.07269e11 −0.681520
\(469\) 1.77138e11 0.169057
\(470\) 0 0
\(471\) −1.31909e12 −1.23503
\(472\) 3.96964e11 0.368139
\(473\) 7.88050e11 0.723900
\(474\) 1.96944e11 0.179201
\(475\) 0 0
\(476\) 4.71392e11 0.420872
\(477\) −2.09542e12 −1.85326
\(478\) −1.18151e11 −0.103517
\(479\) −4.28228e11 −0.371676 −0.185838 0.982580i \(-0.559500\pi\)
−0.185838 + 0.982580i \(0.559500\pi\)
\(480\) 0 0
\(481\) −9.64795e10 −0.0821830
\(482\) −2.90282e11 −0.244967
\(483\) 1.03483e12 0.865177
\(484\) −1.58856e12 −1.31583
\(485\) 0 0
\(486\) 4.74967e11 0.386189
\(487\) 1.44075e12 1.16067 0.580335 0.814378i \(-0.302922\pi\)
0.580335 + 0.814378i \(0.302922\pi\)
\(488\) −1.34589e11 −0.107429
\(489\) −1.99758e12 −1.57984
\(490\) 0 0
\(491\) −1.72894e11 −0.134250 −0.0671249 0.997745i \(-0.521383\pi\)
−0.0671249 + 0.997745i \(0.521383\pi\)
\(492\) −1.12543e11 −0.0865912
\(493\) 1.00532e11 0.0766466
\(494\) 1.02613e11 0.0775232
\(495\) 0 0
\(496\) 2.26045e12 1.67698
\(497\) 1.72082e12 1.26512
\(498\) −1.66550e11 −0.121343
\(499\) 6.18199e11 0.446350 0.223175 0.974778i \(-0.428358\pi\)
0.223175 + 0.974778i \(0.428358\pi\)
\(500\) 0 0
\(501\) −5.78300e11 −0.410094
\(502\) −2.95894e11 −0.207955
\(503\) 1.01848e12 0.709410 0.354705 0.934978i \(-0.384581\pi\)
0.354705 + 0.934978i \(0.384581\pi\)
\(504\) 1.56104e12 1.07765
\(505\) 0 0
\(506\) −1.19033e11 −0.0807214
\(507\) −2.14702e11 −0.144311
\(508\) −1.19568e12 −0.796578
\(509\) −6.26512e11 −0.413713 −0.206856 0.978371i \(-0.566323\pi\)
−0.206856 + 0.978371i \(0.566323\pi\)
\(510\) 0 0
\(511\) 1.88605e12 1.22365
\(512\) −1.10477e12 −0.710491
\(513\) 7.94869e12 5.06719
\(514\) 2.38088e11 0.150454
\(515\) 0 0
\(516\) −1.39159e12 −0.864149
\(517\) −1.14783e12 −0.706592
\(518\) 1.05139e11 0.0641624
\(519\) 4.38160e12 2.65081
\(520\) 0 0
\(521\) −2.06660e11 −0.122881 −0.0614406 0.998111i \(-0.519569\pi\)
−0.0614406 + 0.998111i \(0.519569\pi\)
\(522\) 1.64375e11 0.0968990
\(523\) −1.01877e12 −0.595416 −0.297708 0.954657i \(-0.596222\pi\)
−0.297708 + 0.954657i \(0.596222\pi\)
\(524\) 1.71212e12 0.992074
\(525\) 0 0
\(526\) 3.42951e11 0.195343
\(527\) −1.00452e12 −0.567300
\(528\) 4.75737e12 2.66388
\(529\) −1.59912e12 −0.887833
\(530\) 0 0
\(531\) 5.47064e12 2.98616
\(532\) 4.41025e12 2.38705
\(533\) −2.44571e10 −0.0131260
\(534\) 3.80667e11 0.202586
\(535\) 0 0
\(536\) 7.28735e10 0.0381354
\(537\) 5.10943e12 2.65148
\(538\) 3.90239e11 0.200822
\(539\) −2.69128e12 −1.37344
\(540\) 0 0
\(541\) −2.19901e12 −1.10367 −0.551834 0.833954i \(-0.686072\pi\)
−0.551834 + 0.833954i \(0.686072\pi\)
\(542\) 1.22905e11 0.0611748
\(543\) −6.19322e12 −3.05715
\(544\) 2.92106e11 0.143003
\(545\) 0 0
\(546\) 2.33973e11 0.112668
\(547\) −3.37601e12 −1.61236 −0.806178 0.591673i \(-0.798468\pi\)
−0.806178 + 0.591673i \(0.798468\pi\)
\(548\) −1.37441e12 −0.651034
\(549\) −1.85480e12 −0.871408
\(550\) 0 0
\(551\) 9.40558e11 0.434714
\(552\) 4.25722e11 0.195164
\(553\) 1.83947e12 0.836428
\(554\) −5.71311e11 −0.257679
\(555\) 0 0
\(556\) 5.00886e11 0.222281
\(557\) 1.19171e12 0.524593 0.262296 0.964987i \(-0.415520\pi\)
0.262296 + 0.964987i \(0.415520\pi\)
\(558\) −1.64245e12 −0.717198
\(559\) −3.02413e11 −0.130993
\(560\) 0 0
\(561\) −2.11413e12 −0.901154
\(562\) 4.45816e11 0.188513
\(563\) 2.92427e12 1.22667 0.613337 0.789821i \(-0.289827\pi\)
0.613337 + 0.789821i \(0.289827\pi\)
\(564\) 2.02691e12 0.843488
\(565\) 0 0
\(566\) 2.19940e11 0.0900805
\(567\) 9.58577e12 3.89496
\(568\) 7.07935e11 0.285381
\(569\) −2.23751e12 −0.894870 −0.447435 0.894317i \(-0.647662\pi\)
−0.447435 + 0.894317i \(0.647662\pi\)
\(570\) 0 0
\(571\) −6.04695e11 −0.238053 −0.119026 0.992891i \(-0.537977\pi\)
−0.119026 + 0.992891i \(0.537977\pi\)
\(572\) 1.06144e12 0.414585
\(573\) −5.73633e12 −2.22299
\(574\) 2.66523e10 0.0102478
\(575\) 0 0
\(576\) −5.68886e12 −2.15340
\(577\) −2.69590e12 −1.01254 −0.506270 0.862375i \(-0.668976\pi\)
−0.506270 + 0.862375i \(0.668976\pi\)
\(578\) 3.80517e11 0.141807
\(579\) −1.97288e12 −0.729535
\(580\) 0 0
\(581\) −1.55558e12 −0.566371
\(582\) −1.89445e11 −0.0684430
\(583\) 3.14471e12 1.12739
\(584\) 7.75909e11 0.276028
\(585\) 0 0
\(586\) −5.51150e11 −0.193077
\(587\) −4.59660e11 −0.159796 −0.0798980 0.996803i \(-0.525459\pi\)
−0.0798980 + 0.996803i \(0.525459\pi\)
\(588\) 4.75246e12 1.63953
\(589\) −9.39814e12 −3.21753
\(590\) 0 0
\(591\) −9.00328e12 −3.03569
\(592\) −8.20375e11 −0.274514
\(593\) −1.64019e12 −0.544689 −0.272344 0.962200i \(-0.587799\pi\)
−0.272344 + 0.962200i \(0.587799\pi\)
\(594\) −2.08477e12 −0.687098
\(595\) 0 0
\(596\) −8.37174e11 −0.271774
\(597\) −1.54424e12 −0.497542
\(598\) 4.56786e10 0.0146069
\(599\) −5.20878e11 −0.165316 −0.0826581 0.996578i \(-0.526341\pi\)
−0.0826581 + 0.996578i \(0.526341\pi\)
\(600\) 0 0
\(601\) 2.82531e12 0.883346 0.441673 0.897176i \(-0.354385\pi\)
0.441673 + 0.897176i \(0.354385\pi\)
\(602\) 3.29557e11 0.102269
\(603\) 1.00428e12 0.309334
\(604\) 2.45393e12 0.750233
\(605\) 0 0
\(606\) 2.46348e11 0.0742031
\(607\) 1.67746e12 0.501538 0.250769 0.968047i \(-0.419316\pi\)
0.250769 + 0.968047i \(0.419316\pi\)
\(608\) 2.73289e12 0.811065
\(609\) 2.14461e12 0.631787
\(610\) 0 0
\(611\) 4.40477e11 0.127861
\(612\) 2.67256e12 0.770097
\(613\) −1.32865e12 −0.380049 −0.190025 0.981779i \(-0.560857\pi\)
−0.190025 + 0.981779i \(0.560857\pi\)
\(614\) 7.68525e11 0.218223
\(615\) 0 0
\(616\) −2.34275e12 −0.655561
\(617\) −4.57147e12 −1.26991 −0.634954 0.772550i \(-0.718981\pi\)
−0.634954 + 0.772550i \(0.718981\pi\)
\(618\) −1.29622e12 −0.357464
\(619\) 4.54328e12 1.24383 0.621916 0.783084i \(-0.286355\pi\)
0.621916 + 0.783084i \(0.286355\pi\)
\(620\) 0 0
\(621\) 3.53839e12 0.954758
\(622\) 9.44438e10 0.0252998
\(623\) 3.55544e12 0.945577
\(624\) −1.82564e12 −0.482040
\(625\) 0 0
\(626\) 1.01872e12 0.265138
\(627\) −1.97794e13 −5.11104
\(628\) −2.50253e12 −0.642038
\(629\) 3.64567e11 0.0928644
\(630\) 0 0
\(631\) 1.79363e12 0.450402 0.225201 0.974312i \(-0.427696\pi\)
0.225201 + 0.974312i \(0.427696\pi\)
\(632\) 7.56746e11 0.188679
\(633\) −3.23375e12 −0.800552
\(634\) −6.13833e11 −0.150886
\(635\) 0 0
\(636\) −5.55315e12 −1.34581
\(637\) 1.03278e12 0.248530
\(638\) −2.46688e11 −0.0589460
\(639\) 9.75617e12 2.31487
\(640\) 0 0
\(641\) −2.69122e10 −0.00629633 −0.00314816 0.999995i \(-0.501002\pi\)
−0.00314816 + 0.999995i \(0.501002\pi\)
\(642\) −1.52110e12 −0.353386
\(643\) −4.08182e12 −0.941683 −0.470841 0.882218i \(-0.656050\pi\)
−0.470841 + 0.882218i \(0.656050\pi\)
\(644\) 1.96324e12 0.449766
\(645\) 0 0
\(646\) −3.87744e11 −0.0875990
\(647\) −5.34464e12 −1.19908 −0.599541 0.800344i \(-0.704650\pi\)
−0.599541 + 0.800344i \(0.704650\pi\)
\(648\) 3.94354e12 0.878614
\(649\) −8.21010e12 −1.81655
\(650\) 0 0
\(651\) −2.14292e13 −4.67617
\(652\) −3.78974e12 −0.821287
\(653\) 5.76044e12 1.23979 0.619893 0.784687i \(-0.287176\pi\)
0.619893 + 0.784687i \(0.287176\pi\)
\(654\) 2.46182e12 0.526207
\(655\) 0 0
\(656\) −2.07961e11 −0.0438445
\(657\) 1.06929e13 2.23900
\(658\) −4.80012e11 −0.0998242
\(659\) −3.13175e12 −0.646849 −0.323424 0.946254i \(-0.604834\pi\)
−0.323424 + 0.946254i \(0.604834\pi\)
\(660\) 0 0
\(661\) 4.20558e12 0.856878 0.428439 0.903571i \(-0.359064\pi\)
0.428439 + 0.903571i \(0.359064\pi\)
\(662\) −1.38564e12 −0.280407
\(663\) 8.11295e11 0.163068
\(664\) −6.39960e11 −0.127760
\(665\) 0 0
\(666\) 5.96087e11 0.117402
\(667\) 4.18693e11 0.0819085
\(668\) −1.09713e12 −0.213189
\(669\) −1.11938e13 −2.16053
\(670\) 0 0
\(671\) 2.78361e12 0.530098
\(672\) 6.23139e12 1.17875
\(673\) −2.12765e12 −0.399791 −0.199896 0.979817i \(-0.564060\pi\)
−0.199896 + 0.979817i \(0.564060\pi\)
\(674\) 1.49288e12 0.278647
\(675\) 0 0
\(676\) −4.07326e11 −0.0750209
\(677\) −1.28416e12 −0.234947 −0.117473 0.993076i \(-0.537480\pi\)
−0.117473 + 0.993076i \(0.537480\pi\)
\(678\) 1.08802e12 0.197743
\(679\) −1.76942e12 −0.319460
\(680\) 0 0
\(681\) 1.95171e13 3.47739
\(682\) 2.46493e12 0.436289
\(683\) 5.56147e12 0.977905 0.488953 0.872310i \(-0.337379\pi\)
0.488953 + 0.872310i \(0.337379\pi\)
\(684\) 2.50039e13 4.36773
\(685\) 0 0
\(686\) 1.30512e11 0.0225005
\(687\) −5.37992e12 −0.921447
\(688\) −2.57145e12 −0.437552
\(689\) −1.20678e12 −0.204005
\(690\) 0 0
\(691\) 3.68773e12 0.615329 0.307665 0.951495i \(-0.400453\pi\)
0.307665 + 0.951495i \(0.400453\pi\)
\(692\) 8.31262e12 1.37804
\(693\) −3.22859e13 −5.31757
\(694\) 2.78673e11 0.0456014
\(695\) 0 0
\(696\) 8.82282e11 0.142517
\(697\) 9.24160e10 0.0148320
\(698\) 8.71222e11 0.138925
\(699\) 5.46540e12 0.865914
\(700\) 0 0
\(701\) −5.20245e12 −0.813724 −0.406862 0.913490i \(-0.633377\pi\)
−0.406862 + 0.913490i \(0.633377\pi\)
\(702\) 8.00026e11 0.124333
\(703\) 3.41082e12 0.526696
\(704\) 8.53760e12 1.30996
\(705\) 0 0
\(706\) 2.44198e11 0.0369932
\(707\) 2.30090e12 0.346346
\(708\) 1.44980e13 2.16849
\(709\) −4.86534e12 −0.723111 −0.361556 0.932351i \(-0.617754\pi\)
−0.361556 + 0.932351i \(0.617754\pi\)
\(710\) 0 0
\(711\) 1.04289e13 1.53047
\(712\) 1.46269e12 0.213300
\(713\) −4.18362e12 −0.606246
\(714\) −8.84114e11 −0.127311
\(715\) 0 0
\(716\) 9.69346e12 1.37838
\(717\) −8.73967e12 −1.23498
\(718\) 7.18304e10 0.0100867
\(719\) −1.37103e12 −0.191323 −0.0956615 0.995414i \(-0.530497\pi\)
−0.0956615 + 0.995414i \(0.530497\pi\)
\(720\) 0 0
\(721\) −1.21068e13 −1.66847
\(722\) −2.47947e12 −0.339579
\(723\) −2.14722e13 −2.92250
\(724\) −1.17496e13 −1.58927
\(725\) 0 0
\(726\) 2.97941e12 0.398030
\(727\) 4.71537e12 0.626053 0.313027 0.949744i \(-0.398657\pi\)
0.313027 + 0.949744i \(0.398657\pi\)
\(728\) 8.99028e11 0.118627
\(729\) 1.35636e13 1.77869
\(730\) 0 0
\(731\) 1.14273e12 0.148018
\(732\) −4.91549e12 −0.632800
\(733\) −3.53043e12 −0.451710 −0.225855 0.974161i \(-0.572518\pi\)
−0.225855 + 0.974161i \(0.572518\pi\)
\(734\) 1.19068e12 0.151413
\(735\) 0 0
\(736\) 1.21655e12 0.152820
\(737\) −1.50719e12 −0.188176
\(738\) 1.51105e11 0.0187511
\(739\) 4.47202e12 0.551574 0.275787 0.961219i \(-0.411061\pi\)
0.275787 + 0.961219i \(0.411061\pi\)
\(740\) 0 0
\(741\) 7.59032e12 0.924865
\(742\) 1.31510e12 0.159272
\(743\) 6.83692e12 0.823021 0.411510 0.911405i \(-0.365001\pi\)
0.411510 + 0.911405i \(0.365001\pi\)
\(744\) −8.81584e12 −1.05484
\(745\) 0 0
\(746\) 1.19318e12 0.141053
\(747\) −8.81940e12 −1.03633
\(748\) −4.01086e12 −0.468469
\(749\) −1.42071e13 −1.64944
\(750\) 0 0
\(751\) −1.11725e13 −1.28165 −0.640825 0.767687i \(-0.721407\pi\)
−0.640825 + 0.767687i \(0.721407\pi\)
\(752\) 3.74542e12 0.427091
\(753\) −2.18874e13 −2.48094
\(754\) 9.46660e10 0.0106665
\(755\) 0 0
\(756\) 3.43846e13 3.82839
\(757\) −4.83288e12 −0.534903 −0.267451 0.963571i \(-0.586181\pi\)
−0.267451 + 0.963571i \(0.586181\pi\)
\(758\) 1.09923e12 0.120941
\(759\) −8.80488e12 −0.963020
\(760\) 0 0
\(761\) 1.21260e12 0.131065 0.0655327 0.997850i \(-0.479125\pi\)
0.0655327 + 0.997850i \(0.479125\pi\)
\(762\) 2.24255e12 0.240960
\(763\) 2.29935e13 2.45609
\(764\) −1.08828e13 −1.15563
\(765\) 0 0
\(766\) −4.80000e11 −0.0503746
\(767\) 3.15062e12 0.328713
\(768\) −1.37785e13 −1.42914
\(769\) −8.88598e11 −0.0916298 −0.0458149 0.998950i \(-0.514588\pi\)
−0.0458149 + 0.998950i \(0.514588\pi\)
\(770\) 0 0
\(771\) 1.76114e13 1.79494
\(772\) −3.74288e12 −0.379252
\(773\) 1.29728e13 1.30685 0.653427 0.756990i \(-0.273331\pi\)
0.653427 + 0.756990i \(0.273331\pi\)
\(774\) 1.86842e12 0.187129
\(775\) 0 0
\(776\) −7.27930e11 −0.0720629
\(777\) 7.77717e12 0.765468
\(778\) −1.40613e12 −0.137600
\(779\) 8.64627e11 0.0841221
\(780\) 0 0
\(781\) −1.46417e13 −1.40819
\(782\) −1.72606e11 −0.0165054
\(783\) 7.33308e12 0.697202
\(784\) 8.78181e12 0.830160
\(785\) 0 0
\(786\) −3.21116e12 −0.300096
\(787\) −1.45875e13 −1.35549 −0.677743 0.735299i \(-0.737042\pi\)
−0.677743 + 0.735299i \(0.737042\pi\)
\(788\) −1.70807e13 −1.57811
\(789\) 2.53682e13 2.33047
\(790\) 0 0
\(791\) 1.01621e13 0.922974
\(792\) −1.32822e13 −1.19952
\(793\) −1.06821e12 −0.0959236
\(794\) −1.43088e12 −0.127765
\(795\) 0 0
\(796\) −2.92968e12 −0.258649
\(797\) 3.89178e12 0.341653 0.170827 0.985301i \(-0.445356\pi\)
0.170827 + 0.985301i \(0.445356\pi\)
\(798\) −8.27161e12 −0.722066
\(799\) −1.66443e12 −0.144479
\(800\) 0 0
\(801\) 2.01576e13 1.73018
\(802\) 1.60651e12 0.137119
\(803\) −1.60475e13 −1.36204
\(804\) 2.66149e12 0.224633
\(805\) 0 0
\(806\) −9.45912e11 −0.0789484
\(807\) 2.88661e13 2.39584
\(808\) 9.46578e11 0.0781277
\(809\) −9.37803e12 −0.769739 −0.384869 0.922971i \(-0.625753\pi\)
−0.384869 + 0.922971i \(0.625753\pi\)
\(810\) 0 0
\(811\) −3.71605e12 −0.301639 −0.150820 0.988561i \(-0.548191\pi\)
−0.150820 + 0.988561i \(0.548191\pi\)
\(812\) 4.06869e12 0.328437
\(813\) 9.09131e12 0.729826
\(814\) −8.94583e11 −0.0714185
\(815\) 0 0
\(816\) 6.89853e12 0.544692
\(817\) 1.06911e13 0.839509
\(818\) 1.32035e12 0.103110
\(819\) 1.23897e13 0.962237
\(820\) 0 0
\(821\) 1.34163e12 0.103059 0.0515297 0.998671i \(-0.483590\pi\)
0.0515297 + 0.998671i \(0.483590\pi\)
\(822\) 2.57776e12 0.196933
\(823\) −1.75595e13 −1.33417 −0.667086 0.744980i \(-0.732459\pi\)
−0.667086 + 0.744980i \(0.732459\pi\)
\(824\) −4.98066e12 −0.376370
\(825\) 0 0
\(826\) −3.43340e12 −0.256634
\(827\) −1.53041e13 −1.13771 −0.568856 0.822437i \(-0.692614\pi\)
−0.568856 + 0.822437i \(0.692614\pi\)
\(828\) 1.11306e13 0.822966
\(829\) −3.79518e12 −0.279086 −0.139543 0.990216i \(-0.544563\pi\)
−0.139543 + 0.990216i \(0.544563\pi\)
\(830\) 0 0
\(831\) −4.22601e13 −3.07415
\(832\) −3.27629e12 −0.237043
\(833\) −3.90255e12 −0.280832
\(834\) −9.39432e11 −0.0672385
\(835\) 0 0
\(836\) −3.75249e13 −2.65700
\(837\) −7.32729e13 −5.16034
\(838\) 1.59838e12 0.111965
\(839\) −2.03599e13 −1.41856 −0.709279 0.704928i \(-0.750979\pi\)
−0.709279 + 0.704928i \(0.750979\pi\)
\(840\) 0 0
\(841\) −1.36394e13 −0.940187
\(842\) −8.94884e11 −0.0613568
\(843\) 3.29771e13 2.24900
\(844\) −6.13496e12 −0.416170
\(845\) 0 0
\(846\) −2.72143e12 −0.182655
\(847\) 2.78278e13 1.85782
\(848\) −1.02614e13 −0.681434
\(849\) 1.62690e13 1.07467
\(850\) 0 0
\(851\) 1.51834e12 0.0992397
\(852\) 2.58553e13 1.68101
\(853\) 1.62725e13 1.05240 0.526202 0.850359i \(-0.323616\pi\)
0.526202 + 0.850359i \(0.323616\pi\)
\(854\) 1.16408e12 0.0748900
\(855\) 0 0
\(856\) −5.84472e12 −0.372076
\(857\) 2.82976e13 1.79199 0.895995 0.444063i \(-0.146463\pi\)
0.895995 + 0.444063i \(0.146463\pi\)
\(858\) −1.99077e12 −0.125409
\(859\) 9.52876e12 0.597128 0.298564 0.954390i \(-0.403492\pi\)
0.298564 + 0.954390i \(0.403492\pi\)
\(860\) 0 0
\(861\) 1.97148e12 0.122258
\(862\) 4.14885e12 0.255944
\(863\) −2.74609e13 −1.68526 −0.842628 0.538496i \(-0.818993\pi\)
−0.842628 + 0.538496i \(0.818993\pi\)
\(864\) 2.13070e13 1.30080
\(865\) 0 0
\(866\) −4.57167e11 −0.0276213
\(867\) 2.81470e13 1.69179
\(868\) −4.06547e13 −2.43093
\(869\) −1.56512e13 −0.931019
\(870\) 0 0
\(871\) 5.78381e11 0.0340512
\(872\) 9.45940e12 0.554038
\(873\) −1.00317e13 −0.584537
\(874\) −1.61487e12 −0.0936128
\(875\) 0 0
\(876\) 2.83379e13 1.62592
\(877\) −2.65120e13 −1.51337 −0.756684 0.653780i \(-0.773182\pi\)
−0.756684 + 0.653780i \(0.773182\pi\)
\(878\) 1.07250e12 0.0609074
\(879\) −4.07687e13 −2.30344
\(880\) 0 0
\(881\) −2.54720e13 −1.42453 −0.712266 0.701910i \(-0.752331\pi\)
−0.712266 + 0.701910i \(0.752331\pi\)
\(882\) −6.38089e12 −0.355036
\(883\) 1.99724e13 1.10563 0.552813 0.833306i \(-0.313555\pi\)
0.552813 + 0.833306i \(0.313555\pi\)
\(884\) 1.53916e12 0.0847714
\(885\) 0 0
\(886\) 4.15476e12 0.226513
\(887\) −1.07964e13 −0.585627 −0.292814 0.956170i \(-0.594592\pi\)
−0.292814 + 0.956170i \(0.594592\pi\)
\(888\) 3.19949e12 0.172672
\(889\) 2.09455e13 1.12469
\(890\) 0 0
\(891\) −8.15611e13 −4.33544
\(892\) −2.12366e13 −1.12316
\(893\) −1.55721e13 −0.819436
\(894\) 1.57016e12 0.0822098
\(895\) 0 0
\(896\) 1.56921e13 0.813383
\(897\) 3.37886e12 0.174263
\(898\) −4.44284e12 −0.227991
\(899\) −8.67028e12 −0.442705
\(900\) 0 0
\(901\) 4.56006e12 0.230520
\(902\) −2.26773e11 −0.0114067
\(903\) 2.43774e13 1.22009
\(904\) 4.18064e12 0.208202
\(905\) 0 0
\(906\) −4.60245e12 −0.226941
\(907\) −2.76658e13 −1.35741 −0.678705 0.734411i \(-0.737459\pi\)
−0.678705 + 0.734411i \(0.737459\pi\)
\(908\) 3.70272e13 1.80774
\(909\) 1.30450e13 0.633731
\(910\) 0 0
\(911\) 1.89840e13 0.913179 0.456590 0.889677i \(-0.349071\pi\)
0.456590 + 0.889677i \(0.349071\pi\)
\(912\) 6.45413e13 3.08931
\(913\) 1.32358e13 0.630422
\(914\) −1.39868e12 −0.0662918
\(915\) 0 0
\(916\) −1.02066e13 −0.479018
\(917\) −2.99923e13 −1.40071
\(918\) −3.02306e12 −0.140493
\(919\) 3.63901e13 1.68292 0.841460 0.540319i \(-0.181696\pi\)
0.841460 + 0.540319i \(0.181696\pi\)
\(920\) 0 0
\(921\) 5.68480e13 2.60343
\(922\) −5.25041e12 −0.239279
\(923\) 5.61872e12 0.254818
\(924\) −8.55623e13 −3.86152
\(925\) 0 0
\(926\) 3.64778e12 0.163035
\(927\) −6.86394e13 −3.05291
\(928\) 2.52123e12 0.111596
\(929\) −2.01262e13 −0.886525 −0.443263 0.896392i \(-0.646179\pi\)
−0.443263 + 0.896392i \(0.646179\pi\)
\(930\) 0 0
\(931\) −3.65115e13 −1.59278
\(932\) 1.03688e13 0.450149
\(933\) 6.98604e12 0.301831
\(934\) −4.09709e12 −0.176163
\(935\) 0 0
\(936\) 5.09704e12 0.217059
\(937\) 2.56608e12 0.108753 0.0543765 0.998521i \(-0.482683\pi\)
0.0543765 + 0.998521i \(0.482683\pi\)
\(938\) −6.30294e11 −0.0265846
\(939\) 7.53552e13 3.16314
\(940\) 0 0
\(941\) −2.94879e13 −1.22600 −0.613000 0.790083i \(-0.710038\pi\)
−0.613000 + 0.790083i \(0.710038\pi\)
\(942\) 4.69359e12 0.194212
\(943\) 3.84892e11 0.0158502
\(944\) 2.67900e13 1.09799
\(945\) 0 0
\(946\) −2.80405e12 −0.113835
\(947\) −5.93754e12 −0.239901 −0.119950 0.992780i \(-0.538274\pi\)
−0.119950 + 0.992780i \(0.538274\pi\)
\(948\) 2.76380e13 1.11140
\(949\) 6.15822e12 0.246466
\(950\) 0 0
\(951\) −4.54054e13 −1.80009
\(952\) −3.39716e12 −0.134045
\(953\) −3.16358e13 −1.24240 −0.621199 0.783653i \(-0.713354\pi\)
−0.621199 + 0.783653i \(0.713354\pi\)
\(954\) 7.45594e12 0.291430
\(955\) 0 0
\(956\) −1.65806e13 −0.642008
\(957\) −1.82476e13 −0.703236
\(958\) 1.52373e12 0.0584470
\(959\) 2.40764e13 0.919194
\(960\) 0 0
\(961\) 6.01947e13 2.27668
\(962\) 3.43295e11 0.0129235
\(963\) −8.05471e13 −3.01809
\(964\) −4.07364e13 −1.51927
\(965\) 0 0
\(966\) −3.68214e12 −0.136051
\(967\) 2.71105e13 0.997053 0.498526 0.866875i \(-0.333875\pi\)
0.498526 + 0.866875i \(0.333875\pi\)
\(968\) 1.14482e13 0.419082
\(969\) −2.86816e13 −1.04507
\(970\) 0 0
\(971\) −3.10338e13 −1.12034 −0.560168 0.828379i \(-0.689264\pi\)
−0.560168 + 0.828379i \(0.689264\pi\)
\(972\) 6.66540e13 2.39513
\(973\) −8.77432e12 −0.313838
\(974\) −5.12651e12 −0.182518
\(975\) 0 0
\(976\) −9.08306e12 −0.320411
\(977\) −4.89033e13 −1.71717 −0.858584 0.512672i \(-0.828656\pi\)
−0.858584 + 0.512672i \(0.828656\pi\)
\(978\) 7.10781e12 0.248434
\(979\) −3.02516e13 −1.05251
\(980\) 0 0
\(981\) 1.30362e14 4.49406
\(982\) 6.15195e11 0.0211111
\(983\) −7.20011e12 −0.245951 −0.122975 0.992410i \(-0.539244\pi\)
−0.122975 + 0.992410i \(0.539244\pi\)
\(984\) 8.11055e11 0.0275786
\(985\) 0 0
\(986\) −3.57715e11 −0.0120529
\(987\) −3.55066e13 −1.19092
\(988\) 1.44001e13 0.480795
\(989\) 4.75920e12 0.158180
\(990\) 0 0
\(991\) −1.28220e13 −0.422303 −0.211151 0.977453i \(-0.567721\pi\)
−0.211151 + 0.977453i \(0.567721\pi\)
\(992\) −2.51924e13 −0.825975
\(993\) −1.02496e14 −3.34530
\(994\) −6.12304e12 −0.198943
\(995\) 0 0
\(996\) −2.33727e13 −0.752561
\(997\) 2.00149e13 0.641541 0.320771 0.947157i \(-0.396058\pi\)
0.320771 + 0.947157i \(0.396058\pi\)
\(998\) −2.19969e12 −0.0701897
\(999\) 2.65925e13 0.844725
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.10.a.k.1.14 27
5.2 odd 4 65.10.b.a.14.27 54
5.3 odd 4 65.10.b.a.14.28 yes 54
5.4 even 2 325.10.a.l.1.14 27
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.10.b.a.14.27 54 5.2 odd 4
65.10.b.a.14.28 yes 54 5.3 odd 4
325.10.a.k.1.14 27 1.1 even 1 trivial
325.10.a.l.1.14 27 5.4 even 2