Properties

Label 325.10.a.k.1.11
Level $325$
Weight $10$
Character 325.1
Self dual yes
Analytic conductor $167.387$
Analytic rank $1$
Dimension $27$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,10,Mod(1,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [27,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(167.386646753\)
Analytic rank: \(1\)
Dimension: \(27\)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Character \(\chi\) \(=\) 325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.3195 q^{2} -195.494 q^{3} -245.673 q^{4} +3190.36 q^{6} +4181.36 q^{7} +12364.9 q^{8} +18534.7 q^{9} +74976.3 q^{11} +48027.5 q^{12} +28561.0 q^{13} -68237.8 q^{14} -76003.9 q^{16} -35861.7 q^{17} -302478. q^{18} -521133. q^{19} -817429. q^{21} -1.22358e6 q^{22} -2.36188e6 q^{23} -2.41725e6 q^{24} -466102. q^{26} +224480. q^{27} -1.02725e6 q^{28} +5.19987e6 q^{29} -8.86231e6 q^{31} -5.09046e6 q^{32} -1.46574e7 q^{33} +585246. q^{34} -4.55349e6 q^{36} +1.81091e7 q^{37} +8.50463e6 q^{38} -5.58349e6 q^{39} +2.69439e7 q^{41} +1.33400e7 q^{42} -2.29368e7 q^{43} -1.84197e7 q^{44} +3.85447e7 q^{46} +3.00540e6 q^{47} +1.48583e7 q^{48} -2.28698e7 q^{49} +7.01074e6 q^{51} -7.01668e6 q^{52} -1.08125e7 q^{53} -3.66340e6 q^{54} +5.17019e7 q^{56} +1.01878e8 q^{57} -8.48594e7 q^{58} -5.90734e7 q^{59} +8.27948e7 q^{61} +1.44629e8 q^{62} +7.75003e7 q^{63} +1.21988e8 q^{64} +2.39201e8 q^{66} -1.38456e8 q^{67} +8.81027e6 q^{68} +4.61732e8 q^{69} +1.21792e8 q^{71} +2.29179e8 q^{72} -4.39909e8 q^{73} -2.95533e8 q^{74} +1.28028e8 q^{76} +3.13503e8 q^{77} +9.11199e7 q^{78} +6.33272e8 q^{79} -4.08703e8 q^{81} -4.39711e8 q^{82} -2.04969e8 q^{83} +2.00820e8 q^{84} +3.74317e8 q^{86} -1.01654e9 q^{87} +9.27071e8 q^{88} -1.00666e8 q^{89} +1.19424e8 q^{91} +5.80250e8 q^{92} +1.73252e9 q^{93} -4.90467e7 q^{94} +9.95153e8 q^{96} -3.40802e8 q^{97} +3.73225e8 q^{98} +1.38966e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 27 q - 48 q^{2} - 324 q^{3} + 6570 q^{4} - 1786 q^{6} - 3736 q^{7} - 36864 q^{8} + 214173 q^{9} - 66096 q^{11} - 114398 q^{12} + 771147 q^{13} - 359458 q^{14} + 998622 q^{16} - 779040 q^{17} - 1709648 q^{18}+ \cdots + 2142297632 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.3195 −0.721228 −0.360614 0.932715i \(-0.617433\pi\)
−0.360614 + 0.932715i \(0.617433\pi\)
\(3\) −195.494 −1.39344 −0.696718 0.717345i \(-0.745357\pi\)
−0.696718 + 0.717345i \(0.745357\pi\)
\(4\) −245.673 −0.479831
\(5\) 0 0
\(6\) 3190.36 1.00498
\(7\) 4181.36 0.658228 0.329114 0.944290i \(-0.393250\pi\)
0.329114 + 0.944290i \(0.393250\pi\)
\(8\) 12364.9 1.06729
\(9\) 18534.7 0.941662
\(10\) 0 0
\(11\) 74976.3 1.54403 0.772017 0.635602i \(-0.219248\pi\)
0.772017 + 0.635602i \(0.219248\pi\)
\(12\) 48027.5 0.668613
\(13\) 28561.0 0.277350
\(14\) −68237.8 −0.474732
\(15\) 0 0
\(16\) −76003.9 −0.289932
\(17\) −35861.7 −0.104138 −0.0520692 0.998643i \(-0.516582\pi\)
−0.0520692 + 0.998643i \(0.516582\pi\)
\(18\) −302478. −0.679152
\(19\) −521133. −0.917396 −0.458698 0.888592i \(-0.651684\pi\)
−0.458698 + 0.888592i \(0.651684\pi\)
\(20\) 0 0
\(21\) −817429. −0.917198
\(22\) −1.22358e6 −1.11360
\(23\) −2.36188e6 −1.75988 −0.879938 0.475089i \(-0.842416\pi\)
−0.879938 + 0.475089i \(0.842416\pi\)
\(24\) −2.41725e6 −1.48721
\(25\) 0 0
\(26\) −466102. −0.200033
\(27\) 224480. 0.0812906
\(28\) −1.02725e6 −0.315838
\(29\) 5.19987e6 1.36522 0.682608 0.730784i \(-0.260845\pi\)
0.682608 + 0.730784i \(0.260845\pi\)
\(30\) 0 0
\(31\) −8.86231e6 −1.72353 −0.861766 0.507306i \(-0.830641\pi\)
−0.861766 + 0.507306i \(0.830641\pi\)
\(32\) −5.09046e6 −0.858188
\(33\) −1.46574e7 −2.15151
\(34\) 585246. 0.0751075
\(35\) 0 0
\(36\) −4.55349e6 −0.451838
\(37\) 1.81091e7 1.58851 0.794256 0.607584i \(-0.207861\pi\)
0.794256 + 0.607584i \(0.207861\pi\)
\(38\) 8.50463e6 0.661652
\(39\) −5.58349e6 −0.386469
\(40\) 0 0
\(41\) 2.69439e7 1.48913 0.744565 0.667550i \(-0.232657\pi\)
0.744565 + 0.667550i \(0.232657\pi\)
\(42\) 1.33400e7 0.661508
\(43\) −2.29368e7 −1.02312 −0.511558 0.859249i \(-0.670931\pi\)
−0.511558 + 0.859249i \(0.670931\pi\)
\(44\) −1.84197e7 −0.740875
\(45\) 0 0
\(46\) 3.85447e7 1.26927
\(47\) 3.00540e6 0.0898385 0.0449192 0.998991i \(-0.485697\pi\)
0.0449192 + 0.998991i \(0.485697\pi\)
\(48\) 1.48583e7 0.404001
\(49\) −2.28698e7 −0.566736
\(50\) 0 0
\(51\) 7.01074e6 0.145110
\(52\) −7.01668e6 −0.133081
\(53\) −1.08125e7 −0.188227 −0.0941137 0.995561i \(-0.530002\pi\)
−0.0941137 + 0.995561i \(0.530002\pi\)
\(54\) −3.66340e6 −0.0586290
\(55\) 0 0
\(56\) 5.17019e7 0.702523
\(57\) 1.01878e8 1.27833
\(58\) −8.48594e7 −0.984632
\(59\) −5.90734e7 −0.634685 −0.317342 0.948311i \(-0.602790\pi\)
−0.317342 + 0.948311i \(0.602790\pi\)
\(60\) 0 0
\(61\) 8.27948e7 0.765630 0.382815 0.923825i \(-0.374955\pi\)
0.382815 + 0.923825i \(0.374955\pi\)
\(62\) 1.44629e8 1.24306
\(63\) 7.75003e7 0.619828
\(64\) 1.21988e8 0.908881
\(65\) 0 0
\(66\) 2.39201e8 1.55173
\(67\) −1.38456e8 −0.839415 −0.419707 0.907659i \(-0.637867\pi\)
−0.419707 + 0.907659i \(0.637867\pi\)
\(68\) 8.81027e6 0.0499688
\(69\) 4.61732e8 2.45227
\(70\) 0 0
\(71\) 1.21792e8 0.568798 0.284399 0.958706i \(-0.408206\pi\)
0.284399 + 0.958706i \(0.408206\pi\)
\(72\) 2.29179e8 1.00503
\(73\) −4.39909e8 −1.81305 −0.906525 0.422152i \(-0.861275\pi\)
−0.906525 + 0.422152i \(0.861275\pi\)
\(74\) −2.95533e8 −1.14568
\(75\) 0 0
\(76\) 1.28028e8 0.440195
\(77\) 3.13503e8 1.01633
\(78\) 9.11199e7 0.278732
\(79\) 6.33272e8 1.82923 0.914616 0.404324i \(-0.132493\pi\)
0.914616 + 0.404324i \(0.132493\pi\)
\(80\) 0 0
\(81\) −4.08703e8 −1.05493
\(82\) −4.39711e8 −1.07400
\(83\) −2.04969e8 −0.474063 −0.237032 0.971502i \(-0.576174\pi\)
−0.237032 + 0.971502i \(0.576174\pi\)
\(84\) 2.00820e8 0.440100
\(85\) 0 0
\(86\) 3.74317e8 0.737899
\(87\) −1.01654e9 −1.90234
\(88\) 9.27071e8 1.64794
\(89\) −1.00666e8 −0.170070 −0.0850350 0.996378i \(-0.527100\pi\)
−0.0850350 + 0.996378i \(0.527100\pi\)
\(90\) 0 0
\(91\) 1.19424e8 0.182560
\(92\) 5.80250e8 0.844442
\(93\) 1.73252e9 2.40163
\(94\) −4.90467e7 −0.0647940
\(95\) 0 0
\(96\) 9.95153e8 1.19583
\(97\) −3.40802e8 −0.390868 −0.195434 0.980717i \(-0.562612\pi\)
−0.195434 + 0.980717i \(0.562612\pi\)
\(98\) 3.73225e8 0.408746
\(99\) 1.38966e9 1.45396
\(100\) 0 0
\(101\) 2.01832e9 1.92994 0.964972 0.262354i \(-0.0844988\pi\)
0.964972 + 0.262354i \(0.0844988\pi\)
\(102\) −1.14412e8 −0.104657
\(103\) −7.03308e8 −0.615713 −0.307856 0.951433i \(-0.599612\pi\)
−0.307856 + 0.951433i \(0.599612\pi\)
\(104\) 3.53153e8 0.296014
\(105\) 0 0
\(106\) 1.76454e8 0.135755
\(107\) −4.26374e8 −0.314459 −0.157229 0.987562i \(-0.550256\pi\)
−0.157229 + 0.987562i \(0.550256\pi\)
\(108\) −5.51487e7 −0.0390057
\(109\) −4.82003e8 −0.327062 −0.163531 0.986538i \(-0.552288\pi\)
−0.163531 + 0.986538i \(0.552288\pi\)
\(110\) 0 0
\(111\) −3.54022e9 −2.21349
\(112\) −3.17800e8 −0.190841
\(113\) −5.99380e8 −0.345819 −0.172910 0.984938i \(-0.555317\pi\)
−0.172910 + 0.984938i \(0.555317\pi\)
\(114\) −1.66260e9 −0.921969
\(115\) 0 0
\(116\) −1.27747e9 −0.655073
\(117\) 5.29370e8 0.261170
\(118\) 9.64050e8 0.457752
\(119\) −1.49951e8 −0.0685468
\(120\) 0 0
\(121\) 3.26349e9 1.38404
\(122\) −1.35117e9 −0.552193
\(123\) −5.26735e9 −2.07501
\(124\) 2.17723e9 0.827004
\(125\) 0 0
\(126\) −1.26477e9 −0.447037
\(127\) −3.94945e9 −1.34716 −0.673581 0.739113i \(-0.735245\pi\)
−0.673581 + 0.739113i \(0.735245\pi\)
\(128\) 6.15533e8 0.202678
\(129\) 4.48399e9 1.42565
\(130\) 0 0
\(131\) 4.51582e9 1.33973 0.669863 0.742485i \(-0.266353\pi\)
0.669863 + 0.742485i \(0.266353\pi\)
\(132\) 3.60093e9 1.03236
\(133\) −2.17904e9 −0.603856
\(134\) 2.25954e9 0.605409
\(135\) 0 0
\(136\) −4.43425e8 −0.111146
\(137\) 9.24727e7 0.0224270 0.0112135 0.999937i \(-0.496431\pi\)
0.0112135 + 0.999937i \(0.496431\pi\)
\(138\) −7.53524e9 −1.76865
\(139\) 4.80677e9 1.09216 0.546080 0.837733i \(-0.316119\pi\)
0.546080 + 0.837733i \(0.316119\pi\)
\(140\) 0 0
\(141\) −5.87537e8 −0.125184
\(142\) −1.98759e9 −0.410233
\(143\) 2.14140e9 0.428238
\(144\) −1.40871e9 −0.273018
\(145\) 0 0
\(146\) 7.17910e9 1.30762
\(147\) 4.47091e9 0.789710
\(148\) −4.44893e9 −0.762216
\(149\) −3.69674e9 −0.614442 −0.307221 0.951638i \(-0.599399\pi\)
−0.307221 + 0.951638i \(0.599399\pi\)
\(150\) 0 0
\(151\) −7.58747e9 −1.18768 −0.593842 0.804582i \(-0.702389\pi\)
−0.593842 + 0.804582i \(0.702389\pi\)
\(152\) −6.44373e9 −0.979132
\(153\) −6.64687e8 −0.0980632
\(154\) −5.11621e9 −0.733002
\(155\) 0 0
\(156\) 1.37171e9 0.185440
\(157\) −1.35722e9 −0.178279 −0.0891396 0.996019i \(-0.528412\pi\)
−0.0891396 + 0.996019i \(0.528412\pi\)
\(158\) −1.03347e10 −1.31929
\(159\) 2.11376e9 0.262283
\(160\) 0 0
\(161\) −9.87585e9 −1.15840
\(162\) 6.66984e9 0.760848
\(163\) 1.27247e10 1.41190 0.705950 0.708262i \(-0.250520\pi\)
0.705950 + 0.708262i \(0.250520\pi\)
\(164\) −6.61939e9 −0.714530
\(165\) 0 0
\(166\) 3.34499e9 0.341907
\(167\) 1.26284e9 0.125639 0.0628197 0.998025i \(-0.479991\pi\)
0.0628197 + 0.998025i \(0.479991\pi\)
\(168\) −1.01074e10 −0.978920
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −9.65905e9 −0.863877
\(172\) 5.63496e9 0.490922
\(173\) 1.39337e10 1.18266 0.591328 0.806431i \(-0.298604\pi\)
0.591328 + 0.806431i \(0.298604\pi\)
\(174\) 1.65895e10 1.37202
\(175\) 0 0
\(176\) −5.69849e9 −0.447665
\(177\) 1.15485e10 0.884392
\(178\) 1.64282e9 0.122659
\(179\) 1.05518e9 0.0768222 0.0384111 0.999262i \(-0.487770\pi\)
0.0384111 + 0.999262i \(0.487770\pi\)
\(180\) 0 0
\(181\) −2.35110e9 −0.162823 −0.0814117 0.996681i \(-0.525943\pi\)
−0.0814117 + 0.996681i \(0.525943\pi\)
\(182\) −1.94894e9 −0.131667
\(183\) −1.61858e10 −1.06686
\(184\) −2.92043e10 −1.87831
\(185\) 0 0
\(186\) −2.82740e10 −1.73212
\(187\) −2.68878e9 −0.160793
\(188\) −7.38347e8 −0.0431073
\(189\) 9.38630e8 0.0535077
\(190\) 0 0
\(191\) −6.57693e9 −0.357580 −0.178790 0.983887i \(-0.557218\pi\)
−0.178790 + 0.983887i \(0.557218\pi\)
\(192\) −2.38478e10 −1.26647
\(193\) −4.90525e9 −0.254480 −0.127240 0.991872i \(-0.540612\pi\)
−0.127240 + 0.991872i \(0.540612\pi\)
\(194\) 5.56173e9 0.281905
\(195\) 0 0
\(196\) 5.61851e9 0.271937
\(197\) 3.33003e10 1.57525 0.787626 0.616154i \(-0.211310\pi\)
0.787626 + 0.616154i \(0.211310\pi\)
\(198\) −2.26787e10 −1.04863
\(199\) −1.41182e10 −0.638176 −0.319088 0.947725i \(-0.603377\pi\)
−0.319088 + 0.947725i \(0.603377\pi\)
\(200\) 0 0
\(201\) 2.70673e10 1.16967
\(202\) −3.29381e10 −1.39193
\(203\) 2.17425e10 0.898624
\(204\) −1.72235e9 −0.0696283
\(205\) 0 0
\(206\) 1.14777e10 0.444069
\(207\) −4.37767e10 −1.65721
\(208\) −2.17075e9 −0.0804126
\(209\) −3.90726e10 −1.41649
\(210\) 0 0
\(211\) −2.36131e10 −0.820128 −0.410064 0.912057i \(-0.634494\pi\)
−0.410064 + 0.912057i \(0.634494\pi\)
\(212\) 2.65633e9 0.0903173
\(213\) −2.38096e10 −0.792583
\(214\) 6.95821e9 0.226796
\(215\) 0 0
\(216\) 2.77566e9 0.0867610
\(217\) −3.70565e10 −1.13448
\(218\) 7.86606e9 0.235886
\(219\) 8.59993e10 2.52637
\(220\) 0 0
\(221\) −1.02425e9 −0.0288828
\(222\) 5.77747e10 1.59643
\(223\) −3.82739e10 −1.03641 −0.518203 0.855257i \(-0.673399\pi\)
−0.518203 + 0.855257i \(0.673399\pi\)
\(224\) −2.12851e10 −0.564883
\(225\) 0 0
\(226\) 9.78159e9 0.249414
\(227\) 7.86598e9 0.196624 0.0983120 0.995156i \(-0.468656\pi\)
0.0983120 + 0.995156i \(0.468656\pi\)
\(228\) −2.50287e10 −0.613383
\(229\) −2.70282e9 −0.0649469 −0.0324734 0.999473i \(-0.510338\pi\)
−0.0324734 + 0.999473i \(0.510338\pi\)
\(230\) 0 0
\(231\) −6.12878e10 −1.41618
\(232\) 6.42957e10 1.45709
\(233\) −6.47198e9 −0.143858 −0.0719292 0.997410i \(-0.522916\pi\)
−0.0719292 + 0.997410i \(0.522916\pi\)
\(234\) −8.63907e9 −0.188363
\(235\) 0 0
\(236\) 1.45128e10 0.304541
\(237\) −1.23801e11 −2.54892
\(238\) 2.44712e9 0.0494379
\(239\) −8.94464e9 −0.177326 −0.0886630 0.996062i \(-0.528259\pi\)
−0.0886630 + 0.996062i \(0.528259\pi\)
\(240\) 0 0
\(241\) 9.58346e10 1.82998 0.914988 0.403480i \(-0.132200\pi\)
0.914988 + 0.403480i \(0.132200\pi\)
\(242\) −5.32587e10 −0.998208
\(243\) 7.54804e10 1.38869
\(244\) −2.03405e10 −0.367373
\(245\) 0 0
\(246\) 8.59606e10 1.49655
\(247\) −1.48841e10 −0.254440
\(248\) −1.09581e11 −1.83952
\(249\) 4.00701e10 0.660576
\(250\) 0 0
\(251\) −1.46628e10 −0.233177 −0.116588 0.993180i \(-0.537196\pi\)
−0.116588 + 0.993180i \(0.537196\pi\)
\(252\) −1.90398e10 −0.297412
\(253\) −1.77085e11 −2.71731
\(254\) 6.44532e10 0.971611
\(255\) 0 0
\(256\) −7.25030e10 −1.05506
\(257\) 2.49501e10 0.356758 0.178379 0.983962i \(-0.442915\pi\)
0.178379 + 0.983962i \(0.442915\pi\)
\(258\) −7.31766e10 −1.02821
\(259\) 7.57208e10 1.04560
\(260\) 0 0
\(261\) 9.63782e10 1.28557
\(262\) −7.36960e10 −0.966247
\(263\) 1.44606e10 0.186374 0.0931872 0.995649i \(-0.470295\pi\)
0.0931872 + 0.995649i \(0.470295\pi\)
\(264\) −1.81236e11 −2.29630
\(265\) 0 0
\(266\) 3.55609e10 0.435517
\(267\) 1.96796e10 0.236982
\(268\) 3.40151e10 0.402777
\(269\) 2.72584e10 0.317406 0.158703 0.987326i \(-0.449269\pi\)
0.158703 + 0.987326i \(0.449269\pi\)
\(270\) 0 0
\(271\) −2.09550e10 −0.236007 −0.118004 0.993013i \(-0.537649\pi\)
−0.118004 + 0.993013i \(0.537649\pi\)
\(272\) 2.72563e9 0.0301931
\(273\) −2.33466e10 −0.254385
\(274\) −1.50911e9 −0.0161750
\(275\) 0 0
\(276\) −1.13435e11 −1.17668
\(277\) −8.78317e10 −0.896381 −0.448190 0.893938i \(-0.647931\pi\)
−0.448190 + 0.893938i \(0.647931\pi\)
\(278\) −7.84441e10 −0.787696
\(279\) −1.64261e11 −1.62298
\(280\) 0 0
\(281\) 5.56211e10 0.532183 0.266092 0.963948i \(-0.414268\pi\)
0.266092 + 0.963948i \(0.414268\pi\)
\(282\) 9.58832e9 0.0902862
\(283\) 7.28077e10 0.674743 0.337371 0.941372i \(-0.390462\pi\)
0.337371 + 0.941372i \(0.390462\pi\)
\(284\) −2.99212e10 −0.272927
\(285\) 0 0
\(286\) −3.49466e10 −0.308857
\(287\) 1.12662e11 0.980186
\(288\) −9.43504e10 −0.808123
\(289\) −1.17302e11 −0.989155
\(290\) 0 0
\(291\) 6.66247e10 0.544649
\(292\) 1.08074e11 0.869957
\(293\) −4.53763e10 −0.359687 −0.179844 0.983695i \(-0.557559\pi\)
−0.179844 + 0.983695i \(0.557559\pi\)
\(294\) −7.29631e10 −0.569561
\(295\) 0 0
\(296\) 2.23917e11 1.69541
\(297\) 1.68307e10 0.125515
\(298\) 6.03290e10 0.443152
\(299\) −6.74575e10 −0.488102
\(300\) 0 0
\(301\) −9.59069e10 −0.673443
\(302\) 1.23824e11 0.856590
\(303\) −3.94569e11 −2.68925
\(304\) 3.96081e10 0.265982
\(305\) 0 0
\(306\) 1.08474e10 0.0707259
\(307\) −9.23710e10 −0.593489 −0.296745 0.954957i \(-0.595901\pi\)
−0.296745 + 0.954957i \(0.595901\pi\)
\(308\) −7.70192e10 −0.487664
\(309\) 1.37492e11 0.857956
\(310\) 0 0
\(311\) 7.80707e10 0.473223 0.236612 0.971604i \(-0.423963\pi\)
0.236612 + 0.971604i \(0.423963\pi\)
\(312\) −6.90391e10 −0.412477
\(313\) −4.52121e10 −0.266259 −0.133130 0.991099i \(-0.542503\pi\)
−0.133130 + 0.991099i \(0.542503\pi\)
\(314\) 2.21491e10 0.128580
\(315\) 0 0
\(316\) −1.55578e11 −0.877721
\(317\) −1.84668e11 −1.02713 −0.513564 0.858051i \(-0.671675\pi\)
−0.513564 + 0.858051i \(0.671675\pi\)
\(318\) −3.44956e10 −0.189165
\(319\) 3.89867e11 2.10794
\(320\) 0 0
\(321\) 8.33533e10 0.438178
\(322\) 1.61169e11 0.835469
\(323\) 1.86887e10 0.0955362
\(324\) 1.00408e11 0.506190
\(325\) 0 0
\(326\) −2.07661e11 −1.01830
\(327\) 9.42285e10 0.455740
\(328\) 3.33157e11 1.58934
\(329\) 1.25667e10 0.0591342
\(330\) 0 0
\(331\) −3.61831e9 −0.0165684 −0.00828419 0.999966i \(-0.502637\pi\)
−0.00828419 + 0.999966i \(0.502637\pi\)
\(332\) 5.03553e10 0.227470
\(333\) 3.35648e11 1.49584
\(334\) −2.06090e10 −0.0906146
\(335\) 0 0
\(336\) 6.21278e10 0.265925
\(337\) −1.29191e11 −0.545630 −0.272815 0.962067i \(-0.587955\pi\)
−0.272815 + 0.962067i \(0.587955\pi\)
\(338\) −1.33123e10 −0.0554791
\(339\) 1.17175e11 0.481877
\(340\) 0 0
\(341\) −6.64463e11 −2.66119
\(342\) 1.57631e11 0.623052
\(343\) −2.64360e11 −1.03127
\(344\) −2.83610e11 −1.09197
\(345\) 0 0
\(346\) −2.27391e11 −0.852965
\(347\) −2.15064e11 −0.796314 −0.398157 0.917317i \(-0.630350\pi\)
−0.398157 + 0.917317i \(0.630350\pi\)
\(348\) 2.49737e11 0.912802
\(349\) −4.00566e11 −1.44531 −0.722654 0.691210i \(-0.757078\pi\)
−0.722654 + 0.691210i \(0.757078\pi\)
\(350\) 0 0
\(351\) 6.41137e9 0.0225460
\(352\) −3.81664e11 −1.32507
\(353\) −1.78250e11 −0.611005 −0.305502 0.952191i \(-0.598824\pi\)
−0.305502 + 0.952191i \(0.598824\pi\)
\(354\) −1.88466e11 −0.637848
\(355\) 0 0
\(356\) 2.47309e10 0.0816048
\(357\) 2.93144e10 0.0955156
\(358\) −1.72200e10 −0.0554063
\(359\) 3.02613e11 0.961531 0.480765 0.876849i \(-0.340359\pi\)
0.480765 + 0.876849i \(0.340359\pi\)
\(360\) 0 0
\(361\) −5.11086e10 −0.158384
\(362\) 3.83688e10 0.117433
\(363\) −6.37992e11 −1.92857
\(364\) −2.93392e10 −0.0875977
\(365\) 0 0
\(366\) 2.64145e11 0.769446
\(367\) −1.61166e11 −0.463743 −0.231871 0.972746i \(-0.574485\pi\)
−0.231871 + 0.972746i \(0.574485\pi\)
\(368\) 1.79512e11 0.510244
\(369\) 4.99397e11 1.40226
\(370\) 0 0
\(371\) −4.52107e10 −0.123896
\(372\) −4.25635e11 −1.15238
\(373\) 3.29190e11 0.880557 0.440278 0.897861i \(-0.354880\pi\)
0.440278 + 0.897861i \(0.354880\pi\)
\(374\) 4.38796e10 0.115969
\(375\) 0 0
\(376\) 3.71614e10 0.0958842
\(377\) 1.48514e11 0.378643
\(378\) −1.53180e10 −0.0385913
\(379\) −1.32343e10 −0.0329478 −0.0164739 0.999864i \(-0.505244\pi\)
−0.0164739 + 0.999864i \(0.505244\pi\)
\(380\) 0 0
\(381\) 7.72092e11 1.87718
\(382\) 1.07332e11 0.257896
\(383\) 5.90539e11 1.40234 0.701171 0.712993i \(-0.252661\pi\)
0.701171 + 0.712993i \(0.252661\pi\)
\(384\) −1.20333e11 −0.282419
\(385\) 0 0
\(386\) 8.00513e10 0.183538
\(387\) −4.25127e11 −0.963429
\(388\) 8.37261e10 0.187550
\(389\) 1.22822e11 0.271959 0.135980 0.990712i \(-0.456582\pi\)
0.135980 + 0.990712i \(0.456582\pi\)
\(390\) 0 0
\(391\) 8.47010e10 0.183271
\(392\) −2.82783e11 −0.604875
\(393\) −8.82814e11 −1.86682
\(394\) −5.43445e11 −1.13611
\(395\) 0 0
\(396\) −3.41404e11 −0.697653
\(397\) 6.75533e11 1.36486 0.682432 0.730949i \(-0.260922\pi\)
0.682432 + 0.730949i \(0.260922\pi\)
\(398\) 2.30402e11 0.460271
\(399\) 4.25989e11 0.841434
\(400\) 0 0
\(401\) −7.61393e11 −1.47048 −0.735240 0.677807i \(-0.762931\pi\)
−0.735240 + 0.677807i \(0.762931\pi\)
\(402\) −4.41726e11 −0.843598
\(403\) −2.53116e11 −0.478022
\(404\) −4.95848e11 −0.926046
\(405\) 0 0
\(406\) −3.54828e11 −0.648112
\(407\) 1.35776e12 2.45271
\(408\) 8.66868e10 0.154875
\(409\) 9.73874e11 1.72087 0.860435 0.509561i \(-0.170192\pi\)
0.860435 + 0.509561i \(0.170192\pi\)
\(410\) 0 0
\(411\) −1.80778e10 −0.0312506
\(412\) 1.72784e11 0.295438
\(413\) −2.47007e11 −0.417767
\(414\) 7.14415e11 1.19522
\(415\) 0 0
\(416\) −1.45389e11 −0.238019
\(417\) −9.39692e11 −1.52185
\(418\) 6.37646e11 1.02161
\(419\) 5.89320e11 0.934089 0.467044 0.884234i \(-0.345319\pi\)
0.467044 + 0.884234i \(0.345319\pi\)
\(420\) 0 0
\(421\) −1.88724e11 −0.292791 −0.146395 0.989226i \(-0.546767\pi\)
−0.146395 + 0.989226i \(0.546767\pi\)
\(422\) 3.85354e11 0.591499
\(423\) 5.57043e10 0.0845975
\(424\) −1.33694e11 −0.200894
\(425\) 0 0
\(426\) 3.88562e11 0.571633
\(427\) 3.46195e11 0.503959
\(428\) 1.04749e11 0.150887
\(429\) −4.18629e11 −0.596722
\(430\) 0 0
\(431\) −5.30948e11 −0.741146 −0.370573 0.928803i \(-0.620839\pi\)
−0.370573 + 0.928803i \(0.620839\pi\)
\(432\) −1.70613e10 −0.0235687
\(433\) 7.56173e11 1.03377 0.516887 0.856054i \(-0.327091\pi\)
0.516887 + 0.856054i \(0.327091\pi\)
\(434\) 6.04744e11 0.818216
\(435\) 0 0
\(436\) 1.18415e11 0.156935
\(437\) 1.23085e12 1.61450
\(438\) −1.40347e12 −1.82209
\(439\) −1.13771e12 −1.46198 −0.730990 0.682388i \(-0.760942\pi\)
−0.730990 + 0.682388i \(0.760942\pi\)
\(440\) 0 0
\(441\) −4.23886e11 −0.533674
\(442\) 1.67152e10 0.0208311
\(443\) 3.84463e11 0.474284 0.237142 0.971475i \(-0.423789\pi\)
0.237142 + 0.971475i \(0.423789\pi\)
\(444\) 8.69738e11 1.06210
\(445\) 0 0
\(446\) 6.24611e11 0.747485
\(447\) 7.22689e11 0.856185
\(448\) 5.10075e11 0.598251
\(449\) −1.00488e12 −1.16683 −0.583414 0.812175i \(-0.698283\pi\)
−0.583414 + 0.812175i \(0.698283\pi\)
\(450\) 0 0
\(451\) 2.02015e12 2.29927
\(452\) 1.47252e11 0.165935
\(453\) 1.48330e12 1.65496
\(454\) −1.28369e11 −0.141811
\(455\) 0 0
\(456\) 1.25971e12 1.36436
\(457\) 2.63249e11 0.282322 0.141161 0.989987i \(-0.454917\pi\)
0.141161 + 0.989987i \(0.454917\pi\)
\(458\) 4.41088e10 0.0468415
\(459\) −8.05023e9 −0.00846548
\(460\) 0 0
\(461\) 1.15282e12 1.18880 0.594398 0.804171i \(-0.297390\pi\)
0.594398 + 0.804171i \(0.297390\pi\)
\(462\) 1.00019e12 1.02139
\(463\) 1.51155e12 1.52865 0.764325 0.644831i \(-0.223072\pi\)
0.764325 + 0.644831i \(0.223072\pi\)
\(464\) −3.95211e11 −0.395820
\(465\) 0 0
\(466\) 1.05620e11 0.103755
\(467\) −5.02573e11 −0.488960 −0.244480 0.969654i \(-0.578617\pi\)
−0.244480 + 0.969654i \(0.578617\pi\)
\(468\) −1.30052e11 −0.125317
\(469\) −5.78936e11 −0.552526
\(470\) 0 0
\(471\) 2.65327e11 0.248421
\(472\) −7.30435e11 −0.677396
\(473\) −1.71972e12 −1.57972
\(474\) 2.02037e12 1.83835
\(475\) 0 0
\(476\) 3.68389e10 0.0328909
\(477\) −2.00406e11 −0.177246
\(478\) 1.45972e11 0.127892
\(479\) −1.01303e12 −0.879252 −0.439626 0.898181i \(-0.644889\pi\)
−0.439626 + 0.898181i \(0.644889\pi\)
\(480\) 0 0
\(481\) 5.17215e11 0.440574
\(482\) −1.56397e12 −1.31983
\(483\) 1.93067e12 1.61415
\(484\) −8.01754e11 −0.664105
\(485\) 0 0
\(486\) −1.23180e12 −1.00156
\(487\) −2.08642e12 −1.68082 −0.840412 0.541948i \(-0.817687\pi\)
−0.840412 + 0.541948i \(0.817687\pi\)
\(488\) 1.02375e12 0.817153
\(489\) −2.48760e12 −1.96739
\(490\) 0 0
\(491\) 9.71272e11 0.754178 0.377089 0.926177i \(-0.376925\pi\)
0.377089 + 0.926177i \(0.376925\pi\)
\(492\) 1.29405e12 0.995651
\(493\) −1.86476e11 −0.142172
\(494\) 2.42901e11 0.183509
\(495\) 0 0
\(496\) 6.73570e11 0.499707
\(497\) 5.09258e11 0.374398
\(498\) −6.53924e11 −0.476426
\(499\) 2.28883e12 1.65257 0.826286 0.563250i \(-0.190449\pi\)
0.826286 + 0.563250i \(0.190449\pi\)
\(500\) 0 0
\(501\) −2.46878e11 −0.175070
\(502\) 2.39290e11 0.168174
\(503\) 3.05827e10 0.0213020 0.0106510 0.999943i \(-0.496610\pi\)
0.0106510 + 0.999943i \(0.496610\pi\)
\(504\) 9.58281e11 0.661539
\(505\) 0 0
\(506\) 2.88994e12 1.95980
\(507\) −1.59470e11 −0.107187
\(508\) 9.70275e11 0.646410
\(509\) 1.25203e12 0.826768 0.413384 0.910557i \(-0.364347\pi\)
0.413384 + 0.910557i \(0.364347\pi\)
\(510\) 0 0
\(511\) −1.83942e12 −1.19340
\(512\) 8.68061e11 0.558259
\(513\) −1.16984e11 −0.0745757
\(514\) −4.07174e11 −0.257304
\(515\) 0 0
\(516\) −1.10160e12 −0.684068
\(517\) 2.25334e11 0.138714
\(518\) −1.23573e12 −0.754117
\(519\) −2.72395e12 −1.64796
\(520\) 0 0
\(521\) −1.79829e12 −1.06928 −0.534640 0.845080i \(-0.679553\pi\)
−0.534640 + 0.845080i \(0.679553\pi\)
\(522\) −1.57285e12 −0.927190
\(523\) 6.61177e11 0.386420 0.193210 0.981157i \(-0.438110\pi\)
0.193210 + 0.981157i \(0.438110\pi\)
\(524\) −1.10942e12 −0.642842
\(525\) 0 0
\(526\) −2.35990e11 −0.134418
\(527\) 3.17818e11 0.179486
\(528\) 1.11402e12 0.623792
\(529\) 3.77731e12 2.09716
\(530\) 0 0
\(531\) −1.09491e12 −0.597658
\(532\) 5.35332e11 0.289748
\(533\) 7.69544e11 0.413010
\(534\) −3.21161e11 −0.170918
\(535\) 0 0
\(536\) −1.71200e12 −0.895903
\(537\) −2.06280e11 −0.107047
\(538\) −4.44844e11 −0.228922
\(539\) −1.71470e12 −0.875060
\(540\) 0 0
\(541\) 8.36642e10 0.0419906 0.0209953 0.999780i \(-0.493317\pi\)
0.0209953 + 0.999780i \(0.493317\pi\)
\(542\) 3.41975e11 0.170215
\(543\) 4.59624e11 0.226884
\(544\) 1.82553e11 0.0893704
\(545\) 0 0
\(546\) 3.81005e11 0.183469
\(547\) 1.69522e11 0.0809624 0.0404812 0.999180i \(-0.487111\pi\)
0.0404812 + 0.999180i \(0.487111\pi\)
\(548\) −2.27181e10 −0.0107612
\(549\) 1.53458e12 0.720964
\(550\) 0 0
\(551\) −2.70982e12 −1.25244
\(552\) 5.70925e12 2.61730
\(553\) 2.64794e12 1.20405
\(554\) 1.43337e12 0.646495
\(555\) 0 0
\(556\) −1.18089e12 −0.524052
\(557\) 4.05791e11 0.178630 0.0893149 0.996003i \(-0.471532\pi\)
0.0893149 + 0.996003i \(0.471532\pi\)
\(558\) 2.68065e12 1.17054
\(559\) −6.55098e11 −0.283761
\(560\) 0 0
\(561\) 5.25639e11 0.224055
\(562\) −9.07710e11 −0.383825
\(563\) −5.64194e11 −0.236669 −0.118334 0.992974i \(-0.537755\pi\)
−0.118334 + 0.992974i \(0.537755\pi\)
\(564\) 1.44342e11 0.0600672
\(565\) 0 0
\(566\) −1.18819e12 −0.486643
\(567\) −1.70894e12 −0.694387
\(568\) 1.50595e12 0.607075
\(569\) −3.52259e12 −1.40882 −0.704412 0.709791i \(-0.748789\pi\)
−0.704412 + 0.709791i \(0.748789\pi\)
\(570\) 0 0
\(571\) −2.34039e11 −0.0921351 −0.0460676 0.998938i \(-0.514669\pi\)
−0.0460676 + 0.998938i \(0.514669\pi\)
\(572\) −5.26084e11 −0.205482
\(573\) 1.28575e12 0.498264
\(574\) −1.83859e12 −0.706938
\(575\) 0 0
\(576\) 2.26101e12 0.855858
\(577\) −2.36947e12 −0.889938 −0.444969 0.895546i \(-0.646785\pi\)
−0.444969 + 0.895546i \(0.646785\pi\)
\(578\) 1.91431e12 0.713406
\(579\) 9.58945e11 0.354601
\(580\) 0 0
\(581\) −8.57048e11 −0.312041
\(582\) −1.08728e12 −0.392816
\(583\) −8.10677e11 −0.290629
\(584\) −5.43941e12 −1.93506
\(585\) 0 0
\(586\) 7.40520e11 0.259417
\(587\) 4.42240e11 0.153740 0.0768699 0.997041i \(-0.475507\pi\)
0.0768699 + 0.997041i \(0.475507\pi\)
\(588\) −1.09838e12 −0.378927
\(589\) 4.61844e12 1.58116
\(590\) 0 0
\(591\) −6.50999e12 −2.19501
\(592\) −1.37637e12 −0.460560
\(593\) 3.51413e12 1.16700 0.583501 0.812112i \(-0.301682\pi\)
0.583501 + 0.812112i \(0.301682\pi\)
\(594\) −2.74668e11 −0.0905252
\(595\) 0 0
\(596\) 9.08191e11 0.294828
\(597\) 2.76002e12 0.889258
\(598\) 1.10087e12 0.352032
\(599\) −3.89728e12 −1.23692 −0.618459 0.785817i \(-0.712243\pi\)
−0.618459 + 0.785817i \(0.712243\pi\)
\(600\) 0 0
\(601\) −6.31022e12 −1.97292 −0.986460 0.164000i \(-0.947560\pi\)
−0.986460 + 0.164000i \(0.947560\pi\)
\(602\) 1.56516e12 0.485706
\(603\) −2.56625e12 −0.790445
\(604\) 1.86404e12 0.569887
\(605\) 0 0
\(606\) 6.43918e12 1.93956
\(607\) 1.30553e12 0.390336 0.195168 0.980770i \(-0.437475\pi\)
0.195168 + 0.980770i \(0.437475\pi\)
\(608\) 2.65281e12 0.787298
\(609\) −4.25052e12 −1.25217
\(610\) 0 0
\(611\) 8.58373e10 0.0249167
\(612\) 1.63296e11 0.0470537
\(613\) −2.66230e12 −0.761526 −0.380763 0.924673i \(-0.624339\pi\)
−0.380763 + 0.924673i \(0.624339\pi\)
\(614\) 1.50745e12 0.428041
\(615\) 0 0
\(616\) 3.87642e12 1.08472
\(617\) −2.54811e12 −0.707840 −0.353920 0.935276i \(-0.615152\pi\)
−0.353920 + 0.935276i \(0.615152\pi\)
\(618\) −2.24381e12 −0.618782
\(619\) −4.97728e12 −1.36265 −0.681325 0.731981i \(-0.738596\pi\)
−0.681325 + 0.731981i \(0.738596\pi\)
\(620\) 0 0
\(621\) −5.30193e11 −0.143061
\(622\) −1.27408e12 −0.341302
\(623\) −4.20921e11 −0.111945
\(624\) 4.24367e11 0.112050
\(625\) 0 0
\(626\) 7.37839e11 0.192034
\(627\) 7.63844e12 1.97379
\(628\) 3.33432e11 0.0855438
\(629\) −6.49425e11 −0.165425
\(630\) 0 0
\(631\) −2.63483e12 −0.661638 −0.330819 0.943694i \(-0.607325\pi\)
−0.330819 + 0.943694i \(0.607325\pi\)
\(632\) 7.83033e12 1.95233
\(633\) 4.61621e12 1.14280
\(634\) 3.01369e12 0.740793
\(635\) 0 0
\(636\) −5.19295e11 −0.125851
\(637\) −6.53186e11 −0.157184
\(638\) −6.36244e12 −1.52031
\(639\) 2.25739e12 0.535615
\(640\) 0 0
\(641\) 1.76148e12 0.412114 0.206057 0.978540i \(-0.433937\pi\)
0.206057 + 0.978540i \(0.433937\pi\)
\(642\) −1.36029e12 −0.316026
\(643\) −3.25395e12 −0.750691 −0.375346 0.926885i \(-0.622476\pi\)
−0.375346 + 0.926885i \(0.622476\pi\)
\(644\) 2.42623e12 0.555835
\(645\) 0 0
\(646\) −3.04991e11 −0.0689034
\(647\) −9.68172e11 −0.217212 −0.108606 0.994085i \(-0.534639\pi\)
−0.108606 + 0.994085i \(0.534639\pi\)
\(648\) −5.05356e12 −1.12593
\(649\) −4.42911e12 −0.979975
\(650\) 0 0
\(651\) 7.24431e12 1.58082
\(652\) −3.12612e12 −0.677473
\(653\) −7.28208e12 −1.56728 −0.783639 0.621216i \(-0.786639\pi\)
−0.783639 + 0.621216i \(0.786639\pi\)
\(654\) −1.53776e12 −0.328692
\(655\) 0 0
\(656\) −2.04784e12 −0.431746
\(657\) −8.15359e12 −1.70728
\(658\) −2.05082e11 −0.0426492
\(659\) 4.28818e12 0.885704 0.442852 0.896595i \(-0.353967\pi\)
0.442852 + 0.896595i \(0.353967\pi\)
\(660\) 0 0
\(661\) −5.28587e12 −1.07698 −0.538492 0.842630i \(-0.681006\pi\)
−0.538492 + 0.842630i \(0.681006\pi\)
\(662\) 5.90491e10 0.0119496
\(663\) 2.00234e11 0.0402463
\(664\) −2.53441e12 −0.505965
\(665\) 0 0
\(666\) −5.47762e12 −1.07884
\(667\) −1.22815e13 −2.40261
\(668\) −3.10247e11 −0.0602856
\(669\) 7.48229e12 1.44417
\(670\) 0 0
\(671\) 6.20765e12 1.18216
\(672\) 4.16109e12 0.787128
\(673\) −4.57588e12 −0.859818 −0.429909 0.902872i \(-0.641454\pi\)
−0.429909 + 0.902872i \(0.641454\pi\)
\(674\) 2.10834e12 0.393523
\(675\) 0 0
\(676\) −2.00403e11 −0.0369101
\(677\) −2.34137e12 −0.428372 −0.214186 0.976793i \(-0.568710\pi\)
−0.214186 + 0.976793i \(0.568710\pi\)
\(678\) −1.91224e12 −0.347543
\(679\) −1.42502e12 −0.257280
\(680\) 0 0
\(681\) −1.53775e12 −0.273983
\(682\) 1.08437e13 1.91933
\(683\) 5.58769e12 0.982516 0.491258 0.871014i \(-0.336537\pi\)
0.491258 + 0.871014i \(0.336537\pi\)
\(684\) 2.37297e12 0.414515
\(685\) 0 0
\(686\) 4.31423e12 0.743780
\(687\) 5.28385e11 0.0904993
\(688\) 1.74329e12 0.296634
\(689\) −3.08814e11 −0.0522049
\(690\) 0 0
\(691\) 1.07059e13 1.78637 0.893186 0.449688i \(-0.148465\pi\)
0.893186 + 0.449688i \(0.148465\pi\)
\(692\) −3.42313e12 −0.567475
\(693\) 5.81069e12 0.957035
\(694\) 3.50973e12 0.574323
\(695\) 0 0
\(696\) −1.25694e13 −2.03036
\(697\) −9.66253e11 −0.155076
\(698\) 6.53705e12 1.04240
\(699\) 1.26523e12 0.200457
\(700\) 0 0
\(701\) −7.07932e12 −1.10729 −0.553644 0.832753i \(-0.686763\pi\)
−0.553644 + 0.832753i \(0.686763\pi\)
\(702\) −1.04630e11 −0.0162608
\(703\) −9.43727e12 −1.45729
\(704\) 9.14620e12 1.40334
\(705\) 0 0
\(706\) 2.90896e12 0.440673
\(707\) 8.43933e12 1.27034
\(708\) −2.83715e12 −0.424358
\(709\) −2.17524e12 −0.323295 −0.161647 0.986849i \(-0.551681\pi\)
−0.161647 + 0.986849i \(0.551681\pi\)
\(710\) 0 0
\(711\) 1.17375e13 1.72252
\(712\) −1.24472e12 −0.181515
\(713\) 2.09317e13 3.03320
\(714\) −4.78397e11 −0.0688885
\(715\) 0 0
\(716\) −2.59229e11 −0.0368617
\(717\) 1.74862e12 0.247092
\(718\) −4.93851e12 −0.693483
\(719\) −9.42350e12 −1.31502 −0.657510 0.753446i \(-0.728390\pi\)
−0.657510 + 0.753446i \(0.728390\pi\)
\(720\) 0 0
\(721\) −2.94078e12 −0.405279
\(722\) 8.34068e11 0.114231
\(723\) −1.87350e13 −2.54995
\(724\) 5.77601e11 0.0781276
\(725\) 0 0
\(726\) 1.04117e13 1.39094
\(727\) −1.32240e13 −1.75574 −0.877868 0.478903i \(-0.841035\pi\)
−0.877868 + 0.478903i \(0.841035\pi\)
\(728\) 1.47666e12 0.194845
\(729\) −6.71143e12 −0.880119
\(730\) 0 0
\(731\) 8.22553e11 0.106546
\(732\) 3.97643e12 0.511910
\(733\) −1.26122e13 −1.61370 −0.806849 0.590758i \(-0.798829\pi\)
−0.806849 + 0.590758i \(0.798829\pi\)
\(734\) 2.63016e12 0.334464
\(735\) 0 0
\(736\) 1.20230e13 1.51030
\(737\) −1.03809e13 −1.29608
\(738\) −8.14992e12 −1.01135
\(739\) −1.82154e11 −0.0224666 −0.0112333 0.999937i \(-0.503576\pi\)
−0.0112333 + 0.999937i \(0.503576\pi\)
\(740\) 0 0
\(741\) 2.90974e12 0.354546
\(742\) 7.37817e11 0.0893576
\(743\) −1.20049e13 −1.44514 −0.722569 0.691299i \(-0.757039\pi\)
−0.722569 + 0.691299i \(0.757039\pi\)
\(744\) 2.14224e13 2.56325
\(745\) 0 0
\(746\) −5.37223e12 −0.635082
\(747\) −3.79904e12 −0.446407
\(748\) 6.60561e11 0.0771535
\(749\) −1.78282e12 −0.206985
\(750\) 0 0
\(751\) −1.27467e13 −1.46224 −0.731121 0.682248i \(-0.761003\pi\)
−0.731121 + 0.682248i \(0.761003\pi\)
\(752\) −2.28422e11 −0.0260470
\(753\) 2.86648e12 0.324917
\(754\) −2.42367e12 −0.273088
\(755\) 0 0
\(756\) −2.30596e11 −0.0256746
\(757\) 6.25355e11 0.0692142 0.0346071 0.999401i \(-0.488982\pi\)
0.0346071 + 0.999401i \(0.488982\pi\)
\(758\) 2.15978e11 0.0237628
\(759\) 3.46189e13 3.78639
\(760\) 0 0
\(761\) 1.42335e13 1.53844 0.769219 0.638985i \(-0.220645\pi\)
0.769219 + 0.638985i \(0.220645\pi\)
\(762\) −1.26002e13 −1.35388
\(763\) −2.01543e12 −0.215281
\(764\) 1.61578e12 0.171578
\(765\) 0 0
\(766\) −9.63732e12 −1.01141
\(767\) −1.68720e12 −0.176030
\(768\) 1.41739e13 1.47015
\(769\) 1.51992e12 0.156730 0.0783648 0.996925i \(-0.475030\pi\)
0.0783648 + 0.996925i \(0.475030\pi\)
\(770\) 0 0
\(771\) −4.87759e12 −0.497120
\(772\) 1.20509e12 0.122107
\(773\) 1.29024e13 1.29976 0.649878 0.760038i \(-0.274820\pi\)
0.649878 + 0.760038i \(0.274820\pi\)
\(774\) 6.93787e12 0.694851
\(775\) 0 0
\(776\) −4.21398e12 −0.417171
\(777\) −1.48029e13 −1.45698
\(778\) −2.00440e12 −0.196145
\(779\) −1.40413e13 −1.36612
\(780\) 0 0
\(781\) 9.13155e12 0.878243
\(782\) −1.38228e12 −0.132180
\(783\) 1.16727e12 0.110979
\(784\) 1.73820e12 0.164315
\(785\) 0 0
\(786\) 1.44071e13 1.34640
\(787\) 1.11094e13 1.03230 0.516149 0.856499i \(-0.327365\pi\)
0.516149 + 0.856499i \(0.327365\pi\)
\(788\) −8.18099e12 −0.755854
\(789\) −2.82696e12 −0.259701
\(790\) 0 0
\(791\) −2.50622e12 −0.227628
\(792\) 1.71830e13 1.55180
\(793\) 2.36470e12 0.212347
\(794\) −1.10244e13 −0.984377
\(795\) 0 0
\(796\) 3.46847e12 0.306217
\(797\) −1.81065e13 −1.58954 −0.794771 0.606910i \(-0.792409\pi\)
−0.794771 + 0.606910i \(0.792409\pi\)
\(798\) −6.95193e12 −0.606865
\(799\) −1.07779e11 −0.00935564
\(800\) 0 0
\(801\) −1.86582e12 −0.160148
\(802\) 1.24256e13 1.06055
\(803\) −3.29827e13 −2.79941
\(804\) −6.64972e12 −0.561244
\(805\) 0 0
\(806\) 4.13074e12 0.344763
\(807\) −5.32884e12 −0.442285
\(808\) 2.49563e13 2.05982
\(809\) −6.50769e12 −0.534144 −0.267072 0.963677i \(-0.586056\pi\)
−0.267072 + 0.963677i \(0.586056\pi\)
\(810\) 0 0
\(811\) 1.60778e12 0.130506 0.0652532 0.997869i \(-0.479214\pi\)
0.0652532 + 0.997869i \(0.479214\pi\)
\(812\) −5.34156e12 −0.431187
\(813\) 4.09656e12 0.328861
\(814\) −2.21579e13 −1.76897
\(815\) 0 0
\(816\) −5.32843e11 −0.0420721
\(817\) 1.19531e13 0.938602
\(818\) −1.58932e13 −1.24114
\(819\) 2.21349e12 0.171909
\(820\) 0 0
\(821\) −4.16062e11 −0.0319605 −0.0159803 0.999872i \(-0.505087\pi\)
−0.0159803 + 0.999872i \(0.505087\pi\)
\(822\) 2.95021e11 0.0225388
\(823\) −1.39121e13 −1.05705 −0.528524 0.848918i \(-0.677254\pi\)
−0.528524 + 0.848918i \(0.677254\pi\)
\(824\) −8.69631e12 −0.657147
\(825\) 0 0
\(826\) 4.03104e12 0.301305
\(827\) −1.82572e13 −1.35725 −0.678624 0.734486i \(-0.737423\pi\)
−0.678624 + 0.734486i \(0.737423\pi\)
\(828\) 1.07548e13 0.795179
\(829\) −7.88052e12 −0.579508 −0.289754 0.957101i \(-0.593573\pi\)
−0.289754 + 0.957101i \(0.593573\pi\)
\(830\) 0 0
\(831\) 1.71705e13 1.24905
\(832\) 3.48410e12 0.252078
\(833\) 8.20152e11 0.0590190
\(834\) 1.53353e13 1.09760
\(835\) 0 0
\(836\) 9.59909e12 0.679676
\(837\) −1.98941e12 −0.140107
\(838\) −9.61742e12 −0.673691
\(839\) −4.27424e12 −0.297804 −0.148902 0.988852i \(-0.547574\pi\)
−0.148902 + 0.988852i \(0.547574\pi\)
\(840\) 0 0
\(841\) 1.25315e13 0.863817
\(842\) 3.07988e12 0.211169
\(843\) −1.08736e13 −0.741563
\(844\) 5.80111e12 0.393523
\(845\) 0 0
\(846\) −9.09068e11 −0.0610140
\(847\) 1.36458e13 0.911014
\(848\) 8.21788e11 0.0545731
\(849\) −1.42334e13 −0.940211
\(850\) 0 0
\(851\) −4.27716e13 −2.79558
\(852\) 5.84939e12 0.380306
\(853\) −3.57321e12 −0.231094 −0.115547 0.993302i \(-0.536862\pi\)
−0.115547 + 0.993302i \(0.536862\pi\)
\(854\) −5.64973e12 −0.363469
\(855\) 0 0
\(856\) −5.27205e12 −0.335620
\(857\) −4.73369e12 −0.299768 −0.149884 0.988704i \(-0.547890\pi\)
−0.149884 + 0.988704i \(0.547890\pi\)
\(858\) 6.83183e12 0.430372
\(859\) −1.03474e13 −0.648430 −0.324215 0.945983i \(-0.605100\pi\)
−0.324215 + 0.945983i \(0.605100\pi\)
\(860\) 0 0
\(861\) −2.20247e13 −1.36583
\(862\) 8.66481e12 0.534535
\(863\) −5.98909e12 −0.367546 −0.183773 0.982969i \(-0.558831\pi\)
−0.183773 + 0.982969i \(0.558831\pi\)
\(864\) −1.14271e12 −0.0697626
\(865\) 0 0
\(866\) −1.23404e13 −0.745586
\(867\) 2.29317e13 1.37832
\(868\) 9.10379e12 0.544357
\(869\) 4.74804e13 2.82440
\(870\) 0 0
\(871\) −3.95445e12 −0.232812
\(872\) −5.95990e12 −0.349072
\(873\) −6.31668e12 −0.368065
\(874\) −2.00869e13 −1.16442
\(875\) 0 0
\(876\) −2.11277e13 −1.21223
\(877\) −1.39807e13 −0.798053 −0.399027 0.916939i \(-0.630652\pi\)
−0.399027 + 0.916939i \(0.630652\pi\)
\(878\) 1.85669e13 1.05442
\(879\) 8.87078e12 0.501201
\(880\) 0 0
\(881\) 9.73989e12 0.544707 0.272353 0.962197i \(-0.412198\pi\)
0.272353 + 0.962197i \(0.412198\pi\)
\(882\) 6.91762e12 0.384900
\(883\) 1.68629e13 0.933490 0.466745 0.884392i \(-0.345427\pi\)
0.466745 + 0.884392i \(0.345427\pi\)
\(884\) 2.51630e11 0.0138589
\(885\) 0 0
\(886\) −6.27426e12 −0.342066
\(887\) 2.63796e13 1.43091 0.715455 0.698659i \(-0.246219\pi\)
0.715455 + 0.698659i \(0.246219\pi\)
\(888\) −4.37744e13 −2.36244
\(889\) −1.65141e13 −0.886740
\(890\) 0 0
\(891\) −3.06431e13 −1.62886
\(892\) 9.40286e12 0.497300
\(893\) −1.56621e12 −0.0824175
\(894\) −1.17939e13 −0.617504
\(895\) 0 0
\(896\) 2.57376e12 0.133408
\(897\) 1.31875e13 0.680138
\(898\) 1.63992e13 0.841548
\(899\) −4.60829e13 −2.35300
\(900\) 0 0
\(901\) 3.87753e11 0.0196017
\(902\) −3.29679e13 −1.65829
\(903\) 1.87492e13 0.938399
\(904\) −7.41125e12 −0.369091
\(905\) 0 0
\(906\) −2.42068e13 −1.19360
\(907\) 3.67807e13 1.80463 0.902313 0.431081i \(-0.141868\pi\)
0.902313 + 0.431081i \(0.141868\pi\)
\(908\) −1.93246e12 −0.0943462
\(909\) 3.74091e13 1.81735
\(910\) 0 0
\(911\) −3.52262e13 −1.69447 −0.847233 0.531221i \(-0.821733\pi\)
−0.847233 + 0.531221i \(0.821733\pi\)
\(912\) −7.74313e12 −0.370629
\(913\) −1.53678e13 −0.731969
\(914\) −4.29610e12 −0.203618
\(915\) 0 0
\(916\) 6.64012e11 0.0311635
\(917\) 1.88823e13 0.881845
\(918\) 1.31376e11 0.00610554
\(919\) −5.40716e12 −0.250063 −0.125031 0.992153i \(-0.539903\pi\)
−0.125031 + 0.992153i \(0.539903\pi\)
\(920\) 0 0
\(921\) 1.80579e13 0.826989
\(922\) −1.88135e13 −0.857393
\(923\) 3.47851e12 0.157756
\(924\) 1.50568e13 0.679529
\(925\) 0 0
\(926\) −2.46678e13 −1.10250
\(927\) −1.30356e13 −0.579793
\(928\) −2.64698e13 −1.17161
\(929\) −3.35013e13 −1.47568 −0.737838 0.674978i \(-0.764153\pi\)
−0.737838 + 0.674978i \(0.764153\pi\)
\(930\) 0 0
\(931\) 1.19182e13 0.519922
\(932\) 1.58999e12 0.0690277
\(933\) −1.52623e13 −0.659406
\(934\) 8.20175e12 0.352651
\(935\) 0 0
\(936\) 6.54559e12 0.278745
\(937\) −1.55385e13 −0.658538 −0.329269 0.944236i \(-0.606802\pi\)
−0.329269 + 0.944236i \(0.606802\pi\)
\(938\) 9.44796e12 0.398497
\(939\) 8.83867e12 0.371015
\(940\) 0 0
\(941\) 3.17799e13 1.32130 0.660648 0.750696i \(-0.270282\pi\)
0.660648 + 0.750696i \(0.270282\pi\)
\(942\) −4.33001e12 −0.179168
\(943\) −6.36381e13 −2.62068
\(944\) 4.48981e12 0.184015
\(945\) 0 0
\(946\) 2.80649e13 1.13934
\(947\) −2.39555e13 −0.967900 −0.483950 0.875096i \(-0.660798\pi\)
−0.483950 + 0.875096i \(0.660798\pi\)
\(948\) 3.04145e13 1.22305
\(949\) −1.25642e13 −0.502850
\(950\) 0 0
\(951\) 3.61014e13 1.43124
\(952\) −1.85412e12 −0.0731597
\(953\) −3.51324e13 −1.37971 −0.689857 0.723945i \(-0.742327\pi\)
−0.689857 + 0.723945i \(0.742327\pi\)
\(954\) 3.27053e12 0.127835
\(955\) 0 0
\(956\) 2.19746e12 0.0850864
\(957\) −7.62165e13 −2.93728
\(958\) 1.65322e13 0.634141
\(959\) 3.86661e11 0.0147621
\(960\) 0 0
\(961\) 5.21009e13 1.97056
\(962\) −8.44071e12 −0.317754
\(963\) −7.90272e12 −0.296114
\(964\) −2.35440e13 −0.878079
\(965\) 0 0
\(966\) −3.15075e13 −1.16417
\(967\) −1.51033e13 −0.555459 −0.277729 0.960659i \(-0.589582\pi\)
−0.277729 + 0.960659i \(0.589582\pi\)
\(968\) 4.03527e13 1.47718
\(969\) −3.65352e12 −0.133124
\(970\) 0 0
\(971\) −2.72070e13 −0.982186 −0.491093 0.871107i \(-0.663403\pi\)
−0.491093 + 0.871107i \(0.663403\pi\)
\(972\) −1.85435e13 −0.666337
\(973\) 2.00988e13 0.718890
\(974\) 3.40494e13 1.21226
\(975\) 0 0
\(976\) −6.29273e12 −0.221980
\(977\) −3.80106e13 −1.33469 −0.667343 0.744751i \(-0.732568\pi\)
−0.667343 + 0.744751i \(0.732568\pi\)
\(978\) 4.05964e13 1.41894
\(979\) −7.54756e12 −0.262594
\(980\) 0 0
\(981\) −8.93379e12 −0.307982
\(982\) −1.58507e13 −0.543934
\(983\) 5.13119e13 1.75278 0.876389 0.481604i \(-0.159945\pi\)
0.876389 + 0.481604i \(0.159945\pi\)
\(984\) −6.51301e13 −2.21464
\(985\) 0 0
\(986\) 3.04321e12 0.102538
\(987\) −2.45670e12 −0.0823997
\(988\) 3.65662e12 0.122088
\(989\) 5.41739e13 1.80056
\(990\) 0 0
\(991\) −2.44860e13 −0.806465 −0.403233 0.915098i \(-0.632113\pi\)
−0.403233 + 0.915098i \(0.632113\pi\)
\(992\) 4.51133e13 1.47911
\(993\) 7.07356e11 0.0230870
\(994\) −8.31084e12 −0.270027
\(995\) 0 0
\(996\) −9.84414e12 −0.316965
\(997\) 2.51672e13 0.806689 0.403345 0.915048i \(-0.367848\pi\)
0.403345 + 0.915048i \(0.367848\pi\)
\(998\) −3.73526e13 −1.19188
\(999\) 4.06514e12 0.129131
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.10.a.k.1.11 27
5.2 odd 4 65.10.b.a.14.20 54
5.3 odd 4 65.10.b.a.14.35 yes 54
5.4 even 2 325.10.a.l.1.17 27
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.10.b.a.14.20 54 5.2 odd 4
65.10.b.a.14.35 yes 54 5.3 odd 4
325.10.a.k.1.11 27 1.1 even 1 trivial
325.10.a.l.1.17 27 5.4 even 2