Properties

Label 324.6.b
Level $324$
Weight $6$
Character orbit 324.b
Rep. character $\chi_{324}(323,\cdot)$
Character field $\Q$
Dimension $116$
Sturm bound $324$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 324.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Sturm bound: \(324\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(324, [\chi])\).

Total New Old
Modular forms 282 124 158
Cusp forms 258 116 142
Eisenstein series 24 8 16

Trace form

\( 116 q + 2 q^{4} - 68 q^{10} + 4 q^{13} + 2510 q^{16} - 6618 q^{22} - 62496 q^{25} + 9120 q^{28} + 12598 q^{34} + 11284 q^{37} - 15548 q^{40} + 26292 q^{46} - 220888 q^{49} - 49976 q^{52} - 23600 q^{58}+ \cdots + 116296 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(324, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(324, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(324, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 2}\)