Properties

Label 324.5.g.f.53.2
Level $324$
Weight $5$
Character 324.53
Analytic conductor $33.492$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,5,Mod(53,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.53"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 324.g (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.4918680392\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 6242x^{12} + 11954017x^{8} + 7856017920x^{4} + 1485512441856 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{44} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 53.2
Root \(-4.65176 - 4.65176i\) of defining polynomial
Character \(\chi\) \(=\) 324.53
Dual form 324.5.g.f.269.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-22.8264 - 13.1788i) q^{5} +(-10.2177 - 17.6977i) q^{7} +(46.8767 - 27.0643i) q^{11} +(119.150 - 206.375i) q^{13} +195.038i q^{17} +59.1338 q^{19} +(-233.412 - 134.761i) q^{23} +(34.8634 + 60.3852i) q^{25} +(-1033.77 + 596.849i) q^{29} +(-186.923 + 323.761i) q^{31} +538.632i q^{35} -1793.37 q^{37} +(313.370 + 180.924i) q^{41} +(1620.96 + 2807.58i) q^{43} +(-3048.20 + 1759.88i) q^{47} +(991.695 - 1717.67i) q^{49} +1522.31i q^{53} -1426.70 q^{55} +(-5255.44 - 3034.23i) q^{59} +(-449.890 - 779.233i) q^{61} +(-5439.56 + 3140.53i) q^{65} +(3477.06 - 6022.45i) q^{67} +9017.89i q^{71} -3063.58 q^{73} +(-957.948 - 553.072i) q^{77} +(2789.76 + 4832.01i) q^{79} +(-3679.19 + 2124.18i) q^{83} +(2570.37 - 4452.01i) q^{85} +6532.00i q^{89} -4869.80 q^{91} +(-1349.81 - 779.315i) q^{95} +(2283.77 + 3955.60i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 52 q^{7} - 220 q^{13} - 616 q^{19} + 328 q^{25} + 1472 q^{31} + 2456 q^{37} - 388 q^{43} - 3432 q^{49} - 72 q^{55} - 1804 q^{61} + 2180 q^{67} - 9088 q^{73} + 5012 q^{79} + 5364 q^{85} - 3512 q^{91}+ \cdots + 2528 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −22.8264 13.1788i −0.913056 0.527153i −0.0316432 0.999499i \(-0.510074\pi\)
−0.881413 + 0.472346i \(0.843407\pi\)
\(6\) 0 0
\(7\) −10.2177 17.6977i −0.208525 0.361177i 0.742725 0.669597i \(-0.233533\pi\)
−0.951250 + 0.308420i \(0.900200\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 46.8767 27.0643i 0.387411 0.223672i −0.293627 0.955920i \(-0.594862\pi\)
0.681038 + 0.732248i \(0.261529\pi\)
\(12\) 0 0
\(13\) 119.150 206.375i 0.705032 1.22115i −0.261648 0.965163i \(-0.584266\pi\)
0.966680 0.255988i \(-0.0824009\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 195.038i 0.674870i 0.941349 + 0.337435i \(0.109559\pi\)
−0.941349 + 0.337435i \(0.890441\pi\)
\(18\) 0 0
\(19\) 59.1338 0.163806 0.0819028 0.996640i \(-0.473900\pi\)
0.0819028 + 0.996640i \(0.473900\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −233.412 134.761i −0.441233 0.254746i 0.262887 0.964827i \(-0.415325\pi\)
−0.704121 + 0.710080i \(0.748659\pi\)
\(24\) 0 0
\(25\) 34.8634 + 60.3852i 0.0557814 + 0.0966163i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1033.77 + 596.849i −1.22922 + 0.709690i −0.966867 0.255282i \(-0.917832\pi\)
−0.262353 + 0.964972i \(0.584498\pi\)
\(30\) 0 0
\(31\) −186.923 + 323.761i −0.194509 + 0.336900i −0.946740 0.322000i \(-0.895645\pi\)
0.752230 + 0.658900i \(0.228978\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 538.632i 0.439699i
\(36\) 0 0
\(37\) −1793.37 −1.30999 −0.654994 0.755634i \(-0.727329\pi\)
−0.654994 + 0.755634i \(0.727329\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 313.370 + 180.924i 0.186419 + 0.107629i 0.590305 0.807180i \(-0.299007\pi\)
−0.403886 + 0.914809i \(0.632341\pi\)
\(42\) 0 0
\(43\) 1620.96 + 2807.58i 0.876666 + 1.51843i 0.854977 + 0.518666i \(0.173571\pi\)
0.0216893 + 0.999765i \(0.493096\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3048.20 + 1759.88i −1.37990 + 0.796686i −0.992147 0.125077i \(-0.960082\pi\)
−0.387753 + 0.921763i \(0.626749\pi\)
\(48\) 0 0
\(49\) 991.695 1717.67i 0.413034 0.715396i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1522.31i 0.541940i 0.962588 + 0.270970i \(0.0873443\pi\)
−0.962588 + 0.270970i \(0.912656\pi\)
\(54\) 0 0
\(55\) −1426.70 −0.471637
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5255.44 3034.23i −1.50975 0.871655i −0.999935 0.0113702i \(-0.996381\pi\)
−0.509815 0.860284i \(-0.670286\pi\)
\(60\) 0 0
\(61\) −449.890 779.233i −0.120906 0.209415i 0.799219 0.601039i \(-0.205247\pi\)
−0.920125 + 0.391625i \(0.871913\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5439.56 + 3140.53i −1.28747 + 0.743320i
\(66\) 0 0
\(67\) 3477.06 6022.45i 0.774574 1.34160i −0.160460 0.987042i \(-0.551298\pi\)
0.935034 0.354559i \(-0.115369\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9017.89i 1.78891i 0.447160 + 0.894454i \(0.352436\pi\)
−0.447160 + 0.894454i \(0.647564\pi\)
\(72\) 0 0
\(73\) −3063.58 −0.574888 −0.287444 0.957797i \(-0.592806\pi\)
−0.287444 + 0.957797i \(0.592806\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −957.948 553.072i −0.161570 0.0932824i
\(78\) 0 0
\(79\) 2789.76 + 4832.01i 0.447006 + 0.774237i 0.998190 0.0601472i \(-0.0191570\pi\)
−0.551184 + 0.834384i \(0.685824\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3679.19 + 2124.18i −0.534067 + 0.308344i −0.742671 0.669656i \(-0.766441\pi\)
0.208604 + 0.978000i \(0.433108\pi\)
\(84\) 0 0
\(85\) 2570.37 4452.01i 0.355760 0.616195i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6532.00i 0.824644i 0.911038 + 0.412322i \(0.135282\pi\)
−0.911038 + 0.412322i \(0.864718\pi\)
\(90\) 0 0
\(91\) −4869.80 −0.588069
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1349.81 779.315i −0.149564 0.0863507i
\(96\) 0 0
\(97\) 2283.77 + 3955.60i 0.242722 + 0.420406i 0.961489 0.274845i \(-0.0886265\pi\)
−0.718767 + 0.695251i \(0.755293\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −16074.1 + 9280.36i −1.57573 + 0.909750i −0.580288 + 0.814411i \(0.697060\pi\)
−0.995445 + 0.0953389i \(0.969607\pi\)
\(102\) 0 0
\(103\) −2535.31 + 4391.29i −0.238978 + 0.413921i −0.960421 0.278552i \(-0.910146\pi\)
0.721444 + 0.692473i \(0.243479\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16248.3i 1.41919i −0.704609 0.709595i \(-0.748878\pi\)
0.704609 0.709595i \(-0.251122\pi\)
\(108\) 0 0
\(109\) −2690.46 −0.226451 −0.113225 0.993569i \(-0.536118\pi\)
−0.113225 + 0.993569i \(0.536118\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4414.56 2548.74i −0.345724 0.199604i 0.317076 0.948400i \(-0.397299\pi\)
−0.662801 + 0.748796i \(0.730632\pi\)
\(114\) 0 0
\(115\) 3551.98 + 6152.21i 0.268581 + 0.465195i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3451.71 1992.84i 0.243747 0.140728i
\(120\) 0 0
\(121\) −5855.55 + 10142.1i −0.399942 + 0.692720i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 14635.7i 0.936685i
\(126\) 0 0
\(127\) −11705.0 −0.725714 −0.362857 0.931845i \(-0.618199\pi\)
−0.362857 + 0.931845i \(0.618199\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10498.3 + 6061.17i 0.611751 + 0.353194i 0.773650 0.633613i \(-0.218429\pi\)
−0.161900 + 0.986807i \(0.551762\pi\)
\(132\) 0 0
\(133\) −604.214 1046.53i −0.0341576 0.0591628i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 20748.6 11979.2i 1.10547 0.638246i 0.167820 0.985818i \(-0.446327\pi\)
0.937653 + 0.347572i \(0.112994\pi\)
\(138\) 0 0
\(139\) 9773.69 16928.5i 0.505858 0.876172i −0.494119 0.869394i \(-0.664509\pi\)
0.999977 0.00677780i \(-0.00215746\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 12898.9i 0.630783i
\(144\) 0 0
\(145\) 31463.1 1.49646
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8026.22 + 4633.94i 0.361525 + 0.208727i 0.669750 0.742587i \(-0.266401\pi\)
−0.308224 + 0.951314i \(0.599735\pi\)
\(150\) 0 0
\(151\) −15891.7 27525.2i −0.696973 1.20719i −0.969511 0.245047i \(-0.921197\pi\)
0.272539 0.962145i \(-0.412137\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8533.58 4926.86i 0.355196 0.205072i
\(156\) 0 0
\(157\) −8551.76 + 14812.1i −0.346941 + 0.600920i −0.985704 0.168483i \(-0.946113\pi\)
0.638763 + 0.769403i \(0.279446\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5507.80i 0.212484i
\(162\) 0 0
\(163\) 14463.6 0.544379 0.272189 0.962244i \(-0.412252\pi\)
0.272189 + 0.962244i \(0.412252\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −21922.8 12657.1i −0.786072 0.453839i 0.0525059 0.998621i \(-0.483279\pi\)
−0.838578 + 0.544782i \(0.816612\pi\)
\(168\) 0 0
\(169\) −14113.2 24444.7i −0.494141 0.855878i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 35424.7 20452.4i 1.18362 0.683365i 0.226773 0.973948i \(-0.427182\pi\)
0.956850 + 0.290583i \(0.0938491\pi\)
\(174\) 0 0
\(175\) 712.450 1234.00i 0.0232637 0.0402939i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 45433.1i 1.41797i −0.705225 0.708984i \(-0.749154\pi\)
0.705225 0.708984i \(-0.250846\pi\)
\(180\) 0 0
\(181\) 41107.8 1.25478 0.627389 0.778706i \(-0.284124\pi\)
0.627389 + 0.778706i \(0.284124\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 40936.3 + 23634.6i 1.19609 + 0.690564i
\(186\) 0 0
\(187\) 5278.55 + 9142.71i 0.150949 + 0.261452i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 52547.2 30338.1i 1.44040 0.831615i 0.442523 0.896757i \(-0.354083\pi\)
0.997876 + 0.0651421i \(0.0207501\pi\)
\(192\) 0 0
\(193\) −22365.7 + 38738.4i −0.600436 + 1.03999i 0.392319 + 0.919829i \(0.371673\pi\)
−0.992755 + 0.120157i \(0.961660\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 464.194i 0.0119610i −0.999982 0.00598050i \(-0.998096\pi\)
0.999982 0.00598050i \(-0.00190366\pi\)
\(198\) 0 0
\(199\) −48133.7 −1.21547 −0.607733 0.794142i \(-0.707921\pi\)
−0.607733 + 0.794142i \(0.707921\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 21125.7 + 12196.9i 0.512647 + 0.295977i
\(204\) 0 0
\(205\) −4768.75 8259.71i −0.113474 0.196543i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2772.00 1600.41i 0.0634601 0.0366387i
\(210\) 0 0
\(211\) −16097.4 + 27881.5i −0.361569 + 0.626256i −0.988219 0.153045i \(-0.951092\pi\)
0.626650 + 0.779300i \(0.284425\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 85449.2i 1.84855i
\(216\) 0 0
\(217\) 7639.74 0.162240
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 40250.8 + 23238.8i 0.824119 + 0.475805i
\(222\) 0 0
\(223\) −1146.07 1985.06i −0.0230464 0.0399175i 0.854272 0.519826i \(-0.174003\pi\)
−0.877319 + 0.479908i \(0.840670\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 23205.1 13397.5i 0.450331 0.259998i −0.257639 0.966241i \(-0.582945\pi\)
0.707970 + 0.706243i \(0.249611\pi\)
\(228\) 0 0
\(229\) −24030.0 + 41621.3i −0.458230 + 0.793678i −0.998868 0.0475778i \(-0.984850\pi\)
0.540637 + 0.841256i \(0.318183\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 27107.9i 0.499326i 0.968333 + 0.249663i \(0.0803199\pi\)
−0.968333 + 0.249663i \(0.919680\pi\)
\(234\) 0 0
\(235\) 92772.6 1.67990
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −53063.5 30636.2i −0.928967 0.536339i −0.0424821 0.999097i \(-0.513527\pi\)
−0.886485 + 0.462758i \(0.846860\pi\)
\(240\) 0 0
\(241\) −18925.0 32779.0i −0.325837 0.564367i 0.655844 0.754896i \(-0.272313\pi\)
−0.981681 + 0.190529i \(0.938980\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −45273.7 + 26138.8i −0.754247 + 0.435465i
\(246\) 0 0
\(247\) 7045.82 12203.7i 0.115488 0.200032i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 25694.6i 0.407844i −0.978987 0.203922i \(-0.934631\pi\)
0.978987 0.203922i \(-0.0653688\pi\)
\(252\) 0 0
\(253\) −14588.8 −0.227918
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 22272.0 + 12858.7i 0.337204 + 0.194685i 0.659035 0.752113i \(-0.270965\pi\)
−0.321831 + 0.946797i \(0.604298\pi\)
\(258\) 0 0
\(259\) 18324.2 + 31738.5i 0.273166 + 0.473137i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 86343.9 49850.7i 1.24830 0.720708i 0.277532 0.960716i \(-0.410483\pi\)
0.970771 + 0.240008i \(0.0771501\pi\)
\(264\) 0 0
\(265\) 20062.2 34748.8i 0.285685 0.494821i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 126040.i 1.74182i 0.491445 + 0.870909i \(0.336469\pi\)
−0.491445 + 0.870909i \(0.663531\pi\)
\(270\) 0 0
\(271\) −73237.4 −0.997228 −0.498614 0.866824i \(-0.666157\pi\)
−0.498614 + 0.866824i \(0.666157\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3268.56 + 1887.10i 0.0432206 + 0.0249535i
\(276\) 0 0
\(277\) −52217.7 90443.8i −0.680547 1.17874i −0.974814 0.223019i \(-0.928409\pi\)
0.294267 0.955723i \(-0.404925\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −47540.0 + 27447.2i −0.602069 + 0.347605i −0.769855 0.638218i \(-0.779672\pi\)
0.167786 + 0.985823i \(0.446338\pi\)
\(282\) 0 0
\(283\) 57600.3 99766.7i 0.719204 1.24570i −0.242112 0.970248i \(-0.577840\pi\)
0.961316 0.275449i \(-0.0888266\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7394.56i 0.0897735i
\(288\) 0 0
\(289\) 45481.4 0.544550
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −31631.0 18262.2i −0.368449 0.212724i 0.304332 0.952566i \(-0.401567\pi\)
−0.672781 + 0.739842i \(0.734900\pi\)
\(294\) 0 0
\(295\) 79975.2 + 138521.i 0.918991 + 1.59174i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −55622.4 + 32113.6i −0.622167 + 0.359209i
\(300\) 0 0
\(301\) 33125.0 57374.2i 0.365614 0.633263i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 23716.1i 0.254944i
\(306\) 0 0
\(307\) −95335.4 −1.01153 −0.505763 0.862672i \(-0.668789\pi\)
−0.505763 + 0.862672i \(0.668789\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −157452. 90904.7i −1.62789 0.939865i −0.984720 0.174146i \(-0.944283\pi\)
−0.643175 0.765719i \(-0.722383\pi\)
\(312\) 0 0
\(313\) −30195.7 52300.5i −0.308217 0.533848i 0.669755 0.742582i \(-0.266399\pi\)
−0.977972 + 0.208734i \(0.933066\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −82260.6 + 47493.2i −0.818603 + 0.472621i −0.849935 0.526888i \(-0.823359\pi\)
0.0313312 + 0.999509i \(0.490025\pi\)
\(318\) 0 0
\(319\) −32306.6 + 55956.7i −0.317475 + 0.549883i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 11533.3i 0.110548i
\(324\) 0 0
\(325\) 16616.0 0.157311
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 62291.5 + 35964.0i 0.575489 + 0.332258i
\(330\) 0 0
\(331\) 69064.7 + 119624.i 0.630377 + 1.09184i 0.987475 + 0.157778i \(0.0504330\pi\)
−0.357098 + 0.934067i \(0.616234\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −158738. + 91647.3i −1.41446 + 0.816639i
\(336\) 0 0
\(337\) −40400.0 + 69974.8i −0.355731 + 0.616143i −0.987243 0.159223i \(-0.949101\pi\)
0.631512 + 0.775366i \(0.282435\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 20235.8i 0.174025i
\(342\) 0 0
\(343\) −89597.2 −0.761563
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10100.6 5831.59i −0.0838858 0.0484315i 0.457470 0.889225i \(-0.348756\pi\)
−0.541356 + 0.840793i \(0.682089\pi\)
\(348\) 0 0
\(349\) 78250.7 + 135534.i 0.642447 + 1.11275i 0.984885 + 0.173210i \(0.0554140\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −170384. + 98371.0i −1.36735 + 0.789437i −0.990588 0.136875i \(-0.956294\pi\)
−0.376757 + 0.926312i \(0.622961\pi\)
\(354\) 0 0
\(355\) 118845. 205846.i 0.943029 1.63337i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 36095.4i 0.280068i 0.990147 + 0.140034i \(0.0447211\pi\)
−0.990147 + 0.140034i \(0.955279\pi\)
\(360\) 0 0
\(361\) −126824. −0.973168
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 69930.5 + 40374.4i 0.524905 + 0.303054i
\(366\) 0 0
\(367\) −20774.0 35981.5i −0.154236 0.267145i 0.778544 0.627590i \(-0.215958\pi\)
−0.932781 + 0.360444i \(0.882625\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 26941.3 15554.6i 0.195736 0.113008i
\(372\) 0 0
\(373\) −87236.2 + 151098.i −0.627017 + 1.08602i 0.361130 + 0.932515i \(0.382391\pi\)
−0.988147 + 0.153510i \(0.950942\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 284460.i 2.00142i
\(378\) 0 0
\(379\) −164788. −1.14722 −0.573612 0.819127i \(-0.694458\pi\)
−0.573612 + 0.819127i \(0.694458\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −10981.9 6340.40i −0.0748652 0.0432234i 0.462100 0.886828i \(-0.347096\pi\)
−0.536965 + 0.843604i \(0.680429\pi\)
\(384\) 0 0
\(385\) 14577.7 + 25249.3i 0.0983483 + 0.170344i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −55798.5 + 32215.3i −0.368743 + 0.212894i −0.672909 0.739725i \(-0.734955\pi\)
0.304166 + 0.952619i \(0.401622\pi\)
\(390\) 0 0
\(391\) 26283.4 45524.2i 0.171921 0.297775i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 147063.i 0.942563i
\(396\) 0 0
\(397\) 143446. 0.910135 0.455068 0.890457i \(-0.349615\pi\)
0.455068 + 0.890457i \(0.349615\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −183922. 106187.i −1.14378 0.660364i −0.196419 0.980520i \(-0.562931\pi\)
−0.947365 + 0.320156i \(0.896265\pi\)
\(402\) 0 0
\(403\) 44544.0 + 77152.5i 0.274271 + 0.475050i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −84067.4 + 48536.3i −0.507503 + 0.293007i
\(408\) 0 0
\(409\) 106107. 183782.i 0.634301 1.09864i −0.352361 0.935864i \(-0.614621\pi\)
0.986663 0.162778i \(-0.0520454\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 124012.i 0.727048i
\(414\) 0 0
\(415\) 111977. 0.650178
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −105265. 60774.6i −0.599591 0.346174i 0.169290 0.985566i \(-0.445853\pi\)
−0.768880 + 0.639393i \(0.779186\pi\)
\(420\) 0 0
\(421\) −31505.8 54569.6i −0.177757 0.307884i 0.763355 0.645979i \(-0.223551\pi\)
−0.941112 + 0.338095i \(0.890217\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −11777.4 + 6799.67i −0.0652035 + 0.0376452i
\(426\) 0 0
\(427\) −9193.73 + 15924.0i −0.0504239 + 0.0873367i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 128883.i 0.693812i −0.937900 0.346906i \(-0.887232\pi\)
0.937900 0.346906i \(-0.112768\pi\)
\(432\) 0 0
\(433\) 6365.28 0.0339502 0.0169751 0.999856i \(-0.494596\pi\)
0.0169751 + 0.999856i \(0.494596\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −13802.6 7968.92i −0.0722765 0.0417289i
\(438\) 0 0
\(439\) −175148. 303365.i −0.908815 1.57411i −0.815713 0.578457i \(-0.803655\pi\)
−0.0931020 0.995657i \(-0.529678\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 161380. 93172.9i 0.822324 0.474769i −0.0288935 0.999582i \(-0.509198\pi\)
0.851217 + 0.524814i \(0.175865\pi\)
\(444\) 0 0
\(445\) 86084.2 149102.i 0.434714 0.752946i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 46711.0i 0.231700i 0.993267 + 0.115850i \(0.0369593\pi\)
−0.993267 + 0.115850i \(0.963041\pi\)
\(450\) 0 0
\(451\) 19586.3 0.0962943
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 111160. + 64178.2i 0.536940 + 0.310002i
\(456\) 0 0
\(457\) 145112. + 251341.i 0.694816 + 1.20346i 0.970243 + 0.242134i \(0.0778474\pi\)
−0.275427 + 0.961322i \(0.588819\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 205476. 118632.i 0.966850 0.558211i 0.0685752 0.997646i \(-0.478155\pi\)
0.898274 + 0.439435i \(0.144821\pi\)
\(462\) 0 0
\(463\) 63082.2 109262.i 0.294269 0.509689i −0.680545 0.732706i \(-0.738257\pi\)
0.974815 + 0.223017i \(0.0715905\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20073.4i 0.0920421i −0.998940 0.0460210i \(-0.985346\pi\)
0.998940 0.0460210i \(-0.0146541\pi\)
\(468\) 0 0
\(469\) −142111. −0.646073
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 151970. + 87740.0i 0.679260 + 0.392171i
\(474\) 0 0
\(475\) 2061.61 + 3570.81i 0.00913731 + 0.0158263i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1235.35 + 713.231i −0.00538418 + 0.00310856i −0.502690 0.864467i \(-0.667656\pi\)
0.497305 + 0.867575i \(0.334323\pi\)
\(480\) 0 0
\(481\) −213681. + 370107.i −0.923583 + 1.59969i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 120390.i 0.511806i
\(486\) 0 0
\(487\) 74085.9 0.312376 0.156188 0.987727i \(-0.450079\pi\)
0.156188 + 0.987727i \(0.450079\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 98342.5 + 56778.1i 0.407923 + 0.235514i 0.689897 0.723908i \(-0.257656\pi\)
−0.281974 + 0.959422i \(0.590989\pi\)
\(492\) 0 0
\(493\) −116408. 201625.i −0.478949 0.829564i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 159595. 92142.5i 0.646112 0.373033i
\(498\) 0 0
\(499\) −140398. + 243176.i −0.563845 + 0.976608i 0.433311 + 0.901244i \(0.357345\pi\)
−0.997156 + 0.0753637i \(0.975988\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 89107.8i 0.352192i −0.984373 0.176096i \(-0.943653\pi\)
0.984373 0.176096i \(-0.0563470\pi\)
\(504\) 0 0
\(505\) 489217. 1.91831
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 102156. + 58980.1i 0.394303 + 0.227651i 0.684023 0.729460i \(-0.260229\pi\)
−0.289720 + 0.957112i \(0.593562\pi\)
\(510\) 0 0
\(511\) 31302.9 + 54218.1i 0.119879 + 0.207636i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 115744. 66825.0i 0.436400 0.251956i
\(516\) 0 0
\(517\) −95259.7 + 164995.i −0.356392 + 0.617289i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 316710.i 1.16677i −0.812194 0.583387i \(-0.801727\pi\)
0.812194 0.583387i \(-0.198273\pi\)
\(522\) 0 0
\(523\) −390205. −1.42656 −0.713280 0.700880i \(-0.752791\pi\)
−0.713280 + 0.700880i \(0.752791\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −63145.5 36457.1i −0.227364 0.131268i
\(528\) 0 0
\(529\) −103600. 179440.i −0.370209 0.641220i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 74676.4 43114.4i 0.262863 0.151764i
\(534\) 0 0
\(535\) −214134. + 370891.i −0.748131 + 1.29580i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 107358.i 0.369536i
\(540\) 0 0
\(541\) 99617.9 0.340363 0.170182 0.985413i \(-0.445565\pi\)
0.170182 + 0.985413i \(0.445565\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 61413.6 + 35457.1i 0.206762 + 0.119374i
\(546\) 0 0
\(547\) −124024. 214816.i −0.414506 0.717945i 0.580871 0.813996i \(-0.302712\pi\)
−0.995376 + 0.0960507i \(0.969379\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −61131.0 + 35294.0i −0.201353 + 0.116251i
\(552\) 0 0
\(553\) 57010.2 98744.5i 0.186424 0.322896i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 242800.i 0.782598i −0.920264 0.391299i \(-0.872026\pi\)
0.920264 0.391299i \(-0.127974\pi\)
\(558\) 0 0
\(559\) 772551. 2.47231
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 490600. + 283248.i 1.54778 + 0.893613i 0.998311 + 0.0581021i \(0.0185049\pi\)
0.549473 + 0.835511i \(0.314828\pi\)
\(564\) 0 0
\(565\) 67179.0 + 116357.i 0.210444 + 0.364500i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 487139. 281250.i 1.50462 0.868695i 0.504638 0.863331i \(-0.331626\pi\)
0.999986 0.00536413i \(-0.00170746\pi\)
\(570\) 0 0
\(571\) 77999.3 135099.i 0.239231 0.414361i −0.721263 0.692662i \(-0.756438\pi\)
0.960494 + 0.278301i \(0.0897712\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18792.9i 0.0568404i
\(576\) 0 0
\(577\) −374817. −1.12582 −0.562908 0.826519i \(-0.690318\pi\)
−0.562908 + 0.826519i \(0.690318\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 75186.1 + 43408.7i 0.222733 + 0.128595i
\(582\) 0 0
\(583\) 41200.2 + 71360.8i 0.121217 + 0.209953i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 456812. 263740.i 1.32575 0.765421i 0.341109 0.940024i \(-0.389198\pi\)
0.984639 + 0.174603i \(0.0558642\pi\)
\(588\) 0 0
\(589\) −11053.5 + 19145.2i −0.0318617 + 0.0551861i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 316522.i 0.900108i −0.893001 0.450054i \(-0.851405\pi\)
0.893001 0.450054i \(-0.148595\pi\)
\(594\) 0 0
\(595\) −105053. −0.296740
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −328816. 189842.i −0.916429 0.529100i −0.0339348 0.999424i \(-0.510804\pi\)
−0.882494 + 0.470324i \(0.844137\pi\)
\(600\) 0 0
\(601\) −220839. 382504.i −0.611402 1.05898i −0.991004 0.133829i \(-0.957273\pi\)
0.379603 0.925150i \(-0.376061\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 267322. 154339.i 0.730339 0.421662i
\(606\) 0 0
\(607\) 41181.6 71328.6i 0.111770 0.193591i −0.804714 0.593663i \(-0.797681\pi\)
0.916484 + 0.400071i \(0.131015\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 838762.i 2.24676i
\(612\) 0 0
\(613\) 154087. 0.410057 0.205029 0.978756i \(-0.434271\pi\)
0.205029 + 0.978756i \(0.434271\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −293845. 169652.i −0.771877 0.445644i 0.0616665 0.998097i \(-0.480358\pi\)
−0.833544 + 0.552453i \(0.813692\pi\)
\(618\) 0 0
\(619\) 61345.8 + 106254.i 0.160105 + 0.277309i 0.934906 0.354895i \(-0.115484\pi\)
−0.774801 + 0.632205i \(0.782150\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 115601. 66742.3i 0.297842 0.171959i
\(624\) 0 0
\(625\) 214671. 371821.i 0.549558 0.951863i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 349775.i 0.884071i
\(630\) 0 0
\(631\) 517548. 1.29985 0.649923 0.760000i \(-0.274801\pi\)
0.649923 + 0.760000i \(0.274801\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 267184. + 154259.i 0.662617 + 0.382562i
\(636\) 0 0
\(637\) −236322. 409322.i −0.582405 1.00876i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −574464. + 331667.i −1.39813 + 0.807209i −0.994196 0.107580i \(-0.965690\pi\)
−0.403931 + 0.914789i \(0.632356\pi\)
\(642\) 0 0
\(643\) −194488. + 336864.i −0.470405 + 0.814765i −0.999427 0.0338427i \(-0.989225\pi\)
0.529022 + 0.848608i \(0.322559\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 464654.i 1.11000i −0.831852 0.554998i \(-0.812719\pi\)
0.831852 0.554998i \(-0.187281\pi\)
\(648\) 0 0
\(649\) −328477. −0.779858
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −293777. 169612.i −0.688955 0.397768i 0.114265 0.993450i \(-0.463549\pi\)
−0.803220 + 0.595682i \(0.796882\pi\)
\(654\) 0 0
\(655\) −159758. 276709.i −0.372375 0.644973i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 186995. 107961.i 0.430584 0.248598i −0.269011 0.963137i \(-0.586697\pi\)
0.699596 + 0.714539i \(0.253364\pi\)
\(660\) 0 0
\(661\) −19526.3 + 33820.5i −0.0446906 + 0.0774065i −0.887505 0.460797i \(-0.847564\pi\)
0.842815 + 0.538204i \(0.180897\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 31851.4i 0.0720253i
\(666\) 0 0
\(667\) 321727. 0.723163
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −42178.8 24351.9i −0.0936804 0.0540864i
\(672\) 0 0
\(673\) 416432. + 721282.i 0.919421 + 1.59248i 0.800297 + 0.599604i \(0.204675\pi\)
0.119124 + 0.992879i \(0.461992\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −293572. + 169494.i −0.640527 + 0.369809i −0.784818 0.619727i \(-0.787243\pi\)
0.144290 + 0.989535i \(0.453910\pi\)
\(678\) 0 0
\(679\) 46669.9 80834.6i 0.101227 0.175331i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 928607.i 1.99063i 0.0966825 + 0.995315i \(0.469177\pi\)
−0.0966825 + 0.995315i \(0.530823\pi\)
\(684\) 0 0
\(685\) −631489. −1.34581
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 314166. + 181384.i 0.661790 + 0.382085i
\(690\) 0 0
\(691\) −109635. 189894.i −0.229612 0.397700i 0.728081 0.685491i \(-0.240412\pi\)
−0.957693 + 0.287791i \(0.907079\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −446196. + 257612.i −0.923754 + 0.533330i
\(696\) 0 0
\(697\) −35287.0 + 61119.0i −0.0726356 + 0.125809i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 118463.i 0.241071i −0.992709 0.120536i \(-0.961539\pi\)
0.992709 0.120536i \(-0.0384612\pi\)
\(702\) 0 0
\(703\) −106049. −0.214583
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 328481. + 189649.i 0.657161 + 0.379412i
\(708\) 0 0
\(709\) 407445. + 705716.i 0.810544 + 1.40390i 0.912484 + 0.409113i \(0.134162\pi\)
−0.101940 + 0.994791i \(0.532505\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 87260.4 50379.8i 0.171648 0.0991009i
\(714\) 0 0
\(715\) −169992. + 294435.i −0.332519 + 0.575941i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 789.716i 0.00152761i −1.00000 0.000763806i \(-0.999757\pi\)
1.00000 0.000763806i \(-0.000243127\pi\)
\(720\) 0 0
\(721\) 103621. 0.199332
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −72081.7 41616.4i −0.137135 0.0791751i
\(726\) 0 0
\(727\) 300646. + 520735.i 0.568836 + 0.985253i 0.996681 + 0.0814008i \(0.0259394\pi\)
−0.427846 + 0.903852i \(0.640727\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −547583. + 316147.i −1.02474 + 0.591636i
\(732\) 0 0
\(733\) 504618. 874024.i 0.939192 1.62673i 0.172211 0.985060i \(-0.444909\pi\)
0.766982 0.641669i \(-0.221758\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 376417.i 0.693001i
\(738\) 0 0
\(739\) −753999. −1.38065 −0.690323 0.723502i \(-0.742531\pi\)
−0.690323 + 0.723502i \(0.742531\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −171330. 98917.5i −0.310353 0.179182i 0.336731 0.941601i \(-0.390679\pi\)
−0.647085 + 0.762418i \(0.724012\pi\)
\(744\) 0 0
\(745\) −122140. 211552.i −0.220062 0.381158i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −287557. + 166021.i −0.512578 + 0.295937i
\(750\) 0 0
\(751\) −386043. + 668647.i −0.684473 + 1.18554i 0.289129 + 0.957290i \(0.406634\pi\)
−0.973602 + 0.228252i \(0.926699\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 837735.i 1.46965i
\(756\) 0 0
\(757\) −459844. −0.802452 −0.401226 0.915979i \(-0.631416\pi\)
−0.401226 + 0.915979i \(0.631416\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −744438. 429801.i −1.28546 0.742161i −0.307620 0.951509i \(-0.599533\pi\)
−0.977841 + 0.209348i \(0.932866\pi\)
\(762\) 0 0
\(763\) 27490.4 + 47614.9i 0.0472207 + 0.0817887i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.25238e6 + 723060.i −2.12885 + 1.22909i
\(768\) 0 0
\(769\) −2959.64 + 5126.24i −0.00500479 + 0.00866855i −0.868517 0.495659i \(-0.834926\pi\)
0.863512 + 0.504328i \(0.168260\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 80749.0i 0.135138i −0.997715 0.0675691i \(-0.978476\pi\)
0.997715 0.0675691i \(-0.0215243\pi\)
\(774\) 0 0
\(775\) −26067.1 −0.0434000
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 18530.8 + 10698.8i 0.0305365 + 0.0176302i
\(780\) 0 0
\(781\) 244063. + 422729.i 0.400128 + 0.693042i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 390412. 225404.i 0.633554 0.365783i
\(786\) 0 0
\(787\) 530526. 918897.i 0.856558 1.48360i −0.0186336 0.999826i \(-0.505932\pi\)
0.875192 0.483776i \(-0.160735\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 104170.i 0.166490i
\(792\) 0 0
\(793\) −214419. −0.340970
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −805224. 464896.i −1.26765 0.731879i −0.293109 0.956079i \(-0.594690\pi\)
−0.974543 + 0.224200i \(0.928023\pi\)
\(798\) 0 0
\(799\) −343242. 594513.i −0.537660 0.931254i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −143610. + 82913.5i −0.222718 + 0.128586i
\(804\) 0 0
\(805\) 72586.4 125723.i 0.112012 0.194010i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 181072.i 0.276665i 0.990386 + 0.138333i \(0.0441743\pi\)
−0.990386 + 0.138333i \(0.955826\pi\)
\(810\) 0 0
\(811\) 49745.9 0.0756338 0.0378169 0.999285i \(-0.487960\pi\)
0.0378169 + 0.999285i \(0.487960\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −330152. 190613.i −0.497048 0.286971i
\(816\) 0 0
\(817\) 95853.4 + 166023.i 0.143603 + 0.248728i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6020.80 3476.11i 0.00893239 0.00515712i −0.495527 0.868592i \(-0.665025\pi\)
0.504460 + 0.863435i \(0.331692\pi\)
\(822\) 0 0
\(823\) 379126. 656665.i 0.559737 0.969493i −0.437781 0.899082i \(-0.644236\pi\)
0.997518 0.0704111i \(-0.0224311\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 641019.i 0.937260i 0.883394 + 0.468630i \(0.155252\pi\)
−0.883394 + 0.468630i \(0.844748\pi\)
\(828\) 0 0
\(829\) 549710. 0.799879 0.399940 0.916541i \(-0.369031\pi\)
0.399940 + 0.916541i \(0.369031\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 335009. + 193418.i 0.482800 + 0.278745i
\(834\) 0 0
\(835\) 333612. + 577833.i 0.478485 + 0.828761i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −794215. + 458540.i −1.12827 + 0.651409i −0.943500 0.331372i \(-0.892488\pi\)
−0.184773 + 0.982781i \(0.559155\pi\)
\(840\) 0 0
\(841\) 358818. 621491.i 0.507320 0.878704i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 743980.i 1.04195i
\(846\) 0 0
\(847\) 239322. 0.333592
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 418595. + 241676.i 0.578010 + 0.333714i
\(852\) 0 0
\(853\) 500711. + 867257.i 0.688160 + 1.19193i 0.972433 + 0.233184i \(0.0749146\pi\)
−0.284273 + 0.958743i \(0.591752\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 221771. 128039.i 0.301955 0.174334i −0.341366 0.939931i \(-0.610889\pi\)
0.643321 + 0.765597i \(0.277556\pi\)
\(858\) 0 0
\(859\) 163149. 282582.i 0.221105 0.382964i −0.734039 0.679107i \(-0.762367\pi\)
0.955144 + 0.296143i \(0.0957005\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 952268.i 1.27861i 0.768954 + 0.639304i \(0.220778\pi\)
−0.768954 + 0.639304i \(0.779222\pi\)
\(864\) 0 0
\(865\) −1.07816e6 −1.44095
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 261550. + 151006.i 0.346350 + 0.199965i
\(870\) 0 0
\(871\) −828587. 1.43516e6i −1.09220 1.89174i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 259018. 149544.i 0.338309 0.195323i
\(876\) 0 0
\(877\) 10759.1 18635.3i 0.0139886 0.0242290i −0.858946 0.512066i \(-0.828880\pi\)
0.872935 + 0.487837i \(0.162214\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 784125.i 1.01026i −0.863043 0.505130i \(-0.831444\pi\)
0.863043 0.505130i \(-0.168556\pi\)
\(882\) 0 0
\(883\) −67879.2 −0.0870593 −0.0435296 0.999052i \(-0.513860\pi\)
−0.0435296 + 0.999052i \(0.513860\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −524429. 302779.i −0.666560 0.384839i 0.128212 0.991747i \(-0.459076\pi\)
−0.794772 + 0.606908i \(0.792410\pi\)
\(888\) 0 0
\(889\) 119599. + 207152.i 0.151330 + 0.262111i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −180252. + 104068.i −0.226035 + 0.130502i
\(894\) 0 0
\(895\) −598755. + 1.03707e6i −0.747486 + 1.29468i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 446260.i 0.552165i
\(900\) 0 0
\(901\) −296907. −0.365739
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −938343. 541752.i −1.14568 0.661460i
\(906\) 0 0
\(907\) 25686.8 + 44490.9i 0.0312246 + 0.0540825i 0.881215 0.472715i \(-0.156726\pi\)
−0.849991 + 0.526797i \(0.823393\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −321203. + 185447.i −0.387029 + 0.223451i −0.680872 0.732402i \(-0.738399\pi\)
0.293843 + 0.955854i \(0.405066\pi\)
\(912\) 0 0
\(913\) −114979. + 199149.i −0.137936 + 0.238912i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 247726.i 0.294600i
\(918\) 0 0
\(919\) 891724. 1.05584 0.527922 0.849293i \(-0.322971\pi\)
0.527922 + 0.849293i \(0.322971\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.86106e6 + 1.07449e6i 2.18453 + 1.26124i
\(924\) 0 0
\(925\) −62523.0 108293.i −0.0730730 0.126566i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −591258. + 341363.i −0.685087 + 0.395535i −0.801769 0.597634i \(-0.796108\pi\)
0.116682 + 0.993169i \(0.462774\pi\)
\(930\) 0 0
\(931\) 58642.8 101572.i 0.0676574 0.117186i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 278260.i 0.318294i
\(936\) 0 0
\(937\) 1.02178e6 1.16380 0.581899 0.813261i \(-0.302310\pi\)
0.581899 + 0.813261i \(0.302310\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.04723e6 604618.i −1.18267 0.682813i −0.226037 0.974119i \(-0.572577\pi\)
−0.956630 + 0.291306i \(0.905910\pi\)
\(942\) 0 0
\(943\) −48763.0 84460.0i −0.0548362 0.0949790i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 473810. 273554.i 0.528329 0.305031i −0.212007 0.977268i \(-0.568000\pi\)
0.740336 + 0.672237i \(0.234667\pi\)
\(948\) 0 0
\(949\) −365027. + 632245.i −0.405315 + 0.702026i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 251720.i 0.277161i −0.990351 0.138581i \(-0.955746\pi\)
0.990351 0.138581i \(-0.0442540\pi\)
\(954\) 0 0
\(955\) −1.59929e6 −1.75355
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −424008. 244801.i −0.461039 0.266181i
\(960\) 0 0
\(961\) 391880. + 678756.i 0.424332 + 0.734965i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.02106e6 589507.i 1.09646 0.633044i
\(966\) 0 0
\(967\) −908669. + 1.57386e6i −0.971746 + 1.68311i −0.281467 + 0.959571i \(0.590821\pi\)
−0.690280 + 0.723543i \(0.742512\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 870954.i 0.923755i −0.886944 0.461878i \(-0.847176\pi\)
0.886944 0.461878i \(-0.152824\pi\)
\(972\) 0 0
\(973\) −399460. −0.421937
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.00837e6 + 582183.i 1.05641 + 0.609917i 0.924436 0.381337i \(-0.124536\pi\)
0.131971 + 0.991254i \(0.457869\pi\)
\(978\) 0 0
\(979\) 176784. + 306199.i 0.184449 + 0.319476i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 881418. 508887.i 0.912168 0.526641i 0.0310402 0.999518i \(-0.490118\pi\)
0.881128 + 0.472877i \(0.156785\pi\)
\(984\) 0 0
\(985\) −6117.54 + 10595.9i −0.00630528 + 0.0109211i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 873765.i 0.893309i
\(990\) 0 0
\(991\) 758495. 0.772334 0.386167 0.922429i \(-0.373799\pi\)
0.386167 + 0.922429i \(0.373799\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.09872e6 + 634345.i 1.10979 + 0.640737i
\(996\) 0 0
\(997\) −241997. 419151.i −0.243456 0.421678i 0.718241 0.695795i \(-0.244948\pi\)
−0.961696 + 0.274117i \(0.911614\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.5.g.f.53.2 16
3.2 odd 2 inner 324.5.g.f.53.7 16
9.2 odd 6 inner 324.5.g.f.269.2 16
9.4 even 3 324.5.c.b.161.7 yes 8
9.5 odd 6 324.5.c.b.161.2 8
9.7 even 3 inner 324.5.g.f.269.7 16
36.23 even 6 1296.5.e.f.161.2 8
36.31 odd 6 1296.5.e.f.161.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.5.c.b.161.2 8 9.5 odd 6
324.5.c.b.161.7 yes 8 9.4 even 3
324.5.g.f.53.2 16 1.1 even 1 trivial
324.5.g.f.53.7 16 3.2 odd 2 inner
324.5.g.f.269.2 16 9.2 odd 6 inner
324.5.g.f.269.7 16 9.7 even 3 inner
1296.5.e.f.161.2 8 36.23 even 6
1296.5.e.f.161.7 8 36.31 odd 6