Properties

Label 324.5.c.b.161.2
Level $324$
Weight $5$
Character 324.161
Analytic conductor $33.492$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,5,Mod(161,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.161"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 324.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.4918680392\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 130x^{6} + 404x^{5} + 7007x^{4} - 14692x^{3} - 164750x^{2} + 172164x + 1445046 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{20} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.2
Root \(7.57859 - 1.93185i\) of defining polynomial
Character \(\chi\) \(=\) 324.161
Dual form 324.5.c.b.161.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-26.3577i q^{5} +20.4355 q^{7} -54.1285i q^{11} -238.301 q^{13} -195.038i q^{17} +59.1338 q^{19} -269.521i q^{23} -69.7268 q^{25} +1193.70i q^{29} +373.847 q^{31} -538.632i q^{35} -1793.37 q^{37} +361.849i q^{41} -3241.91 q^{43} +3519.76i q^{47} -1983.39 q^{49} -1522.31i q^{53} -1426.70 q^{55} -6068.46i q^{59} +899.781 q^{61} +6281.06i q^{65} -6954.12 q^{67} -9017.89i q^{71} -3063.58 q^{73} -1106.14i q^{77} -5579.53 q^{79} +4248.36i q^{83} -5140.73 q^{85} -6532.00i q^{89} -4869.80 q^{91} -1558.63i q^{95} -4567.53 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 52 q^{7} + 220 q^{13} - 308 q^{19} - 328 q^{25} - 1472 q^{31} + 1228 q^{37} + 388 q^{43} + 3432 q^{49} - 36 q^{55} + 1804 q^{61} - 2180 q^{67} - 4544 q^{73} - 5012 q^{79} - 5364 q^{85} - 1756 q^{91}+ \cdots - 2528 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 26.3577i − 1.05431i −0.849770 0.527153i \(-0.823259\pi\)
0.849770 0.527153i \(-0.176741\pi\)
\(6\) 0 0
\(7\) 20.4355 0.417051 0.208525 0.978017i \(-0.433134\pi\)
0.208525 + 0.978017i \(0.433134\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 54.1285i − 0.447343i −0.974665 0.223672i \(-0.928196\pi\)
0.974665 0.223672i \(-0.0718043\pi\)
\(12\) 0 0
\(13\) −238.301 −1.41006 −0.705032 0.709175i \(-0.749068\pi\)
−0.705032 + 0.709175i \(0.749068\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 195.038i − 0.674870i −0.941349 0.337435i \(-0.890441\pi\)
0.941349 0.337435i \(-0.109559\pi\)
\(18\) 0 0
\(19\) 59.1338 0.163806 0.0819028 0.996640i \(-0.473900\pi\)
0.0819028 + 0.996640i \(0.473900\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 269.521i − 0.509492i −0.967008 0.254746i \(-0.918008\pi\)
0.967008 0.254746i \(-0.0819919\pi\)
\(24\) 0 0
\(25\) −69.7268 −0.111563
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1193.70i 1.41938i 0.704514 + 0.709690i \(0.251165\pi\)
−0.704514 + 0.709690i \(0.748835\pi\)
\(30\) 0 0
\(31\) 373.847 0.389018 0.194509 0.980901i \(-0.437689\pi\)
0.194509 + 0.980901i \(0.437689\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 538.632i − 0.439699i
\(36\) 0 0
\(37\) −1793.37 −1.30999 −0.654994 0.755634i \(-0.727329\pi\)
−0.654994 + 0.755634i \(0.727329\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 361.849i 0.215258i 0.994191 + 0.107629i \(0.0343259\pi\)
−0.994191 + 0.107629i \(0.965674\pi\)
\(42\) 0 0
\(43\) −3241.91 −1.75333 −0.876666 0.481099i \(-0.840238\pi\)
−0.876666 + 0.481099i \(0.840238\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3519.76i 1.59337i 0.604394 + 0.796686i \(0.293415\pi\)
−0.604394 + 0.796686i \(0.706585\pi\)
\(48\) 0 0
\(49\) −1983.39 −0.826069
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 1522.31i − 0.541940i −0.962588 0.270970i \(-0.912656\pi\)
0.962588 0.270970i \(-0.0873443\pi\)
\(54\) 0 0
\(55\) −1426.70 −0.471637
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 6068.46i − 1.74331i −0.490121 0.871655i \(-0.663047\pi\)
0.490121 0.871655i \(-0.336953\pi\)
\(60\) 0 0
\(61\) 899.781 0.241812 0.120906 0.992664i \(-0.461420\pi\)
0.120906 + 0.992664i \(0.461420\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6281.06i 1.48664i
\(66\) 0 0
\(67\) −6954.12 −1.54915 −0.774574 0.632483i \(-0.782036\pi\)
−0.774574 + 0.632483i \(0.782036\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 9017.89i − 1.78891i −0.447160 0.894454i \(-0.647564\pi\)
0.447160 0.894454i \(-0.352436\pi\)
\(72\) 0 0
\(73\) −3063.58 −0.574888 −0.287444 0.957797i \(-0.592806\pi\)
−0.287444 + 0.957797i \(0.592806\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 1106.14i − 0.186565i
\(78\) 0 0
\(79\) −5579.53 −0.894012 −0.447006 0.894531i \(-0.647510\pi\)
−0.447006 + 0.894531i \(0.647510\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4248.36i 0.616688i 0.951275 + 0.308344i \(0.0997748\pi\)
−0.951275 + 0.308344i \(0.900225\pi\)
\(84\) 0 0
\(85\) −5140.73 −0.711520
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 6532.00i − 0.824644i −0.911038 0.412322i \(-0.864718\pi\)
0.911038 0.412322i \(-0.135282\pi\)
\(90\) 0 0
\(91\) −4869.80 −0.588069
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 1558.63i − 0.172701i
\(96\) 0 0
\(97\) −4567.53 −0.485443 −0.242722 0.970096i \(-0.578040\pi\)
−0.242722 + 0.970096i \(0.578040\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 18560.7i 1.81950i 0.415157 + 0.909750i \(0.363727\pi\)
−0.415157 + 0.909750i \(0.636273\pi\)
\(102\) 0 0
\(103\) 5070.63 0.477955 0.238978 0.971025i \(-0.423188\pi\)
0.238978 + 0.971025i \(0.423188\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16248.3i 1.41919i 0.704609 + 0.709595i \(0.251122\pi\)
−0.704609 + 0.709595i \(0.748878\pi\)
\(108\) 0 0
\(109\) −2690.46 −0.226451 −0.113225 0.993569i \(-0.536118\pi\)
−0.113225 + 0.993569i \(0.536118\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 5097.49i − 0.399208i −0.979877 0.199604i \(-0.936034\pi\)
0.979877 0.199604i \(-0.0639656\pi\)
\(114\) 0 0
\(115\) −7103.96 −0.537161
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 3985.69i − 0.281455i
\(120\) 0 0
\(121\) 11711.1 0.799884
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 14635.7i − 0.936685i
\(126\) 0 0
\(127\) −11705.0 −0.725714 −0.362857 0.931845i \(-0.618199\pi\)
−0.362857 + 0.931845i \(0.618199\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12122.3i 0.706389i 0.935550 + 0.353194i \(0.114905\pi\)
−0.935550 + 0.353194i \(0.885095\pi\)
\(132\) 0 0
\(133\) 1208.43 0.0683153
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 23958.5i − 1.27649i −0.769833 0.638246i \(-0.779660\pi\)
0.769833 0.638246i \(-0.220340\pi\)
\(138\) 0 0
\(139\) −19547.4 −1.01172 −0.505858 0.862617i \(-0.668824\pi\)
−0.505858 + 0.862617i \(0.668824\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 12898.9i 0.630783i
\(144\) 0 0
\(145\) 31463.1 1.49646
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9267.88i 0.417453i 0.977974 + 0.208727i \(0.0669319\pi\)
−0.977974 + 0.208727i \(0.933068\pi\)
\(150\) 0 0
\(151\) 31783.3 1.39395 0.696973 0.717098i \(-0.254530\pi\)
0.696973 + 0.717098i \(0.254530\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 9853.73i − 0.410145i
\(156\) 0 0
\(157\) 17103.5 0.693883 0.346941 0.937887i \(-0.387220\pi\)
0.346941 + 0.937887i \(0.387220\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 5507.80i − 0.212484i
\(162\) 0 0
\(163\) 14463.6 0.544379 0.272189 0.962244i \(-0.412252\pi\)
0.272189 + 0.962244i \(0.412252\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 25314.2i − 0.907678i −0.891084 0.453839i \(-0.850054\pi\)
0.891084 0.453839i \(-0.149946\pi\)
\(168\) 0 0
\(169\) 28226.3 0.988282
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 40904.9i − 1.36673i −0.730077 0.683365i \(-0.760516\pi\)
0.730077 0.683365i \(-0.239484\pi\)
\(174\) 0 0
\(175\) −1424.90 −0.0465274
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 45433.1i 1.41797i 0.705225 + 0.708984i \(0.250846\pi\)
−0.705225 + 0.708984i \(0.749154\pi\)
\(180\) 0 0
\(181\) 41107.8 1.25478 0.627389 0.778706i \(-0.284124\pi\)
0.627389 + 0.778706i \(0.284124\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 47269.1i 1.38113i
\(186\) 0 0
\(187\) −10557.1 −0.301899
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 60676.3i − 1.66323i −0.555353 0.831615i \(-0.687417\pi\)
0.555353 0.831615i \(-0.312583\pi\)
\(192\) 0 0
\(193\) 44731.3 1.20087 0.600436 0.799673i \(-0.294994\pi\)
0.600436 + 0.799673i \(0.294994\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 464.194i 0.0119610i 0.999982 + 0.00598050i \(0.00190366\pi\)
−0.999982 + 0.00598050i \(0.998096\pi\)
\(198\) 0 0
\(199\) −48133.7 −1.21547 −0.607733 0.794142i \(-0.707921\pi\)
−0.607733 + 0.794142i \(0.707921\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 24393.8i 0.591954i
\(204\) 0 0
\(205\) 9537.49 0.226948
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 3200.83i − 0.0732774i
\(210\) 0 0
\(211\) 32194.8 0.723138 0.361569 0.932345i \(-0.382241\pi\)
0.361569 + 0.932345i \(0.382241\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 85449.2i 1.84855i
\(216\) 0 0
\(217\) 7639.74 0.162240
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 46477.6i 0.951611i
\(222\) 0 0
\(223\) 2292.15 0.0460927 0.0230464 0.999734i \(-0.492663\pi\)
0.0230464 + 0.999734i \(0.492663\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 26794.9i − 0.519997i −0.965609 0.259998i \(-0.916278\pi\)
0.965609 0.259998i \(-0.0837221\pi\)
\(228\) 0 0
\(229\) 48060.1 0.916460 0.458230 0.888834i \(-0.348484\pi\)
0.458230 + 0.888834i \(0.348484\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 27107.9i − 0.499326i −0.968333 0.249663i \(-0.919680\pi\)
0.968333 0.249663i \(-0.0803199\pi\)
\(234\) 0 0
\(235\) 92772.6 1.67990
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 61272.5i − 1.07268i −0.844003 0.536339i \(-0.819807\pi\)
0.844003 0.536339i \(-0.180193\pi\)
\(240\) 0 0
\(241\) 37849.9 0.651675 0.325837 0.945426i \(-0.394354\pi\)
0.325837 + 0.945426i \(0.394354\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 52277.6i 0.870930i
\(246\) 0 0
\(247\) −14091.6 −0.230977
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 25694.6i 0.407844i 0.978987 + 0.203922i \(0.0653688\pi\)
−0.978987 + 0.203922i \(0.934631\pi\)
\(252\) 0 0
\(253\) −14588.8 −0.227918
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 25717.4i 0.389369i 0.980866 + 0.194685i \(0.0623683\pi\)
−0.980866 + 0.194685i \(0.937632\pi\)
\(258\) 0 0
\(259\) −36648.4 −0.546331
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 99701.3i − 1.44142i −0.693239 0.720708i \(-0.743817\pi\)
0.693239 0.720708i \(-0.256183\pi\)
\(264\) 0 0
\(265\) −40124.5 −0.571371
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 126040.i − 1.74182i −0.491445 0.870909i \(-0.663531\pi\)
0.491445 0.870909i \(-0.336469\pi\)
\(270\) 0 0
\(271\) −73237.4 −0.997228 −0.498614 0.866824i \(-0.666157\pi\)
−0.498614 + 0.866824i \(0.666157\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3774.21i 0.0499069i
\(276\) 0 0
\(277\) 104435. 1.36109 0.680547 0.732704i \(-0.261742\pi\)
0.680547 + 0.732704i \(0.261742\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 54894.5i 0.695210i 0.937641 + 0.347605i \(0.113005\pi\)
−0.937641 + 0.347605i \(0.886995\pi\)
\(282\) 0 0
\(283\) −115201. −1.43841 −0.719204 0.694799i \(-0.755493\pi\)
−0.719204 + 0.694799i \(0.755493\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7394.56i 0.0897735i
\(288\) 0 0
\(289\) 45481.4 0.544550
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 36524.3i − 0.425448i −0.977112 0.212724i \(-0.931766\pi\)
0.977112 0.212724i \(-0.0682335\pi\)
\(294\) 0 0
\(295\) −159950. −1.83798
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 64227.2i 0.718417i
\(300\) 0 0
\(301\) −66250.1 −0.731229
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 23716.1i − 0.254944i
\(306\) 0 0
\(307\) −95335.4 −1.01153 −0.505763 0.862672i \(-0.668789\pi\)
−0.505763 + 0.862672i \(0.668789\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 181809.i − 1.87973i −0.341545 0.939865i \(-0.610950\pi\)
0.341545 0.939865i \(-0.389050\pi\)
\(312\) 0 0
\(313\) 60391.5 0.616434 0.308217 0.951316i \(-0.400268\pi\)
0.308217 + 0.951316i \(0.400268\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 94986.4i 0.945242i 0.881266 + 0.472621i \(0.156692\pi\)
−0.881266 + 0.472621i \(0.843308\pi\)
\(318\) 0 0
\(319\) 64613.2 0.634950
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 11533.3i − 0.110548i
\(324\) 0 0
\(325\) 16616.0 0.157311
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 71928.0i 0.664517i
\(330\) 0 0
\(331\) −138129. −1.26075 −0.630377 0.776289i \(-0.717100\pi\)
−0.630377 + 0.776289i \(0.717100\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 183295.i 1.63328i
\(336\) 0 0
\(337\) 80799.9 0.711461 0.355731 0.934589i \(-0.384232\pi\)
0.355731 + 0.934589i \(0.384232\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 20235.8i − 0.174025i
\(342\) 0 0
\(343\) −89597.2 −0.761563
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 11663.2i − 0.0968630i −0.998827 0.0484315i \(-0.984578\pi\)
0.998827 0.0484315i \(-0.0154223\pi\)
\(348\) 0 0
\(349\) −156501. −1.28489 −0.642447 0.766330i \(-0.722081\pi\)
−0.642447 + 0.766330i \(0.722081\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 196742.i 1.57887i 0.613831 + 0.789437i \(0.289628\pi\)
−0.613831 + 0.789437i \(0.710372\pi\)
\(354\) 0 0
\(355\) −237690. −1.88606
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 36095.4i − 0.280068i −0.990147 0.140034i \(-0.955279\pi\)
0.990147 0.140034i \(-0.0447211\pi\)
\(360\) 0 0
\(361\) −126824. −0.973168
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 80748.8i 0.606108i
\(366\) 0 0
\(367\) 41547.9 0.308473 0.154236 0.988034i \(-0.450708\pi\)
0.154236 + 0.988034i \(0.450708\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 31109.1i − 0.226016i
\(372\) 0 0
\(373\) 174472. 1.25403 0.627017 0.779006i \(-0.284276\pi\)
0.627017 + 0.779006i \(0.284276\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 284460.i − 2.00142i
\(378\) 0 0
\(379\) −164788. −1.14722 −0.573612 0.819127i \(-0.694458\pi\)
−0.573612 + 0.819127i \(0.694458\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 12680.8i − 0.0864468i −0.999065 0.0432234i \(-0.986237\pi\)
0.999065 0.0432234i \(-0.0137627\pi\)
\(384\) 0 0
\(385\) −29155.4 −0.196697
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 64430.6i 0.425787i 0.977075 + 0.212894i \(0.0682888\pi\)
−0.977075 + 0.212894i \(0.931711\pi\)
\(390\) 0 0
\(391\) −52566.8 −0.343841
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 147063.i 0.942563i
\(396\) 0 0
\(397\) 143446. 0.910135 0.455068 0.890457i \(-0.349615\pi\)
0.455068 + 0.890457i \(0.349615\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 212374.i − 1.32073i −0.750946 0.660364i \(-0.770402\pi\)
0.750946 0.660364i \(-0.229598\pi\)
\(402\) 0 0
\(403\) −89088.0 −0.548541
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 97072.6i 0.586014i
\(408\) 0 0
\(409\) −212213. −1.26860 −0.634301 0.773086i \(-0.718712\pi\)
−0.634301 + 0.773086i \(0.718712\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 124012.i − 0.727048i
\(414\) 0 0
\(415\) 111977. 0.650178
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 121549.i − 0.692347i −0.938170 0.346174i \(-0.887481\pi\)
0.938170 0.346174i \(-0.112519\pi\)
\(420\) 0 0
\(421\) 63011.6 0.355514 0.177757 0.984074i \(-0.443116\pi\)
0.177757 + 0.984074i \(0.443116\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 13599.3i 0.0752905i
\(426\) 0 0
\(427\) 18387.5 0.100848
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 128883.i 0.693812i 0.937900 + 0.346906i \(0.112768\pi\)
−0.937900 + 0.346906i \(0.887232\pi\)
\(432\) 0 0
\(433\) 6365.28 0.0339502 0.0169751 0.999856i \(-0.494596\pi\)
0.0169751 + 0.999856i \(0.494596\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 15937.8i − 0.0834577i
\(438\) 0 0
\(439\) 350295. 1.81763 0.908815 0.417200i \(-0.136988\pi\)
0.908815 + 0.417200i \(0.136988\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 186346.i − 0.949537i −0.880111 0.474769i \(-0.842532\pi\)
0.880111 0.474769i \(-0.157468\pi\)
\(444\) 0 0
\(445\) −172168. −0.869427
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 46711.0i − 0.231700i −0.993267 0.115850i \(-0.963041\pi\)
0.993267 0.115850i \(-0.0369593\pi\)
\(450\) 0 0
\(451\) 19586.3 0.0962943
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 128356.i 0.620005i
\(456\) 0 0
\(457\) −290223. −1.38963 −0.694816 0.719188i \(-0.744514\pi\)
−0.694816 + 0.719188i \(0.744514\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 237263.i − 1.11642i −0.829699 0.558211i \(-0.811488\pi\)
0.829699 0.558211i \(-0.188512\pi\)
\(462\) 0 0
\(463\) −126164. −0.588538 −0.294269 0.955723i \(-0.595076\pi\)
−0.294269 + 0.955723i \(0.595076\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20073.4i 0.0920421i 0.998940 + 0.0460210i \(0.0146541\pi\)
−0.998940 + 0.0460210i \(0.985346\pi\)
\(468\) 0 0
\(469\) −142111. −0.646073
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 175480.i 0.784342i
\(474\) 0 0
\(475\) −4123.21 −0.0182746
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1426.46i 0.00621712i 0.999995 + 0.00310856i \(0.000989486\pi\)
−0.999995 + 0.00310856i \(0.999011\pi\)
\(480\) 0 0
\(481\) 427362. 1.84717
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 120390.i 0.511806i
\(486\) 0 0
\(487\) 74085.9 0.312376 0.156188 0.987727i \(-0.450079\pi\)
0.156188 + 0.987727i \(0.450079\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 113556.i 0.471029i 0.971871 + 0.235514i \(0.0756775\pi\)
−0.971871 + 0.235514i \(0.924322\pi\)
\(492\) 0 0
\(493\) 232816. 0.957898
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 184285.i − 0.746066i
\(498\) 0 0
\(499\) 280796. 1.12769 0.563845 0.825881i \(-0.309322\pi\)
0.563845 + 0.825881i \(0.309322\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 89107.8i 0.352192i 0.984373 + 0.176096i \(0.0563470\pi\)
−0.984373 + 0.176096i \(0.943653\pi\)
\(504\) 0 0
\(505\) 489217. 1.91831
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 117960.i 0.455302i 0.973743 + 0.227651i \(0.0731046\pi\)
−0.973743 + 0.227651i \(0.926895\pi\)
\(510\) 0 0
\(511\) −62605.7 −0.239757
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 133650.i − 0.503911i
\(516\) 0 0
\(517\) 190519. 0.712784
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 316710.i 1.16677i 0.812194 + 0.583387i \(0.198273\pi\)
−0.812194 + 0.583387i \(0.801727\pi\)
\(522\) 0 0
\(523\) −390205. −1.42656 −0.713280 0.700880i \(-0.752791\pi\)
−0.713280 + 0.700880i \(0.752791\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 72914.1i − 0.262537i
\(528\) 0 0
\(529\) 207199. 0.740418
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 86228.9i − 0.303528i
\(534\) 0 0
\(535\) 428268. 1.49626
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 107358.i 0.369536i
\(540\) 0 0
\(541\) 99617.9 0.340363 0.170182 0.985413i \(-0.445565\pi\)
0.170182 + 0.985413i \(0.445565\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 70914.3i 0.238749i
\(546\) 0 0
\(547\) 248048. 0.829012 0.414506 0.910047i \(-0.363954\pi\)
0.414506 + 0.910047i \(0.363954\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 70588.0i 0.232503i
\(552\) 0 0
\(553\) −114020. −0.372848
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 242800.i 0.782598i 0.920264 + 0.391299i \(0.127974\pi\)
−0.920264 + 0.391299i \(0.872026\pi\)
\(558\) 0 0
\(559\) 772551. 2.47231
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 566496.i 1.78723i 0.448837 + 0.893613i \(0.351838\pi\)
−0.448837 + 0.893613i \(0.648162\pi\)
\(564\) 0 0
\(565\) −134358. −0.420888
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 562499.i − 1.73739i −0.495347 0.868695i \(-0.664959\pi\)
0.495347 0.868695i \(-0.335041\pi\)
\(570\) 0 0
\(571\) −155999. −0.478463 −0.239231 0.970963i \(-0.576895\pi\)
−0.239231 + 0.970963i \(0.576895\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18792.9i 0.0568404i
\(576\) 0 0
\(577\) −374817. −1.12582 −0.562908 0.826519i \(-0.690318\pi\)
−0.562908 + 0.826519i \(0.690318\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 86817.4i 0.257190i
\(582\) 0 0
\(583\) −82400.3 −0.242433
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 527481.i − 1.53084i −0.643530 0.765421i \(-0.722531\pi\)
0.643530 0.765421i \(-0.277469\pi\)
\(588\) 0 0
\(589\) 22107.0 0.0637234
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 316522.i 0.900108i 0.893001 + 0.450054i \(0.148595\pi\)
−0.893001 + 0.450054i \(0.851405\pi\)
\(594\) 0 0
\(595\) −105053. −0.296740
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 379683.i − 1.05820i −0.848559 0.529100i \(-0.822529\pi\)
0.848559 0.529100i \(-0.177471\pi\)
\(600\) 0 0
\(601\) 441678. 1.22280 0.611402 0.791320i \(-0.290606\pi\)
0.611402 + 0.791320i \(0.290606\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 308677.i − 0.843323i
\(606\) 0 0
\(607\) −82363.1 −0.223540 −0.111770 0.993734i \(-0.535652\pi\)
−0.111770 + 0.993734i \(0.535652\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 838762.i − 2.24676i
\(612\) 0 0
\(613\) 154087. 0.410057 0.205029 0.978756i \(-0.434271\pi\)
0.205029 + 0.978756i \(0.434271\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 339303.i − 0.891287i −0.895210 0.445644i \(-0.852975\pi\)
0.895210 0.445644i \(-0.147025\pi\)
\(618\) 0 0
\(619\) −122692. −0.320209 −0.160105 0.987100i \(-0.551183\pi\)
−0.160105 + 0.987100i \(0.551183\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 133485.i − 0.343918i
\(624\) 0 0
\(625\) −429342. −1.09912
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 349775.i 0.884071i
\(630\) 0 0
\(631\) 517548. 1.29985 0.649923 0.760000i \(-0.274801\pi\)
0.649923 + 0.760000i \(0.274801\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 308517.i 0.765125i
\(636\) 0 0
\(637\) 472644. 1.16481
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 663334.i 1.61442i 0.590265 + 0.807209i \(0.299023\pi\)
−0.590265 + 0.807209i \(0.700977\pi\)
\(642\) 0 0
\(643\) 388977. 0.940810 0.470405 0.882451i \(-0.344108\pi\)
0.470405 + 0.882451i \(0.344108\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 464654.i 1.11000i 0.831852 + 0.554998i \(0.187281\pi\)
−0.831852 + 0.554998i \(0.812719\pi\)
\(648\) 0 0
\(649\) −328477. −0.779858
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 339224.i − 0.795537i −0.917486 0.397768i \(-0.869785\pi\)
0.917486 0.397768i \(-0.130215\pi\)
\(654\) 0 0
\(655\) 319517. 0.744750
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 215923.i − 0.497196i −0.968607 0.248598i \(-0.920030\pi\)
0.968607 0.248598i \(-0.0799698\pi\)
\(660\) 0 0
\(661\) 39052.6 0.0893813 0.0446906 0.999001i \(-0.485770\pi\)
0.0446906 + 0.999001i \(0.485770\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 31851.4i − 0.0720253i
\(666\) 0 0
\(667\) 321727. 0.723163
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 48703.8i − 0.108173i
\(672\) 0 0
\(673\) −832865. −1.83884 −0.919421 0.393276i \(-0.871342\pi\)
−0.919421 + 0.393276i \(0.871342\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 338988.i 0.739617i 0.929108 + 0.369809i \(0.120577\pi\)
−0.929108 + 0.369809i \(0.879423\pi\)
\(678\) 0 0
\(679\) −93339.8 −0.202454
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 928607.i − 1.99063i −0.0966825 0.995315i \(-0.530823\pi\)
0.0966825 0.995315i \(-0.469177\pi\)
\(684\) 0 0
\(685\) −631489. −1.34581
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 362767.i 0.764170i
\(690\) 0 0
\(691\) 219271. 0.459224 0.229612 0.973282i \(-0.426254\pi\)
0.229612 + 0.973282i \(0.426254\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 515223.i 1.06666i
\(696\) 0 0
\(697\) 70574.1 0.145271
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 118463.i 0.241071i 0.992709 + 0.120536i \(0.0384612\pi\)
−0.992709 + 0.120536i \(0.961539\pi\)
\(702\) 0 0
\(703\) −106049. −0.214583
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 379297.i 0.758824i
\(708\) 0 0
\(709\) −814890. −1.62109 −0.810544 0.585678i \(-0.800828\pi\)
−0.810544 + 0.585678i \(0.800828\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 100760.i − 0.198202i
\(714\) 0 0
\(715\) 339984. 0.665039
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 789.716i 0.00152761i 1.00000 0.000763806i \(0.000243127\pi\)
−1.00000 0.000763806i \(0.999757\pi\)
\(720\) 0 0
\(721\) 103621. 0.199332
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 83232.8i − 0.158350i
\(726\) 0 0
\(727\) −601293. −1.13767 −0.568836 0.822451i \(-0.692606\pi\)
−0.568836 + 0.822451i \(0.692606\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 632294.i 1.18327i
\(732\) 0 0
\(733\) −1.00924e6 −1.87838 −0.939192 0.343391i \(-0.888424\pi\)
−0.939192 + 0.343391i \(0.888424\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 376417.i 0.693001i
\(738\) 0 0
\(739\) −753999. −1.38065 −0.690323 0.723502i \(-0.742531\pi\)
−0.690323 + 0.723502i \(0.742531\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 197835.i − 0.358365i −0.983816 0.179182i \(-0.942655\pi\)
0.983816 0.179182i \(-0.0573453\pi\)
\(744\) 0 0
\(745\) 244280. 0.440124
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 332042.i 0.591875i
\(750\) 0 0
\(751\) 772087. 1.36895 0.684473 0.729038i \(-0.260032\pi\)
0.684473 + 0.729038i \(0.260032\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 837735.i − 1.46965i
\(756\) 0 0
\(757\) −459844. −0.802452 −0.401226 0.915979i \(-0.631416\pi\)
−0.401226 + 0.915979i \(0.631416\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 859603.i − 1.48432i −0.670221 0.742161i \(-0.733801\pi\)
0.670221 0.742161i \(-0.266199\pi\)
\(762\) 0 0
\(763\) −54980.9 −0.0944415
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.44612e6i 2.45818i
\(768\) 0 0
\(769\) 5919.28 0.0100096 0.00500479 0.999987i \(-0.498407\pi\)
0.00500479 + 0.999987i \(0.498407\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 80749.0i 0.135138i 0.997715 + 0.0675691i \(0.0215243\pi\)
−0.997715 + 0.0675691i \(0.978476\pi\)
\(774\) 0 0
\(775\) −26067.1 −0.0434000
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 21397.5i 0.0352605i
\(780\) 0 0
\(781\) −488125. −0.800256
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 450809.i − 0.731565i
\(786\) 0 0
\(787\) −1.06105e6 −1.71312 −0.856558 0.516050i \(-0.827402\pi\)
−0.856558 + 0.516050i \(0.827402\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 104170.i − 0.166490i
\(792\) 0 0
\(793\) −214419. −0.340970
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 929793.i − 1.46376i −0.681434 0.731879i \(-0.738643\pi\)
0.681434 0.731879i \(-0.261357\pi\)
\(798\) 0 0
\(799\) 686485. 1.07532
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 165827.i 0.257172i
\(804\) 0 0
\(805\) −145173. −0.224024
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 181072.i − 0.276665i −0.990386 0.138333i \(-0.955826\pi\)
0.990386 0.138333i \(-0.0441743\pi\)
\(810\) 0 0
\(811\) 49745.9 0.0756338 0.0378169 0.999285i \(-0.487960\pi\)
0.0378169 + 0.999285i \(0.487960\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 381227.i − 0.573942i
\(816\) 0 0
\(817\) −191707. −0.287206
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 6952.22i − 0.0103142i −0.999987 0.00515712i \(-0.998358\pi\)
0.999987 0.00515712i \(-0.00164157\pi\)
\(822\) 0 0
\(823\) −758252. −1.11947 −0.559737 0.828670i \(-0.689098\pi\)
−0.559737 + 0.828670i \(0.689098\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 641019.i − 0.937260i −0.883394 0.468630i \(-0.844748\pi\)
0.883394 0.468630i \(-0.155252\pi\)
\(828\) 0 0
\(829\) 549710. 0.799879 0.399940 0.916541i \(-0.369031\pi\)
0.399940 + 0.916541i \(0.369031\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 386836.i 0.557489i
\(834\) 0 0
\(835\) −667224. −0.956971
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 917081.i 1.30282i 0.758727 + 0.651409i \(0.225822\pi\)
−0.758727 + 0.651409i \(0.774178\pi\)
\(840\) 0 0
\(841\) −717636. −1.01464
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 743980.i − 1.04195i
\(846\) 0 0
\(847\) 239322. 0.333592
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 483352.i 0.667428i
\(852\) 0 0
\(853\) −1.00142e6 −1.37632 −0.688160 0.725559i \(-0.741581\pi\)
−0.688160 + 0.725559i \(0.741581\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 256079.i − 0.348668i −0.984687 0.174334i \(-0.944223\pi\)
0.984687 0.174334i \(-0.0557772\pi\)
\(858\) 0 0
\(859\) −326298. −0.442209 −0.221105 0.975250i \(-0.570966\pi\)
−0.221105 + 0.975250i \(0.570966\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 952268.i − 1.27861i −0.768954 0.639304i \(-0.779222\pi\)
0.768954 0.639304i \(-0.220778\pi\)
\(864\) 0 0
\(865\) −1.07816e6 −1.44095
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 302012.i 0.399930i
\(870\) 0 0
\(871\) 1.65717e6 2.18440
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 299088.i − 0.390645i
\(876\) 0 0
\(877\) −21518.1 −0.0279773 −0.0139886 0.999902i \(-0.504453\pi\)
−0.0139886 + 0.999902i \(0.504453\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 784125.i 1.01026i 0.863043 + 0.505130i \(0.168556\pi\)
−0.863043 + 0.505130i \(0.831444\pi\)
\(882\) 0 0
\(883\) −67879.2 −0.0870593 −0.0435296 0.999052i \(-0.513860\pi\)
−0.0435296 + 0.999052i \(0.513860\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 605558.i − 0.769678i −0.922984 0.384839i \(-0.874257\pi\)
0.922984 0.384839i \(-0.125743\pi\)
\(888\) 0 0
\(889\) −239198. −0.302659
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 208137.i 0.261003i
\(894\) 0 0
\(895\) 1.19751e6 1.49497
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 446260.i 0.552165i
\(900\) 0 0
\(901\) −296907. −0.365739
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 1.08350e6i − 1.32292i
\(906\) 0 0
\(907\) −51373.7 −0.0624491 −0.0312246 0.999512i \(-0.509941\pi\)
−0.0312246 + 0.999512i \(0.509941\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 370894.i 0.446902i 0.974715 + 0.223451i \(0.0717323\pi\)
−0.974715 + 0.223451i \(0.928268\pi\)
\(912\) 0 0
\(913\) 229958. 0.275871
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 247726.i 0.294600i
\(918\) 0 0
\(919\) 891724. 1.05584 0.527922 0.849293i \(-0.322971\pi\)
0.527922 + 0.849293i \(0.322971\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.14897e6i 2.52248i
\(924\) 0 0
\(925\) 125046. 0.146146
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 682726.i 0.791071i 0.918451 + 0.395535i \(0.129441\pi\)
−0.918451 + 0.395535i \(0.870559\pi\)
\(930\) 0 0
\(931\) −117286. −0.135315
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 278260.i 0.318294i
\(936\) 0 0
\(937\) 1.02178e6 1.16380 0.581899 0.813261i \(-0.302310\pi\)
0.581899 + 0.813261i \(0.302310\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 1.20924e6i − 1.36563i −0.730593 0.682813i \(-0.760756\pi\)
0.730593 0.682813i \(-0.239244\pi\)
\(942\) 0 0
\(943\) 97526.0 0.109672
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 547109.i − 0.610062i −0.952342 0.305031i \(-0.901333\pi\)
0.952342 0.305031i \(-0.0986668\pi\)
\(948\) 0 0
\(949\) 730054. 0.810629
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 251720.i 0.277161i 0.990351 + 0.138581i \(0.0442540\pi\)
−0.990351 + 0.138581i \(0.955746\pi\)
\(954\) 0 0
\(955\) −1.59929e6 −1.75355
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 489603.i − 0.532362i
\(960\) 0 0
\(961\) −783760. −0.848665
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 1.17901e6i − 1.26609i
\(966\) 0 0
\(967\) 1.81734e6 1.94349 0.971746 0.236028i \(-0.0758458\pi\)
0.971746 + 0.236028i \(0.0758458\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 870954.i 0.923755i 0.886944 + 0.461878i \(0.152824\pi\)
−0.886944 + 0.461878i \(0.847176\pi\)
\(972\) 0 0
\(973\) −399460. −0.421937
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.16437e6i 1.21983i 0.792465 + 0.609917i \(0.208797\pi\)
−0.792465 + 0.609917i \(0.791203\pi\)
\(978\) 0 0
\(979\) −353568. −0.368899
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 1.01777e6i − 1.05328i −0.850088 0.526641i \(-0.823451\pi\)
0.850088 0.526641i \(-0.176549\pi\)
\(984\) 0 0
\(985\) 12235.1 0.0126106
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 873765.i 0.893309i
\(990\) 0 0
\(991\) 758495. 0.772334 0.386167 0.922429i \(-0.373799\pi\)
0.386167 + 0.922429i \(0.373799\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.26869e6i 1.28147i
\(996\) 0 0
\(997\) 483994. 0.486911 0.243456 0.969912i \(-0.421719\pi\)
0.243456 + 0.969912i \(0.421719\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.5.c.b.161.2 8
3.2 odd 2 inner 324.5.c.b.161.7 yes 8
4.3 odd 2 1296.5.e.f.161.2 8
9.2 odd 6 324.5.g.f.53.2 16
9.4 even 3 324.5.g.f.269.2 16
9.5 odd 6 324.5.g.f.269.7 16
9.7 even 3 324.5.g.f.53.7 16
12.11 even 2 1296.5.e.f.161.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.5.c.b.161.2 8 1.1 even 1 trivial
324.5.c.b.161.7 yes 8 3.2 odd 2 inner
324.5.g.f.53.2 16 9.2 odd 6
324.5.g.f.53.7 16 9.7 even 3
324.5.g.f.269.2 16 9.4 even 3
324.5.g.f.269.7 16 9.5 odd 6
1296.5.e.f.161.2 8 4.3 odd 2
1296.5.e.f.161.7 8 12.11 even 2