Properties

Label 324.5.g.f.53.1
Level $324$
Weight $5$
Character 324.53
Analytic conductor $33.492$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,5,Mod(53,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.53"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 324.g (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.4918680392\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 6242x^{12} + 11954017x^{8} + 7856017920x^{4} + 1485512441856 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{44} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 53.1
Root \(-5.35887 - 5.35887i\) of defining polynomial
Character \(\chi\) \(=\) 324.53
Dual form 324.5.g.f.269.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-29.1904 - 16.8531i) q^{5} +(16.7081 + 28.9393i) q^{7} +(119.377 - 68.9223i) q^{11} +(-128.464 + 222.506i) q^{13} +56.9994i q^{17} -328.391 q^{19} +(56.9556 + 32.8833i) q^{23} +(255.552 + 442.629i) q^{25} +(400.370 - 231.153i) q^{29} +(916.519 - 1587.46i) q^{31} -1126.33i q^{35} +359.661 q^{37} +(2295.67 + 1325.41i) q^{41} +(-430.174 - 745.083i) q^{43} +(2744.30 - 1584.42i) q^{47} +(642.177 - 1112.28i) q^{49} -5281.61i q^{53} -4646.21 q^{55} +(-1327.28 - 766.308i) q^{59} +(3614.88 + 6261.16i) q^{61} +(7499.82 - 4330.02i) q^{65} +(295.046 - 511.035i) q^{67} +4706.23i q^{71} -2748.96 q^{73} +(3989.13 + 2303.12i) q^{77} +(2983.53 + 5167.62i) q^{79} +(10339.3 - 5969.42i) q^{83} +(960.615 - 1663.83i) q^{85} -9339.75i q^{89} -8585.57 q^{91} +(9585.87 + 5534.40i) q^{95} +(-1598.84 - 2769.27i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 52 q^{7} - 220 q^{13} - 616 q^{19} + 328 q^{25} + 1472 q^{31} + 2456 q^{37} - 388 q^{43} - 3432 q^{49} - 72 q^{55} - 1804 q^{61} + 2180 q^{67} - 9088 q^{73} + 5012 q^{79} + 5364 q^{85} - 3512 q^{91}+ \cdots + 2528 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −29.1904 16.8531i −1.16761 0.674123i −0.214498 0.976724i \(-0.568811\pi\)
−0.953117 + 0.302602i \(0.902145\pi\)
\(6\) 0 0
\(7\) 16.7081 + 28.9393i 0.340982 + 0.590598i 0.984615 0.174736i \(-0.0559071\pi\)
−0.643633 + 0.765334i \(0.722574\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 119.377 68.9223i 0.986586 0.569606i 0.0823338 0.996605i \(-0.473763\pi\)
0.904252 + 0.426999i \(0.140429\pi\)
\(12\) 0 0
\(13\) −128.464 + 222.506i −0.760142 + 1.31660i 0.182636 + 0.983181i \(0.441537\pi\)
−0.942777 + 0.333423i \(0.891796\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 56.9994i 0.197230i 0.995126 + 0.0986149i \(0.0314412\pi\)
−0.995126 + 0.0986149i \(0.968559\pi\)
\(18\) 0 0
\(19\) −328.391 −0.909672 −0.454836 0.890575i \(-0.650302\pi\)
−0.454836 + 0.890575i \(0.650302\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 56.9556 + 32.8833i 0.107667 + 0.0621613i 0.552866 0.833270i \(-0.313534\pi\)
−0.445200 + 0.895431i \(0.646867\pi\)
\(24\) 0 0
\(25\) 255.552 + 442.629i 0.408883 + 0.708206i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 400.370 231.153i 0.476064 0.274855i −0.242711 0.970099i \(-0.578037\pi\)
0.718775 + 0.695243i \(0.244703\pi\)
\(30\) 0 0
\(31\) 916.519 1587.46i 0.953714 1.65188i 0.216431 0.976298i \(-0.430558\pi\)
0.737284 0.675583i \(-0.236108\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1126.33i 0.919455i
\(36\) 0 0
\(37\) 359.661 0.262718 0.131359 0.991335i \(-0.458066\pi\)
0.131359 + 0.991335i \(0.458066\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2295.67 + 1325.41i 1.36566 + 0.788463i 0.990370 0.138445i \(-0.0442105\pi\)
0.375288 + 0.926908i \(0.377544\pi\)
\(42\) 0 0
\(43\) −430.174 745.083i −0.232652 0.402965i 0.725936 0.687763i \(-0.241407\pi\)
−0.958588 + 0.284797i \(0.908074\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2744.30 1584.42i 1.24233 0.717258i 0.272760 0.962082i \(-0.412064\pi\)
0.969567 + 0.244824i \(0.0787302\pi\)
\(48\) 0 0
\(49\) 642.177 1112.28i 0.267462 0.463258i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5281.61i 1.88025i −0.340836 0.940123i \(-0.610710\pi\)
0.340836 0.940123i \(-0.389290\pi\)
\(54\) 0 0
\(55\) −4646.21 −1.53594
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1327.28 766.308i −0.381294 0.220140i 0.297087 0.954850i \(-0.403985\pi\)
−0.678381 + 0.734710i \(0.737318\pi\)
\(60\) 0 0
\(61\) 3614.88 + 6261.16i 0.971481 + 1.68265i 0.691091 + 0.722768i \(0.257130\pi\)
0.280390 + 0.959886i \(0.409536\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7499.82 4330.02i 1.77511 1.02486i
\(66\) 0 0
\(67\) 295.046 511.035i 0.0657265 0.113842i −0.831290 0.555840i \(-0.812397\pi\)
0.897016 + 0.441998i \(0.145730\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4706.23i 0.933591i 0.884365 + 0.466795i \(0.154592\pi\)
−0.884365 + 0.466795i \(0.845408\pi\)
\(72\) 0 0
\(73\) −2748.96 −0.515849 −0.257924 0.966165i \(-0.583039\pi\)
−0.257924 + 0.966165i \(0.583039\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3989.13 + 2303.12i 0.672816 + 0.388451i
\(78\) 0 0
\(79\) 2983.53 + 5167.62i 0.478053 + 0.828011i 0.999683 0.0251600i \(-0.00800952\pi\)
−0.521631 + 0.853171i \(0.674676\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 10339.3 5969.42i 1.50085 0.866515i 0.500848 0.865535i \(-0.333021\pi\)
1.00000 0.000979819i \(-0.000311886\pi\)
\(84\) 0 0
\(85\) 960.615 1663.83i 0.132957 0.230288i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9339.75i 1.17911i −0.807727 0.589556i \(-0.799303\pi\)
0.807727 0.589556i \(-0.200697\pi\)
\(90\) 0 0
\(91\) −8585.57 −1.03678
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 9585.87 + 5534.40i 1.06215 + 0.613230i
\(96\) 0 0
\(97\) −1598.84 2769.27i −0.169927 0.294322i 0.768467 0.639889i \(-0.221020\pi\)
−0.938394 + 0.345568i \(0.887686\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4275.71 + 2468.58i −0.419146 + 0.241994i −0.694712 0.719288i \(-0.744468\pi\)
0.275566 + 0.961282i \(0.411135\pi\)
\(102\) 0 0
\(103\) 7812.71 13532.0i 0.736423 1.27552i −0.217673 0.976022i \(-0.569847\pi\)
0.954096 0.299500i \(-0.0968200\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15974.3i 1.39526i −0.716460 0.697629i \(-0.754239\pi\)
0.716460 0.697629i \(-0.245761\pi\)
\(108\) 0 0
\(109\) 4163.62 0.350444 0.175222 0.984529i \(-0.443936\pi\)
0.175222 + 0.984529i \(0.443936\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −11971.5 6911.77i −0.937547 0.541293i −0.0483564 0.998830i \(-0.515398\pi\)
−0.889190 + 0.457537i \(0.848732\pi\)
\(114\) 0 0
\(115\) −1108.37 1919.75i −0.0838087 0.145161i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1649.52 + 952.353i −0.116484 + 0.0672518i
\(120\) 0 0
\(121\) 2180.06 3775.97i 0.148901 0.257904i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3839.00i 0.245696i
\(126\) 0 0
\(127\) 19659.0 1.21886 0.609432 0.792839i \(-0.291398\pi\)
0.609432 + 0.792839i \(0.291398\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 18028.6 + 10408.8i 1.05055 + 0.606537i 0.922804 0.385269i \(-0.125891\pi\)
0.127749 + 0.991806i \(0.459225\pi\)
\(132\) 0 0
\(133\) −5486.81 9503.43i −0.310182 0.537251i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14851.4 8574.49i 0.791275 0.456843i −0.0491359 0.998792i \(-0.515647\pi\)
0.840411 + 0.541949i \(0.182313\pi\)
\(138\) 0 0
\(139\) −7958.44 + 13784.4i −0.411906 + 0.713443i −0.995098 0.0988916i \(-0.968470\pi\)
0.583192 + 0.812335i \(0.301804\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 35416.1i 1.73192i
\(144\) 0 0
\(145\) −15582.6 −0.741145
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −22913.0 13228.8i −1.03207 0.595866i −0.114494 0.993424i \(-0.536525\pi\)
−0.917577 + 0.397558i \(0.869858\pi\)
\(150\) 0 0
\(151\) 13380.7 + 23176.0i 0.586846 + 1.01645i 0.994643 + 0.103374i \(0.0329640\pi\)
−0.407796 + 0.913073i \(0.633703\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −53507.1 + 30892.3i −2.22714 + 1.28584i
\(156\) 0 0
\(157\) −20572.9 + 35633.3i −0.834635 + 1.44563i 0.0596925 + 0.998217i \(0.480988\pi\)
−0.894327 + 0.447413i \(0.852345\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2197.68i 0.0847836i
\(162\) 0 0
\(163\) −18225.9 −0.685982 −0.342991 0.939339i \(-0.611440\pi\)
−0.342991 + 0.939339i \(0.611440\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −24824.3 14332.3i −0.890111 0.513906i −0.0161325 0.999870i \(-0.505135\pi\)
−0.873979 + 0.485964i \(0.838469\pi\)
\(168\) 0 0
\(169\) −18725.5 32433.5i −0.655631 1.13559i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4725.35 + 2728.18i −0.157885 + 0.0911551i −0.576861 0.816842i \(-0.695723\pi\)
0.418976 + 0.907997i \(0.362389\pi\)
\(174\) 0 0
\(175\) −8539.59 + 14791.0i −0.278844 + 0.482971i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 41680.0i 1.30083i 0.759577 + 0.650417i \(0.225406\pi\)
−0.759577 + 0.650417i \(0.774594\pi\)
\(180\) 0 0
\(181\) 49304.0 1.50496 0.752480 0.658615i \(-0.228857\pi\)
0.752480 + 0.658615i \(0.228857\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −10498.6 6061.40i −0.306754 0.177104i
\(186\) 0 0
\(187\) 3928.53 + 6804.41i 0.112343 + 0.194584i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −26518.8 + 15310.6i −0.726921 + 0.419688i −0.817295 0.576220i \(-0.804527\pi\)
0.0903735 + 0.995908i \(0.471194\pi\)
\(192\) 0 0
\(193\) 4884.57 8460.32i 0.131133 0.227129i −0.792981 0.609247i \(-0.791472\pi\)
0.924114 + 0.382118i \(0.124805\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19789.3i 0.509916i −0.966952 0.254958i \(-0.917938\pi\)
0.966952 0.254958i \(-0.0820616\pi\)
\(198\) 0 0
\(199\) 53235.2 1.34429 0.672144 0.740420i \(-0.265373\pi\)
0.672144 + 0.740420i \(0.265373\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 13378.8 + 7724.28i 0.324658 + 0.187442i
\(204\) 0 0
\(205\) −44674.3 77378.2i −1.06304 1.84124i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −39202.4 + 22633.5i −0.897469 + 0.518154i
\(210\) 0 0
\(211\) 1306.95 2263.71i 0.0293559 0.0508459i −0.850974 0.525207i \(-0.823988\pi\)
0.880330 + 0.474362i \(0.157321\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 28999.0i 0.627344i
\(216\) 0 0
\(217\) 61253.3 1.30080
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −12682.7 7322.37i −0.259673 0.149923i
\(222\) 0 0
\(223\) −12064.6 20896.5i −0.242607 0.420208i 0.718849 0.695166i \(-0.244669\pi\)
−0.961456 + 0.274958i \(0.911336\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −69285.3 + 40001.9i −1.34459 + 0.776299i −0.987477 0.157762i \(-0.949572\pi\)
−0.357112 + 0.934061i \(0.616239\pi\)
\(228\) 0 0
\(229\) −7932.10 + 13738.8i −0.151258 + 0.261986i −0.931690 0.363254i \(-0.881666\pi\)
0.780432 + 0.625240i \(0.214999\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 44937.9i 0.827753i −0.910333 0.413876i \(-0.864175\pi\)
0.910333 0.413876i \(-0.135825\pi\)
\(234\) 0 0
\(235\) −106810. −1.93408
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4829.94 2788.57i −0.0845562 0.0488186i 0.457126 0.889402i \(-0.348879\pi\)
−0.541682 + 0.840584i \(0.682212\pi\)
\(240\) 0 0
\(241\) 23957.3 + 41495.2i 0.412480 + 0.714437i 0.995160 0.0982648i \(-0.0313292\pi\)
−0.582680 + 0.812702i \(0.697996\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −37490.8 + 21645.3i −0.624586 + 0.360605i
\(246\) 0 0
\(247\) 42186.5 73069.1i 0.691479 1.19768i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 79435.9i 1.26087i 0.776243 + 0.630434i \(0.217123\pi\)
−0.776243 + 0.630434i \(0.782877\pi\)
\(252\) 0 0
\(253\) 9065.58 0.141630
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18155.6 10482.2i −0.274881 0.158703i 0.356223 0.934401i \(-0.384064\pi\)
−0.631104 + 0.775698i \(0.717398\pi\)
\(258\) 0 0
\(259\) 6009.27 + 10408.4i 0.0895822 + 0.155161i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 109171. 63030.1i 1.57833 0.911248i 0.583235 0.812303i \(-0.301787\pi\)
0.995093 0.0989448i \(-0.0315467\pi\)
\(264\) 0 0
\(265\) −89011.3 + 154172.i −1.26752 + 2.19540i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4162.75i 0.0575276i 0.999586 + 0.0287638i \(0.00915706\pi\)
−0.999586 + 0.0287638i \(0.990843\pi\)
\(270\) 0 0
\(271\) −1002.99 −0.0136571 −0.00682853 0.999977i \(-0.502174\pi\)
−0.00682853 + 0.999977i \(0.502174\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 61014.0 + 35226.4i 0.806796 + 0.465804i
\(276\) 0 0
\(277\) 20142.6 + 34888.1i 0.262517 + 0.454692i 0.966910 0.255118i \(-0.0821142\pi\)
−0.704393 + 0.709810i \(0.748781\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 91512.8 52834.9i 1.15896 0.669127i 0.207907 0.978149i \(-0.433335\pi\)
0.951055 + 0.309022i \(0.100002\pi\)
\(282\) 0 0
\(283\) 14942.1 25880.4i 0.186568 0.323146i −0.757535 0.652794i \(-0.773597\pi\)
0.944104 + 0.329648i \(0.106930\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 88580.2i 1.07541i
\(288\) 0 0
\(289\) 80272.1 0.961100
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −95447.4 55106.6i −1.11181 0.641902i −0.172510 0.985008i \(-0.555188\pi\)
−0.939297 + 0.343106i \(0.888521\pi\)
\(294\) 0 0
\(295\) 25829.3 + 44737.6i 0.296803 + 0.514078i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −14633.5 + 8448.65i −0.163684 + 0.0945028i
\(300\) 0 0
\(301\) 14374.8 24897.9i 0.158660 0.274808i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 243687.i 2.61959i
\(306\) 0 0
\(307\) −172215. −1.82723 −0.913616 0.406579i \(-0.866722\pi\)
−0.913616 + 0.406579i \(0.866722\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 38056.1 + 21971.7i 0.393462 + 0.227166i 0.683659 0.729801i \(-0.260387\pi\)
−0.290197 + 0.956967i \(0.593721\pi\)
\(312\) 0 0
\(313\) 27275.1 + 47241.9i 0.278406 + 0.482213i 0.970989 0.239125i \(-0.0768606\pi\)
−0.692583 + 0.721338i \(0.743527\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 146541. 84605.7i 1.45828 0.841940i 0.459356 0.888252i \(-0.348080\pi\)
0.998927 + 0.0463126i \(0.0147470\pi\)
\(318\) 0 0
\(319\) 31863.2 55188.8i 0.313118 0.542337i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 18718.1i 0.179414i
\(324\) 0 0
\(325\) −131317. −1.24324
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 91704.2 + 52945.5i 0.847223 + 0.489144i
\(330\) 0 0
\(331\) −41266.0 71474.8i −0.376648 0.652374i 0.613924 0.789365i \(-0.289590\pi\)
−0.990572 + 0.136991i \(0.956257\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −17225.0 + 9944.87i −0.153486 + 0.0886155i
\(336\) 0 0
\(337\) 72007.4 124720.i 0.634041 1.09819i −0.352677 0.935745i \(-0.614729\pi\)
0.986718 0.162445i \(-0.0519381\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 252674.i 2.17296i
\(342\) 0 0
\(343\) 123151. 1.04676
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 92627.8 + 53478.7i 0.769277 + 0.444142i 0.832616 0.553850i \(-0.186842\pi\)
−0.0633399 + 0.997992i \(0.520175\pi\)
\(348\) 0 0
\(349\) 30438.7 + 52721.4i 0.249905 + 0.432849i 0.963499 0.267711i \(-0.0862672\pi\)
−0.713594 + 0.700559i \(0.752934\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17924.0 10348.4i 0.143842 0.0830471i −0.426352 0.904557i \(-0.640201\pi\)
0.570194 + 0.821510i \(0.306868\pi\)
\(354\) 0 0
\(355\) 79314.4 137377.i 0.629355 1.09007i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 123377.i 0.957290i 0.878008 + 0.478645i \(0.158872\pi\)
−0.878008 + 0.478645i \(0.841128\pi\)
\(360\) 0 0
\(361\) −22480.0 −0.172497
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 80243.1 + 46328.4i 0.602313 + 0.347746i
\(366\) 0 0
\(367\) 48990.2 + 84853.6i 0.363729 + 0.629996i 0.988571 0.150754i \(-0.0481703\pi\)
−0.624843 + 0.780751i \(0.714837\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 152846. 88245.8i 1.11047 0.641130i
\(372\) 0 0
\(373\) 45516.0 78835.9i 0.327149 0.566639i −0.654796 0.755806i \(-0.727245\pi\)
0.981945 + 0.189167i \(0.0605787\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 118780.i 0.835716i
\(378\) 0 0
\(379\) −85165.4 −0.592905 −0.296452 0.955048i \(-0.595804\pi\)
−0.296452 + 0.955048i \(0.595804\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 173292. + 100050.i 1.18135 + 0.682055i 0.956327 0.292297i \(-0.0944197\pi\)
0.225027 + 0.974353i \(0.427753\pi\)
\(384\) 0 0
\(385\) −77629.4 134458.i −0.523727 0.907122i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 133789. 77243.4i 0.884143 0.510460i 0.0121210 0.999927i \(-0.496142\pi\)
0.872022 + 0.489466i \(0.162808\pi\)
\(390\) 0 0
\(391\) −1874.33 + 3246.44i −0.0122601 + 0.0212350i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 201126.i 1.28906i
\(396\) 0 0
\(397\) 154482. 0.980162 0.490081 0.871677i \(-0.336967\pi\)
0.490081 + 0.871677i \(0.336967\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −172894. 99820.5i −1.07521 0.620771i −0.145607 0.989343i \(-0.546513\pi\)
−0.929599 + 0.368572i \(0.879847\pi\)
\(402\) 0 0
\(403\) 235479. + 407862.i 1.44992 + 2.51133i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 42935.2 24788.7i 0.259194 0.149646i
\(408\) 0 0
\(409\) −5038.24 + 8726.49i −0.0301184 + 0.0521667i −0.880692 0.473690i \(-0.842922\pi\)
0.850573 + 0.525857i \(0.176255\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 51214.3i 0.300255i
\(414\) 0 0
\(415\) −402412. −2.33655
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −236663. 136638.i −1.34804 0.778292i −0.360069 0.932926i \(-0.617247\pi\)
−0.987972 + 0.154634i \(0.950580\pi\)
\(420\) 0 0
\(421\) −100883. 174734.i −0.569183 0.985854i −0.996647 0.0818216i \(-0.973926\pi\)
0.427464 0.904032i \(-0.359407\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −25229.6 + 14566.3i −0.139679 + 0.0806439i
\(426\) 0 0
\(427\) −120796. + 209224.i −0.662515 + 1.14751i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 44036.2i 0.237058i 0.992951 + 0.118529i \(0.0378179\pi\)
−0.992951 + 0.118529i \(0.962182\pi\)
\(432\) 0 0
\(433\) −139788. −0.745580 −0.372790 0.927916i \(-0.621599\pi\)
−0.372790 + 0.927916i \(0.621599\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −18703.7 10798.6i −0.0979412 0.0565464i
\(438\) 0 0
\(439\) 23825.0 + 41266.1i 0.123624 + 0.214124i 0.921194 0.389103i \(-0.127215\pi\)
−0.797570 + 0.603226i \(0.793882\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −110727. + 63928.0i −0.564215 + 0.325749i −0.754835 0.655914i \(-0.772283\pi\)
0.190621 + 0.981664i \(0.438950\pi\)
\(444\) 0 0
\(445\) −157404. + 272631.i −0.794867 + 1.37675i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 77490.5i 0.384376i 0.981358 + 0.192188i \(0.0615583\pi\)
−0.981358 + 0.192188i \(0.938442\pi\)
\(450\) 0 0
\(451\) 365400. 1.79645
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 250616. + 144693.i 1.21056 + 0.698916i
\(456\) 0 0
\(457\) −48887.2 84675.2i −0.234079 0.405437i 0.724925 0.688827i \(-0.241874\pi\)
−0.959005 + 0.283390i \(0.908541\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 171170. 98825.2i 0.805427 0.465014i −0.0399380 0.999202i \(-0.512716\pi\)
0.845365 + 0.534188i \(0.179383\pi\)
\(462\) 0 0
\(463\) 38041.2 65889.3i 0.177457 0.307364i −0.763552 0.645746i \(-0.776546\pi\)
0.941009 + 0.338382i \(0.109880\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 78375.5i 0.359374i 0.983724 + 0.179687i \(0.0575085\pi\)
−0.983724 + 0.179687i \(0.942492\pi\)
\(468\) 0 0
\(469\) 19718.7 0.0896462
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −102706. 59297.1i −0.459062 0.265040i
\(474\) 0 0
\(475\) −83921.1 145356.i −0.371949 0.644235i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −178440. + 103022.i −0.777714 + 0.449014i −0.835620 0.549309i \(-0.814891\pi\)
0.0579053 + 0.998322i \(0.481558\pi\)
\(480\) 0 0
\(481\) −46203.5 + 80026.8i −0.199703 + 0.345896i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 107781.i 0.458206i
\(486\) 0 0
\(487\) 200708. 0.846264 0.423132 0.906068i \(-0.360931\pi\)
0.423132 + 0.906068i \(0.360931\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −181227. 104631.i −0.751726 0.434009i 0.0745913 0.997214i \(-0.476235\pi\)
−0.826317 + 0.563205i \(0.809568\pi\)
\(492\) 0 0
\(493\) 13175.6 + 22820.8i 0.0542097 + 0.0938939i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −136195. + 78632.3i −0.551377 + 0.318338i
\(498\) 0 0
\(499\) 177056. 306670.i 0.711066 1.23160i −0.253391 0.967364i \(-0.581546\pi\)
0.964457 0.264239i \(-0.0851206\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 99176.2i 0.391987i 0.980605 + 0.195993i \(0.0627931\pi\)
−0.980605 + 0.195993i \(0.937207\pi\)
\(504\) 0 0
\(505\) 166413. 0.652535
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 48435.5 + 27964.2i 0.186951 + 0.107936i 0.590554 0.806998i \(-0.298909\pi\)
−0.403603 + 0.914934i \(0.632242\pi\)
\(510\) 0 0
\(511\) −45930.0 79553.0i −0.175895 0.304660i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −456112. + 263336.i −1.71972 + 0.992879i
\(516\) 0 0
\(517\) 218404. 378287.i 0.817108 1.41527i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 217215.i 0.800229i 0.916465 + 0.400114i \(0.131030\pi\)
−0.916465 + 0.400114i \(0.868970\pi\)
\(522\) 0 0
\(523\) 104089. 0.380542 0.190271 0.981732i \(-0.439063\pi\)
0.190271 + 0.981732i \(0.439063\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 90484.1 + 52241.0i 0.325800 + 0.188101i
\(528\) 0 0
\(529\) −137758. 238604.i −0.492272 0.852640i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −589822. + 340534.i −2.07619 + 1.19869i
\(534\) 0 0
\(535\) −269216. + 466296.i −0.940575 + 1.62912i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 177041.i 0.609392i
\(540\) 0 0
\(541\) −116397. −0.397693 −0.198846 0.980031i \(-0.563720\pi\)
−0.198846 + 0.980031i \(0.563720\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −121538. 70169.8i −0.409183 0.236242i
\(546\) 0 0
\(547\) −199324. 345240.i −0.666171 1.15384i −0.978966 0.204022i \(-0.934599\pi\)
0.312795 0.949821i \(-0.398735\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −131478. + 75908.8i −0.433062 + 0.250028i
\(552\) 0 0
\(553\) −99698.2 + 172682.i −0.326015 + 0.564674i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 203998.i 0.657530i 0.944412 + 0.328765i \(0.106632\pi\)
−0.944412 + 0.328765i \(0.893368\pi\)
\(558\) 0 0
\(559\) 221047. 0.707394
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −328609. 189722.i −1.03672 0.598551i −0.117819 0.993035i \(-0.537590\pi\)
−0.918903 + 0.394484i \(0.870923\pi\)
\(564\) 0 0
\(565\) 232969. + 403514.i 0.729796 + 1.26404i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 79665.0 45994.6i 0.246061 0.142063i −0.371898 0.928274i \(-0.621293\pi\)
0.617959 + 0.786210i \(0.287960\pi\)
\(570\) 0 0
\(571\) 39717.0 68791.9i 0.121816 0.210992i −0.798668 0.601772i \(-0.794462\pi\)
0.920484 + 0.390781i \(0.127795\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 33613.6i 0.101667i
\(576\) 0 0
\(577\) 41340.4 0.124172 0.0620860 0.998071i \(-0.480225\pi\)
0.0620860 + 0.998071i \(0.480225\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 345502. + 199476.i 1.02352 + 0.590932i
\(582\) 0 0
\(583\) −364021. 630502.i −1.07100 1.85502i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 215802. 124593.i 0.626295 0.361592i −0.153021 0.988223i \(-0.548900\pi\)
0.779316 + 0.626631i \(0.215567\pi\)
\(588\) 0 0
\(589\) −300977. + 521308.i −0.867567 + 1.50267i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 37868.4i 0.107688i −0.998549 0.0538440i \(-0.982853\pi\)
0.998549 0.0538440i \(-0.0171474\pi\)
\(594\) 0 0
\(595\) 64200.3 0.181344
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −251228. 145046.i −0.700186 0.404253i 0.107231 0.994234i \(-0.465802\pi\)
−0.807417 + 0.589981i \(0.799135\pi\)
\(600\) 0 0
\(601\) −4261.24 7380.69i −0.0117974 0.0204337i 0.860066 0.510182i \(-0.170422\pi\)
−0.871864 + 0.489748i \(0.837089\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −127274. + 73481.4i −0.347718 + 0.200755i
\(606\) 0 0
\(607\) −347609. + 602076.i −0.943439 + 1.63408i −0.184591 + 0.982815i \(0.559096\pi\)
−0.758848 + 0.651268i \(0.774237\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 814165.i 2.18087i
\(612\) 0 0
\(613\) 457316. 1.21701 0.608506 0.793549i \(-0.291769\pi\)
0.608506 + 0.793549i \(0.291769\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −171987. 99296.6i −0.451778 0.260834i 0.256803 0.966464i \(-0.417331\pi\)
−0.708581 + 0.705630i \(0.750664\pi\)
\(618\) 0 0
\(619\) 346327. + 599856.i 0.903868 + 1.56554i 0.822430 + 0.568866i \(0.192618\pi\)
0.0814376 + 0.996678i \(0.474049\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 270286. 156050.i 0.696382 0.402056i
\(624\) 0 0
\(625\) 224419. 388705.i 0.574512 0.995085i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 20500.5i 0.0518158i
\(630\) 0 0
\(631\) −314958. −0.791032 −0.395516 0.918459i \(-0.629434\pi\)
−0.395516 + 0.918459i \(0.629434\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −573855. 331315.i −1.42316 0.821663i
\(636\) 0 0
\(637\) 164993. + 285777.i 0.406619 + 0.704284i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −598138. + 345335.i −1.45575 + 0.840475i −0.998798 0.0490188i \(-0.984391\pi\)
−0.456947 + 0.889494i \(0.651057\pi\)
\(642\) 0 0
\(643\) −31620.3 + 54768.0i −0.0764794 + 0.132466i −0.901729 0.432302i \(-0.857701\pi\)
0.825249 + 0.564769i \(0.191035\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 597558.i 1.42748i −0.700409 0.713742i \(-0.746999\pi\)
0.700409 0.713742i \(-0.253001\pi\)
\(648\) 0 0
\(649\) −211263. −0.501572
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −492287. 284222.i −1.15449 0.666548i −0.204516 0.978863i \(-0.565562\pi\)
−0.949978 + 0.312315i \(0.898895\pi\)
\(654\) 0 0
\(655\) −350840. 607673.i −0.817761 1.41640i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 362129. 209075.i 0.833859 0.481429i −0.0213128 0.999773i \(-0.506785\pi\)
0.855172 + 0.518344i \(0.173451\pi\)
\(660\) 0 0
\(661\) 135403. 234525.i 0.309902 0.536766i −0.668439 0.743767i \(-0.733037\pi\)
0.978341 + 0.207001i \(0.0663703\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 369878.i 0.836403i
\(666\) 0 0
\(667\) 30404.4 0.0683415
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 863066. + 498291.i 1.91690 + 1.10672i
\(672\) 0 0
\(673\) 268438. + 464949.i 0.592672 + 1.02654i 0.993871 + 0.110547i \(0.0352601\pi\)
−0.401199 + 0.915991i \(0.631407\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −225624. + 130264.i −0.492275 + 0.284215i −0.725518 0.688204i \(-0.758400\pi\)
0.233243 + 0.972418i \(0.425066\pi\)
\(678\) 0 0
\(679\) 53427.2 92538.7i 0.115884 0.200717i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 427175.i 0.915723i −0.889023 0.457862i \(-0.848615\pi\)
0.889023 0.457862i \(-0.151385\pi\)
\(684\) 0 0
\(685\) −578026. −1.23187
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.17519e6 + 678496.i 2.47554 + 1.42925i
\(690\) 0 0
\(691\) 102795. + 178046.i 0.215285 + 0.372885i 0.953361 0.301833i \(-0.0975985\pi\)
−0.738075 + 0.674718i \(0.764265\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 464620. 268248.i 0.961896 0.555351i
\(696\) 0 0
\(697\) −75547.3 + 130852.i −0.155508 + 0.269348i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 176791.i 0.359769i 0.983688 + 0.179884i \(0.0575724\pi\)
−0.983688 + 0.179884i \(0.942428\pi\)
\(702\) 0 0
\(703\) −118110. −0.238987
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −142878. 82490.8i −0.285843 0.165031i
\(708\) 0 0
\(709\) −376584. 652262.i −0.749150 1.29757i −0.948230 0.317583i \(-0.897129\pi\)
0.199080 0.979983i \(-0.436205\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 104402. 60276.4i 0.205366 0.118568i
\(714\) 0 0
\(715\) 596870. 1.03381e6i 1.16753 2.02222i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 653122.i 1.26339i −0.775218 0.631694i \(-0.782360\pi\)
0.775218 0.631694i \(-0.217640\pi\)
\(720\) 0 0
\(721\) 522143. 1.00443
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 204630. + 118143.i 0.389309 + 0.224767i
\(726\) 0 0
\(727\) −187285. 324386.i −0.354351 0.613753i 0.632656 0.774433i \(-0.281965\pi\)
−0.987007 + 0.160680i \(0.948631\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 42469.3 24519.6i 0.0794767 0.0458859i
\(732\) 0 0
\(733\) 349362. 605114.i 0.650232 1.12623i −0.332835 0.942985i \(-0.608005\pi\)
0.983066 0.183249i \(-0.0586616\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 81341.0i 0.149753i
\(738\) 0 0
\(739\) 4561.08 0.00835177 0.00417588 0.999991i \(-0.498671\pi\)
0.00417588 + 0.999991i \(0.498671\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −264662. 152803.i −0.479417 0.276792i 0.240756 0.970586i \(-0.422605\pi\)
−0.720174 + 0.693794i \(0.755938\pi\)
\(744\) 0 0
\(745\) 445893. + 772309.i 0.803374 + 1.39149i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 462285. 266901.i 0.824037 0.475758i
\(750\) 0 0
\(751\) −362582. + 628011.i −0.642875 + 1.11349i 0.341912 + 0.939732i \(0.388925\pi\)
−0.984788 + 0.173761i \(0.944408\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 902022.i 1.58243i
\(756\) 0 0
\(757\) −273369. −0.477043 −0.238521 0.971137i \(-0.576663\pi\)
−0.238521 + 0.971137i \(0.576663\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 425109. + 245437.i 0.734060 + 0.423810i 0.819906 0.572499i \(-0.194026\pi\)
−0.0858458 + 0.996308i \(0.527359\pi\)
\(762\) 0 0
\(763\) 69566.3 + 120492.i 0.119495 + 0.206971i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 341016. 196886.i 0.579675 0.334675i
\(768\) 0 0
\(769\) 330326. 572141.i 0.558586 0.967499i −0.439029 0.898473i \(-0.644677\pi\)
0.997615 0.0690264i \(-0.0219893\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 69649.7i 0.116563i 0.998300 + 0.0582814i \(0.0185621\pi\)
−0.998300 + 0.0582814i \(0.981438\pi\)
\(774\) 0 0
\(775\) 936873. 1.55983
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −753879. 435252.i −1.24230 0.717242i
\(780\) 0 0
\(781\) 324364. + 561815.i 0.531778 + 0.921067i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.20106e6 693434.i 1.94906 1.12529i
\(786\) 0 0
\(787\) 138523. 239929.i 0.223652 0.387376i −0.732262 0.681023i \(-0.761536\pi\)
0.955914 + 0.293646i \(0.0948688\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 461931.i 0.738285i
\(792\) 0 0
\(793\) −1.85753e6 −2.95385
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13243.6 7646.20i −0.0208492 0.0120373i 0.489539 0.871981i \(-0.337165\pi\)
−0.510388 + 0.859944i \(0.670498\pi\)
\(798\) 0 0
\(799\) 90311.1 + 156423.i 0.141465 + 0.245024i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −328162. + 189465.i −0.508929 + 0.293830i
\(804\) 0 0
\(805\) 37037.6 64151.0i 0.0571546 0.0989946i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 264170.i 0.403632i 0.979423 + 0.201816i \(0.0646843\pi\)
−0.979423 + 0.201816i \(0.935316\pi\)
\(810\) 0 0
\(811\) −303869. −0.462002 −0.231001 0.972953i \(-0.574200\pi\)
−0.231001 + 0.972953i \(0.574200\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 532019. + 307162.i 0.800963 + 0.462436i
\(816\) 0 0
\(817\) 141265. + 244679.i 0.211637 + 0.366566i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 716783. 413835.i 1.06341 0.613961i 0.137037 0.990566i \(-0.456242\pi\)
0.926374 + 0.376605i \(0.122909\pi\)
\(822\) 0 0
\(823\) −337494. + 584557.i −0.498272 + 0.863033i −0.999998 0.00199378i \(-0.999365\pi\)
0.501726 + 0.865027i \(0.332699\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.05229e6i 1.53860i −0.638887 0.769301i \(-0.720605\pi\)
0.638887 0.769301i \(-0.279395\pi\)
\(828\) 0 0
\(829\) −622368. −0.905603 −0.452802 0.891611i \(-0.649575\pi\)
−0.452802 + 0.891611i \(0.649575\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 63399.5 + 36603.7i 0.0913683 + 0.0527515i
\(834\) 0 0
\(835\) 483087. + 836732.i 0.692872 + 1.20009i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 566354. 326985.i 0.804571 0.464519i −0.0404961 0.999180i \(-0.512894\pi\)
0.845067 + 0.534660i \(0.179560\pi\)
\(840\) 0 0
\(841\) −246777. + 427430.i −0.348909 + 0.604328i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.26233e6i 1.76790i
\(846\) 0 0
\(847\) 145699. 0.203090
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 20484.7 + 11826.9i 0.0282860 + 0.0163309i
\(852\) 0 0
\(853\) −526137. 911296.i −0.723104 1.25245i −0.959750 0.280857i \(-0.909381\pi\)
0.236646 0.971596i \(-0.423952\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 291064. 168046.i 0.396303 0.228806i −0.288584 0.957454i \(-0.593185\pi\)
0.684888 + 0.728649i \(0.259851\pi\)
\(858\) 0 0
\(859\) −464892. + 805216.i −0.630036 + 1.09126i 0.357507 + 0.933910i \(0.383627\pi\)
−0.987544 + 0.157345i \(0.949707\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 760939.i 1.02171i 0.859666 + 0.510856i \(0.170671\pi\)
−0.859666 + 0.510856i \(0.829329\pi\)
\(864\) 0 0
\(865\) 183913. 0.245799
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 712328. + 411263.i 0.943280 + 0.544603i
\(870\) 0 0
\(871\) 75805.6 + 131299.i 0.0999229 + 0.173072i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −111098. + 64142.5i −0.145108 + 0.0837779i
\(876\) 0 0
\(877\) 25097.0 43469.2i 0.0326304 0.0565174i −0.849249 0.527992i \(-0.822945\pi\)
0.881879 + 0.471475i \(0.156278\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 421710.i 0.543328i −0.962392 0.271664i \(-0.912426\pi\)
0.962392 0.271664i \(-0.0875740\pi\)
\(882\) 0 0
\(883\) −712187. −0.913424 −0.456712 0.889615i \(-0.650973\pi\)
−0.456712 + 0.889615i \(0.650973\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 937657. + 541356.i 1.19178 + 0.688075i 0.958710 0.284385i \(-0.0917892\pi\)
0.233071 + 0.972460i \(0.425123\pi\)
\(888\) 0 0
\(889\) 328466. + 568919.i 0.415611 + 0.719859i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −901205. + 520311.i −1.13011 + 0.652469i
\(894\) 0 0
\(895\) 702437. 1.21666e6i 0.876922 1.51887i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 847426.i 1.04853i
\(900\) 0 0
\(901\) 301048. 0.370840
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.43920e6 830924.i −1.75721 1.01453i
\(906\) 0 0
\(907\) 36755.6 + 63662.5i 0.0446795 + 0.0773872i 0.887500 0.460807i \(-0.152440\pi\)
−0.842821 + 0.538194i \(0.819107\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.03923e6 599998.i 1.25220 0.722958i 0.280655 0.959809i \(-0.409448\pi\)
0.971546 + 0.236851i \(0.0761152\pi\)
\(912\) 0 0
\(913\) 822852. 1.42522e6i 0.987143 1.70978i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 695645.i 0.827274i
\(918\) 0 0
\(919\) 311383. 0.368692 0.184346 0.982861i \(-0.440983\pi\)
0.184346 + 0.982861i \(0.440983\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.04716e6 604581.i −1.22917 0.709661i
\(924\) 0 0
\(925\) 91912.1 + 159196.i 0.107421 + 0.186059i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.13249e6 + 653842.i −1.31221 + 0.757602i −0.982461 0.186468i \(-0.940296\pi\)
−0.329745 + 0.944070i \(0.606963\pi\)
\(930\) 0 0
\(931\) −210885. + 365264.i −0.243303 + 0.421413i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 264831.i 0.302932i
\(936\) 0 0
\(937\) 860787. 0.980430 0.490215 0.871601i \(-0.336918\pi\)
0.490215 + 0.871601i \(0.336918\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 225220. + 130031.i 0.254347 + 0.146848i 0.621753 0.783213i \(-0.286421\pi\)
−0.367406 + 0.930061i \(0.619754\pi\)
\(942\) 0 0
\(943\) 87167.6 + 150979.i 0.0980238 + 0.169782i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −546051. + 315263.i −0.608882 + 0.351538i −0.772528 0.634981i \(-0.781008\pi\)
0.163646 + 0.986519i \(0.447675\pi\)
\(948\) 0 0
\(949\) 353142. 611660.i 0.392118 0.679169i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 619620.i 0.682244i −0.940019 0.341122i \(-0.889193\pi\)
0.940019 0.341122i \(-0.110807\pi\)
\(954\) 0 0
\(955\) 1.03213e6 1.13169
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 496280. + 286527.i 0.539622 + 0.311551i
\(960\) 0 0
\(961\) −1.21825e6 2.11008e6i −1.31914 2.28482i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −285165. + 164640.i −0.306225 + 0.176799i
\(966\) 0 0
\(967\) −567000. + 982073.i −0.606359 + 1.05025i 0.385476 + 0.922718i \(0.374037\pi\)
−0.991835 + 0.127527i \(0.959296\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 510281.i 0.541216i −0.962690 0.270608i \(-0.912775\pi\)
0.962690 0.270608i \(-0.0872247\pi\)
\(972\) 0 0
\(973\) −531883. −0.561811
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.42896e6 + 825012.i 1.49703 + 0.864313i 0.999994 0.00341413i \(-0.00108675\pi\)
0.497040 + 0.867727i \(0.334420\pi\)
\(978\) 0 0
\(979\) −643717. 1.11495e6i −0.671629 1.16330i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −418594. + 241676.i −0.433198 + 0.250107i −0.700708 0.713448i \(-0.747132\pi\)
0.267510 + 0.963555i \(0.413799\pi\)
\(984\) 0 0
\(985\) −333511. + 577658.i −0.343746 + 0.595385i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 56582.2i 0.0578478i
\(990\) 0 0
\(991\) 1.47602e6 1.50295 0.751477 0.659759i \(-0.229342\pi\)
0.751477 + 0.659759i \(0.229342\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.55395e6 897176.i −1.56961 0.906216i
\(996\) 0 0
\(997\) −11327.9 19620.6i −0.0113962 0.0197388i 0.860271 0.509837i \(-0.170294\pi\)
−0.871667 + 0.490098i \(0.836961\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.5.g.f.53.1 16
3.2 odd 2 inner 324.5.g.f.53.8 16
9.2 odd 6 inner 324.5.g.f.269.1 16
9.4 even 3 324.5.c.b.161.8 yes 8
9.5 odd 6 324.5.c.b.161.1 8
9.7 even 3 inner 324.5.g.f.269.8 16
36.23 even 6 1296.5.e.f.161.1 8
36.31 odd 6 1296.5.e.f.161.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.5.c.b.161.1 8 9.5 odd 6
324.5.c.b.161.8 yes 8 9.4 even 3
324.5.g.f.53.1 16 1.1 even 1 trivial
324.5.g.f.53.8 16 3.2 odd 2 inner
324.5.g.f.269.1 16 9.2 odd 6 inner
324.5.g.f.269.8 16 9.7 even 3 inner
1296.5.e.f.161.1 8 36.23 even 6
1296.5.e.f.161.8 8 36.31 odd 6