Properties

Label 324.5.c.b.161.8
Level $324$
Weight $5$
Character 324.161
Analytic conductor $33.492$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,5,Mod(161,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.161"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 324.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.4918680392\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 130x^{6} + 404x^{5} + 7007x^{4} - 14692x^{3} - 164750x^{2} + 172164x + 1445046 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{20} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.8
Root \(-6.57859 - 1.93185i\) of defining polynomial
Character \(\chi\) \(=\) 324.161
Dual form 324.5.c.b.161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+33.7061i q^{5} -33.4163 q^{7} +137.845i q^{11} +256.928 q^{13} +56.9994i q^{17} -328.391 q^{19} -65.7667i q^{23} -511.104 q^{25} +462.307i q^{29} -1833.04 q^{31} -1126.33i q^{35} +359.661 q^{37} -2650.81i q^{41} +860.347 q^{43} +3168.85i q^{47} -1284.35 q^{49} -5281.61i q^{53} -4646.21 q^{55} +1532.62i q^{59} -7229.76 q^{61} +8660.05i q^{65} -590.092 q^{67} +4706.23i q^{71} -2748.96 q^{73} -4606.25i q^{77} -5967.05 q^{79} +11938.8i q^{83} -1921.23 q^{85} -9339.75i q^{89} -8585.57 q^{91} -11068.8i q^{95} +3197.68 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 52 q^{7} + 220 q^{13} - 308 q^{19} - 328 q^{25} - 1472 q^{31} + 1228 q^{37} + 388 q^{43} + 3432 q^{49} - 36 q^{55} + 1804 q^{61} - 2180 q^{67} - 4544 q^{73} - 5012 q^{79} - 5364 q^{85} - 1756 q^{91}+ \cdots - 2528 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 33.7061i 1.34825i 0.738619 + 0.674123i \(0.235478\pi\)
−0.738619 + 0.674123i \(0.764522\pi\)
\(6\) 0 0
\(7\) −33.4163 −0.681964 −0.340982 0.940070i \(-0.610760\pi\)
−0.340982 + 0.940070i \(0.610760\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 137.845i 1.13921i 0.821918 + 0.569606i \(0.192904\pi\)
−0.821918 + 0.569606i \(0.807096\pi\)
\(12\) 0 0
\(13\) 256.928 1.52028 0.760142 0.649757i \(-0.225130\pi\)
0.760142 + 0.649757i \(0.225130\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 56.9994i 0.197230i 0.995126 + 0.0986149i \(0.0314412\pi\)
−0.995126 + 0.0986149i \(0.968559\pi\)
\(18\) 0 0
\(19\) −328.391 −0.909672 −0.454836 0.890575i \(-0.650302\pi\)
−0.454836 + 0.890575i \(0.650302\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 65.7667i − 0.124323i −0.998066 0.0621613i \(-0.980201\pi\)
0.998066 0.0621613i \(-0.0197993\pi\)
\(24\) 0 0
\(25\) −511.104 −0.817766
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 462.307i 0.549711i 0.961486 + 0.274855i \(0.0886300\pi\)
−0.961486 + 0.274855i \(0.911370\pi\)
\(30\) 0 0
\(31\) −1833.04 −1.90743 −0.953714 0.300715i \(-0.902775\pi\)
−0.953714 + 0.300715i \(0.902775\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 1126.33i − 0.919455i
\(36\) 0 0
\(37\) 359.661 0.262718 0.131359 0.991335i \(-0.458066\pi\)
0.131359 + 0.991335i \(0.458066\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 2650.81i − 1.57693i −0.615082 0.788463i \(-0.710877\pi\)
0.615082 0.788463i \(-0.289123\pi\)
\(42\) 0 0
\(43\) 860.347 0.465304 0.232652 0.972560i \(-0.425260\pi\)
0.232652 + 0.972560i \(0.425260\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3168.85i 1.43452i 0.696808 + 0.717258i \(0.254603\pi\)
−0.696808 + 0.717258i \(0.745397\pi\)
\(48\) 0 0
\(49\) −1284.35 −0.534925
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 5281.61i − 1.88025i −0.340836 0.940123i \(-0.610710\pi\)
0.340836 0.940123i \(-0.389290\pi\)
\(54\) 0 0
\(55\) −4646.21 −1.53594
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1532.62i 0.440280i 0.975468 + 0.220140i \(0.0706515\pi\)
−0.975468 + 0.220140i \(0.929349\pi\)
\(60\) 0 0
\(61\) −7229.76 −1.94296 −0.971481 0.237118i \(-0.923797\pi\)
−0.971481 + 0.237118i \(0.923797\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8660.05i 2.04972i
\(66\) 0 0
\(67\) −590.092 −0.131453 −0.0657265 0.997838i \(-0.520936\pi\)
−0.0657265 + 0.997838i \(0.520936\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4706.23i 0.933591i 0.884365 + 0.466795i \(0.154592\pi\)
−0.884365 + 0.466795i \(0.845408\pi\)
\(72\) 0 0
\(73\) −2748.96 −0.515849 −0.257924 0.966165i \(-0.583039\pi\)
−0.257924 + 0.966165i \(0.583039\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 4606.25i − 0.776901i
\(78\) 0 0
\(79\) −5967.05 −0.956105 −0.478053 0.878331i \(-0.658657\pi\)
−0.478053 + 0.878331i \(0.658657\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11938.8i 1.73303i 0.499151 + 0.866515i \(0.333645\pi\)
−0.499151 + 0.866515i \(0.666355\pi\)
\(84\) 0 0
\(85\) −1921.23 −0.265914
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 9339.75i − 1.17911i −0.807727 0.589556i \(-0.799303\pi\)
0.807727 0.589556i \(-0.200697\pi\)
\(90\) 0 0
\(91\) −8585.57 −1.03678
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 11068.8i − 1.22646i
\(96\) 0 0
\(97\) 3197.68 0.339853 0.169927 0.985457i \(-0.445647\pi\)
0.169927 + 0.985457i \(0.445647\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 4937.17i − 0.483989i −0.970278 0.241994i \(-0.922198\pi\)
0.970278 0.241994i \(-0.0778015\pi\)
\(102\) 0 0
\(103\) −15625.4 −1.47285 −0.736423 0.676521i \(-0.763487\pi\)
−0.736423 + 0.676521i \(0.763487\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 15974.3i − 1.39526i −0.716460 0.697629i \(-0.754239\pi\)
0.716460 0.697629i \(-0.245761\pi\)
\(108\) 0 0
\(109\) 4163.62 0.350444 0.175222 0.984529i \(-0.443936\pi\)
0.175222 + 0.984529i \(0.443936\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13823.5i 1.08259i 0.840834 + 0.541293i \(0.182065\pi\)
−0.840834 + 0.541293i \(0.817935\pi\)
\(114\) 0 0
\(115\) 2216.74 0.167617
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 1904.71i − 0.134504i
\(120\) 0 0
\(121\) −4360.12 −0.297802
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3839.00i 0.245696i
\(126\) 0 0
\(127\) 19659.0 1.21886 0.609432 0.792839i \(-0.291398\pi\)
0.609432 + 0.792839i \(0.291398\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 20817.6i − 1.21307i −0.795055 0.606537i \(-0.792558\pi\)
0.795055 0.606537i \(-0.207442\pi\)
\(132\) 0 0
\(133\) 10973.6 0.620364
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 17149.0i 0.913686i 0.889547 + 0.456843i \(0.151020\pi\)
−0.889547 + 0.456843i \(0.848980\pi\)
\(138\) 0 0
\(139\) 15916.9 0.823813 0.411906 0.911226i \(-0.364863\pi\)
0.411906 + 0.911226i \(0.364863\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 35416.1i 1.73192i
\(144\) 0 0
\(145\) −15582.6 −0.741145
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 26457.7i 1.19173i 0.803084 + 0.595866i \(0.203191\pi\)
−0.803084 + 0.595866i \(0.796809\pi\)
\(150\) 0 0
\(151\) −26761.4 −1.17369 −0.586846 0.809698i \(-0.699631\pi\)
−0.586846 + 0.809698i \(0.699631\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 61784.7i − 2.57168i
\(156\) 0 0
\(157\) 41145.8 1.66927 0.834635 0.550804i \(-0.185679\pi\)
0.834635 + 0.550804i \(0.185679\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2197.68i 0.0847836i
\(162\) 0 0
\(163\) −18225.9 −0.685982 −0.342991 0.939339i \(-0.611440\pi\)
−0.342991 + 0.939339i \(0.611440\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 28664.7i 1.02781i 0.857846 + 0.513906i \(0.171802\pi\)
−0.857846 + 0.513906i \(0.828198\pi\)
\(168\) 0 0
\(169\) 37450.9 1.31126
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 5456.36i − 0.182310i −0.995837 0.0911551i \(-0.970944\pi\)
0.995837 0.0911551i \(-0.0290559\pi\)
\(174\) 0 0
\(175\) 17079.2 0.557687
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 41680.0i 1.30083i 0.759577 + 0.650417i \(0.225406\pi\)
−0.759577 + 0.650417i \(0.774594\pi\)
\(180\) 0 0
\(181\) 49304.0 1.50496 0.752480 0.658615i \(-0.228857\pi\)
0.752480 + 0.658615i \(0.228857\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12122.8i 0.354209i
\(186\) 0 0
\(187\) −7857.05 −0.224686
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 30621.3i − 0.839376i −0.907668 0.419688i \(-0.862139\pi\)
0.907668 0.419688i \(-0.137861\pi\)
\(192\) 0 0
\(193\) −9769.13 −0.262266 −0.131133 0.991365i \(-0.541861\pi\)
−0.131133 + 0.991365i \(0.541861\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 19789.3i − 0.509916i −0.966952 0.254958i \(-0.917938\pi\)
0.966952 0.254958i \(-0.0820616\pi\)
\(198\) 0 0
\(199\) 53235.2 1.34429 0.672144 0.740420i \(-0.265373\pi\)
0.672144 + 0.740420i \(0.265373\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 15448.6i − 0.374883i
\(204\) 0 0
\(205\) 89348.7 2.12608
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 45267.0i − 1.03631i
\(210\) 0 0
\(211\) −2613.91 −0.0587118 −0.0293559 0.999569i \(-0.509346\pi\)
−0.0293559 + 0.999569i \(0.509346\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 28999.0i 0.627344i
\(216\) 0 0
\(217\) 61253.3 1.30080
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 14644.7i 0.299845i
\(222\) 0 0
\(223\) 24129.2 0.485215 0.242607 0.970125i \(-0.421997\pi\)
0.242607 + 0.970125i \(0.421997\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 80003.8i − 1.55260i −0.630365 0.776299i \(-0.717095\pi\)
0.630365 0.776299i \(-0.282905\pi\)
\(228\) 0 0
\(229\) 15864.2 0.302515 0.151258 0.988494i \(-0.451668\pi\)
0.151258 + 0.988494i \(0.451668\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 44937.9i − 0.827753i −0.910333 0.413876i \(-0.864175\pi\)
0.910333 0.413876i \(-0.135825\pi\)
\(234\) 0 0
\(235\) −106810. −1.93408
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5577.13i 0.0976371i 0.998808 + 0.0488186i \(0.0155456\pi\)
−0.998808 + 0.0488186i \(0.984454\pi\)
\(240\) 0 0
\(241\) −47914.5 −0.824961 −0.412480 0.910967i \(-0.635337\pi\)
−0.412480 + 0.910967i \(0.635337\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 43290.6i − 0.721210i
\(246\) 0 0
\(247\) −84372.9 −1.38296
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 79435.9i 1.26087i 0.776243 + 0.630434i \(0.217123\pi\)
−0.776243 + 0.630434i \(0.782877\pi\)
\(252\) 0 0
\(253\) 9065.58 0.141630
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 20964.3i 0.317405i 0.987326 + 0.158703i \(0.0507311\pi\)
−0.987326 + 0.158703i \(0.949269\pi\)
\(258\) 0 0
\(259\) −12018.5 −0.179164
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 126060.i 1.82250i 0.411858 + 0.911248i \(0.364880\pi\)
−0.411858 + 0.911248i \(0.635120\pi\)
\(264\) 0 0
\(265\) 178023. 2.53503
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4162.75i 0.0575276i 0.999586 + 0.0287638i \(0.00915706\pi\)
−0.999586 + 0.0287638i \(0.990843\pi\)
\(270\) 0 0
\(271\) −1002.99 −0.0136571 −0.00682853 0.999977i \(-0.502174\pi\)
−0.00682853 + 0.999977i \(0.502174\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 70452.9i − 0.931608i
\(276\) 0 0
\(277\) −40285.3 −0.525033 −0.262517 0.964927i \(-0.584552\pi\)
−0.262517 + 0.964927i \(0.584552\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 105670.i 1.33825i 0.743148 + 0.669127i \(0.233332\pi\)
−0.743148 + 0.669127i \(0.766668\pi\)
\(282\) 0 0
\(283\) −29884.2 −0.373137 −0.186568 0.982442i \(-0.559737\pi\)
−0.186568 + 0.982442i \(0.559737\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 88580.2i 1.07541i
\(288\) 0 0
\(289\) 80272.1 0.961100
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 110213.i 1.28380i 0.766787 + 0.641902i \(0.221854\pi\)
−0.766787 + 0.641902i \(0.778146\pi\)
\(294\) 0 0
\(295\) −51658.5 −0.593606
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 16897.3i − 0.189006i
\(300\) 0 0
\(301\) −28749.6 −0.317321
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 243687.i − 2.61959i
\(306\) 0 0
\(307\) −172215. −1.82723 −0.913616 0.406579i \(-0.866722\pi\)
−0.913616 + 0.406579i \(0.866722\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 43943.4i − 0.454331i −0.973856 0.227166i \(-0.927054\pi\)
0.973856 0.227166i \(-0.0729459\pi\)
\(312\) 0 0
\(313\) −54550.3 −0.556812 −0.278406 0.960464i \(-0.589806\pi\)
−0.278406 + 0.960464i \(0.589806\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 169211.i 1.68388i 0.539571 + 0.841940i \(0.318586\pi\)
−0.539571 + 0.841940i \(0.681414\pi\)
\(318\) 0 0
\(319\) −63726.5 −0.626237
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 18718.1i − 0.179414i
\(324\) 0 0
\(325\) −131317. −1.24324
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 105891.i − 0.978289i
\(330\) 0 0
\(331\) 82532.0 0.753297 0.376648 0.926356i \(-0.377076\pi\)
0.376648 + 0.926356i \(0.377076\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 19889.7i − 0.177231i
\(336\) 0 0
\(337\) −144015. −1.26808 −0.634041 0.773300i \(-0.718605\pi\)
−0.634041 + 0.773300i \(0.718605\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 252674.i − 2.17296i
\(342\) 0 0
\(343\) 123151. 1.04676
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 106957.i − 0.888284i −0.895956 0.444142i \(-0.853509\pi\)
0.895956 0.444142i \(-0.146491\pi\)
\(348\) 0 0
\(349\) −60877.4 −0.499811 −0.249905 0.968270i \(-0.580399\pi\)
−0.249905 + 0.968270i \(0.580399\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 20696.8i 0.166094i 0.996546 + 0.0830471i \(0.0264652\pi\)
−0.996546 + 0.0830471i \(0.973535\pi\)
\(354\) 0 0
\(355\) −158629. −1.25871
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 123377.i 0.957290i 0.878008 + 0.478645i \(0.158872\pi\)
−0.878008 + 0.478645i \(0.841128\pi\)
\(360\) 0 0
\(361\) −22480.0 −0.172497
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 92656.8i − 0.695491i
\(366\) 0 0
\(367\) −97980.5 −0.727457 −0.363729 0.931505i \(-0.618496\pi\)
−0.363729 + 0.931505i \(0.618496\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 176492.i 1.28226i
\(372\) 0 0
\(373\) −91031.9 −0.654299 −0.327149 0.944973i \(-0.606088\pi\)
−0.327149 + 0.944973i \(0.606088\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 118780.i 0.835716i
\(378\) 0 0
\(379\) −85165.4 −0.592905 −0.296452 0.955048i \(-0.595804\pi\)
−0.296452 + 0.955048i \(0.595804\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 200100.i − 1.36411i −0.731301 0.682055i \(-0.761086\pi\)
0.731301 0.682055i \(-0.238914\pi\)
\(384\) 0 0
\(385\) 155259. 1.04745
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 154487.i 1.02092i 0.859901 + 0.510460i \(0.170525\pi\)
−0.859901 + 0.510460i \(0.829475\pi\)
\(390\) 0 0
\(391\) 3748.66 0.0245201
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 201126.i − 1.28906i
\(396\) 0 0
\(397\) 154482. 0.980162 0.490081 0.871677i \(-0.336967\pi\)
0.490081 + 0.871677i \(0.336967\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 199641.i 1.24154i 0.783992 + 0.620771i \(0.213180\pi\)
−0.783992 + 0.620771i \(0.786820\pi\)
\(402\) 0 0
\(403\) −470959. −2.89983
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 49577.3i 0.299292i
\(408\) 0 0
\(409\) 10076.5 0.0602369 0.0301184 0.999546i \(-0.490412\pi\)
0.0301184 + 0.999546i \(0.490412\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 51214.3i − 0.300255i
\(414\) 0 0
\(415\) −402412. −2.33655
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 273275.i 1.55658i 0.627903 + 0.778292i \(0.283913\pi\)
−0.627903 + 0.778292i \(0.716087\pi\)
\(420\) 0 0
\(421\) 201765. 1.13837 0.569183 0.822211i \(-0.307260\pi\)
0.569183 + 0.822211i \(0.307260\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 29132.6i − 0.161288i
\(426\) 0 0
\(427\) 241591. 1.32503
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 44036.2i 0.237058i 0.992951 + 0.118529i \(0.0378179\pi\)
−0.992951 + 0.118529i \(0.962182\pi\)
\(432\) 0 0
\(433\) −139788. −0.745580 −0.372790 0.927916i \(-0.621599\pi\)
−0.372790 + 0.927916i \(0.621599\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 21597.2i 0.113093i
\(438\) 0 0
\(439\) −47650.0 −0.247249 −0.123624 0.992329i \(-0.539452\pi\)
−0.123624 + 0.992329i \(0.539452\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 127856.i − 0.651499i −0.945456 0.325749i \(-0.894383\pi\)
0.945456 0.325749i \(-0.105617\pi\)
\(444\) 0 0
\(445\) 314807. 1.58973
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 77490.5i 0.384376i 0.981358 + 0.192188i \(0.0615583\pi\)
−0.981358 + 0.192188i \(0.938442\pi\)
\(450\) 0 0
\(451\) 365400. 1.79645
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 289386.i − 1.39783i
\(456\) 0 0
\(457\) 97774.5 0.468159 0.234079 0.972218i \(-0.424792\pi\)
0.234079 + 0.972218i \(0.424792\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 197650.i 0.930027i 0.885303 + 0.465014i \(0.153951\pi\)
−0.885303 + 0.465014i \(0.846049\pi\)
\(462\) 0 0
\(463\) −76082.4 −0.354913 −0.177457 0.984129i \(-0.556787\pi\)
−0.177457 + 0.984129i \(0.556787\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 78375.5i 0.359374i 0.983724 + 0.179687i \(0.0575085\pi\)
−0.983724 + 0.179687i \(0.942492\pi\)
\(468\) 0 0
\(469\) 19718.7 0.0896462
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 118594.i 0.530080i
\(474\) 0 0
\(475\) 167842. 0.743899
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 206044.i − 0.898027i −0.893525 0.449014i \(-0.851775\pi\)
0.893525 0.449014i \(-0.148225\pi\)
\(480\) 0 0
\(481\) 92407.0 0.399406
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 107781.i 0.458206i
\(486\) 0 0
\(487\) 200708. 0.846264 0.423132 0.906068i \(-0.360931\pi\)
0.423132 + 0.906068i \(0.360931\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 209263.i 0.868018i 0.900908 + 0.434009i \(0.142901\pi\)
−0.900908 + 0.434009i \(0.857099\pi\)
\(492\) 0 0
\(493\) −26351.2 −0.108419
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 157265.i − 0.636675i
\(498\) 0 0
\(499\) −354112. −1.42213 −0.711066 0.703125i \(-0.751787\pi\)
−0.711066 + 0.703125i \(0.751787\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 99176.2i 0.391987i 0.980605 + 0.195993i \(0.0627931\pi\)
−0.980605 + 0.195993i \(0.937207\pi\)
\(504\) 0 0
\(505\) 166413. 0.652535
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 55928.5i − 0.215872i −0.994158 0.107936i \(-0.965576\pi\)
0.994158 0.107936i \(-0.0344242\pi\)
\(510\) 0 0
\(511\) 91859.9 0.351791
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 526673.i − 1.98576i
\(516\) 0 0
\(517\) −436808. −1.63422
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 217215.i 0.800229i 0.916465 + 0.400114i \(0.131030\pi\)
−0.916465 + 0.400114i \(0.868970\pi\)
\(522\) 0 0
\(523\) 104089. 0.380542 0.190271 0.981732i \(-0.439063\pi\)
0.190271 + 0.981732i \(0.439063\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 104482.i − 0.376202i
\(528\) 0 0
\(529\) 275516. 0.984544
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 681068.i − 2.39737i
\(534\) 0 0
\(535\) 538432. 1.88115
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 177041.i − 0.609392i
\(540\) 0 0
\(541\) −116397. −0.397693 −0.198846 0.980031i \(-0.563720\pi\)
−0.198846 + 0.980031i \(0.563720\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 140340.i 0.472484i
\(546\) 0 0
\(547\) 398649. 1.33234 0.666171 0.745799i \(-0.267932\pi\)
0.666171 + 0.745799i \(0.267932\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 151818.i − 0.500056i
\(552\) 0 0
\(553\) 199396. 0.652030
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 203998.i 0.657530i 0.944412 + 0.328765i \(0.106632\pi\)
−0.944412 + 0.328765i \(0.893368\pi\)
\(558\) 0 0
\(559\) 221047. 0.707394
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 379444.i 1.19710i 0.801084 + 0.598551i \(0.204257\pi\)
−0.801084 + 0.598551i \(0.795743\pi\)
\(564\) 0 0
\(565\) −465938. −1.45959
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 91989.2i 0.284127i 0.989858 + 0.142063i \(0.0453737\pi\)
−0.989858 + 0.142063i \(0.954626\pi\)
\(570\) 0 0
\(571\) −79434.0 −0.243632 −0.121816 0.992553i \(-0.538872\pi\)
−0.121816 + 0.992553i \(0.538872\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 33613.6i 0.101667i
\(576\) 0 0
\(577\) 41340.4 0.124172 0.0620860 0.998071i \(-0.480225\pi\)
0.0620860 + 0.998071i \(0.480225\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 398951.i − 1.18186i
\(582\) 0 0
\(583\) 728041. 2.14200
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 249186.i 0.723183i 0.932337 + 0.361592i \(0.117766\pi\)
−0.932337 + 0.361592i \(0.882234\pi\)
\(588\) 0 0
\(589\) 601954. 1.73513
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 37868.4i − 0.107688i −0.998549 0.0538440i \(-0.982853\pi\)
0.998549 0.0538440i \(-0.0171474\pi\)
\(594\) 0 0
\(595\) 64200.3 0.181344
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 290093.i 0.808505i 0.914647 + 0.404253i \(0.132468\pi\)
−0.914647 + 0.404253i \(0.867532\pi\)
\(600\) 0 0
\(601\) 8522.48 0.0235949 0.0117974 0.999930i \(-0.496245\pi\)
0.0117974 + 0.999930i \(0.496245\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 146963.i − 0.401510i
\(606\) 0 0
\(607\) 695218. 1.88688 0.943439 0.331547i \(-0.107571\pi\)
0.943439 + 0.331547i \(0.107571\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 814165.i 2.18087i
\(612\) 0 0
\(613\) 457316. 1.21701 0.608506 0.793549i \(-0.291769\pi\)
0.608506 + 0.793549i \(0.291769\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 198593.i 0.521668i 0.965384 + 0.260834i \(0.0839975\pi\)
−0.965384 + 0.260834i \(0.916002\pi\)
\(618\) 0 0
\(619\) −692654. −1.80774 −0.903868 0.427812i \(-0.859284\pi\)
−0.903868 + 0.427812i \(0.859284\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 312100.i 0.804113i
\(624\) 0 0
\(625\) −448838. −1.14902
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 20500.5i 0.0518158i
\(630\) 0 0
\(631\) −314958. −0.791032 −0.395516 0.918459i \(-0.629434\pi\)
−0.395516 + 0.918459i \(0.629434\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 662630.i 1.64333i
\(636\) 0 0
\(637\) −329986. −0.813237
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 690670.i − 1.68095i −0.541850 0.840475i \(-0.682276\pi\)
0.541850 0.840475i \(-0.317724\pi\)
\(642\) 0 0
\(643\) 63240.7 0.152959 0.0764794 0.997071i \(-0.475632\pi\)
0.0764794 + 0.997071i \(0.475632\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 597558.i − 1.42748i −0.700409 0.713742i \(-0.746999\pi\)
0.700409 0.713742i \(-0.253001\pi\)
\(648\) 0 0
\(649\) −211263. −0.501572
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 568444.i 1.33310i 0.745462 + 0.666548i \(0.232229\pi\)
−0.745462 + 0.666548i \(0.767771\pi\)
\(654\) 0 0
\(655\) 701680. 1.63552
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 418151.i 0.962858i 0.876485 + 0.481429i \(0.159882\pi\)
−0.876485 + 0.481429i \(0.840118\pi\)
\(660\) 0 0
\(661\) −270806. −0.619804 −0.309902 0.950768i \(-0.600296\pi\)
−0.309902 + 0.950768i \(0.600296\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 369878.i 0.836403i
\(666\) 0 0
\(667\) 30404.4 0.0683415
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 996583.i − 2.21344i
\(672\) 0 0
\(673\) −536876. −1.18534 −0.592672 0.805444i \(-0.701927\pi\)
−0.592672 + 0.805444i \(0.701927\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 260528.i − 0.568430i −0.958761 0.284215i \(-0.908267\pi\)
0.958761 0.284215i \(-0.0917329\pi\)
\(678\) 0 0
\(679\) −106854. −0.231768
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 427175.i − 0.915723i −0.889023 0.457862i \(-0.848615\pi\)
0.889023 0.457862i \(-0.151385\pi\)
\(684\) 0 0
\(685\) −578026. −1.23187
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 1.35699e6i − 2.85851i
\(690\) 0 0
\(691\) −205589. −0.430571 −0.215285 0.976551i \(-0.569068\pi\)
−0.215285 + 0.976551i \(0.569068\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 536497.i 1.11070i
\(696\) 0 0
\(697\) 151095. 0.311017
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 176791.i 0.359769i 0.983688 + 0.179884i \(0.0575724\pi\)
−0.983688 + 0.179884i \(0.942428\pi\)
\(702\) 0 0
\(703\) −118110. −0.238987
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 164982.i 0.330063i
\(708\) 0 0
\(709\) 753167. 1.49830 0.749150 0.662400i \(-0.230462\pi\)
0.749150 + 0.662400i \(0.230462\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 120553.i 0.237137i
\(714\) 0 0
\(715\) −1.19374e6 −2.33506
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 653122.i − 1.26339i −0.775218 0.631694i \(-0.782360\pi\)
0.775218 0.631694i \(-0.217640\pi\)
\(720\) 0 0
\(721\) 522143. 1.00443
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 236287.i − 0.449535i
\(726\) 0 0
\(727\) 374569. 0.708701 0.354351 0.935113i \(-0.384702\pi\)
0.354351 + 0.935113i \(0.384702\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 49039.3i 0.0917718i
\(732\) 0 0
\(733\) −698725. −1.30046 −0.650232 0.759736i \(-0.725328\pi\)
−0.650232 + 0.759736i \(0.725328\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 81341.0i − 0.149753i
\(738\) 0 0
\(739\) 4561.08 0.00835177 0.00417588 0.999991i \(-0.498671\pi\)
0.00417588 + 0.999991i \(0.498671\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 305605.i 0.553583i 0.960930 + 0.276792i \(0.0892712\pi\)
−0.960930 + 0.276792i \(0.910729\pi\)
\(744\) 0 0
\(745\) −891786. −1.60675
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 533801.i 0.951516i
\(750\) 0 0
\(751\) 725165. 1.28575 0.642875 0.765971i \(-0.277741\pi\)
0.642875 + 0.765971i \(0.277741\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 902022.i − 1.58243i
\(756\) 0 0
\(757\) −273369. −0.477043 −0.238521 0.971137i \(-0.576663\pi\)
−0.238521 + 0.971137i \(0.576663\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 490874.i − 0.847619i −0.905751 0.423810i \(-0.860693\pi\)
0.905751 0.423810i \(-0.139307\pi\)
\(762\) 0 0
\(763\) −139133. −0.238990
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 393772.i 0.669351i
\(768\) 0 0
\(769\) −660652. −1.11717 −0.558586 0.829447i \(-0.688656\pi\)
−0.558586 + 0.829447i \(0.688656\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 69649.7i 0.116563i 0.998300 + 0.0582814i \(0.0185621\pi\)
−0.998300 + 0.0582814i \(0.981438\pi\)
\(774\) 0 0
\(775\) 936873. 1.55983
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 870504.i 1.43448i
\(780\) 0 0
\(781\) −648728. −1.06356
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.38687e6i 2.25059i
\(786\) 0 0
\(787\) −277046. −0.447303 −0.223652 0.974669i \(-0.571798\pi\)
−0.223652 + 0.974669i \(0.571798\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 461931.i − 0.738285i
\(792\) 0 0
\(793\) −1.85753e6 −2.95385
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15292.4i 0.0240746i 0.999928 + 0.0120373i \(0.00383168\pi\)
−0.999928 + 0.0120373i \(0.996168\pi\)
\(798\) 0 0
\(799\) −180622. −0.282929
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 378929.i − 0.587661i
\(804\) 0 0
\(805\) −74075.2 −0.114309
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 264170.i 0.403632i 0.979423 + 0.201816i \(0.0646843\pi\)
−0.979423 + 0.201816i \(0.935316\pi\)
\(810\) 0 0
\(811\) −303869. −0.462002 −0.231001 0.972953i \(-0.574200\pi\)
−0.231001 + 0.972953i \(0.574200\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 614323.i − 0.924872i
\(816\) 0 0
\(817\) −282531. −0.423274
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 827669.i 1.22792i 0.789337 + 0.613961i \(0.210425\pi\)
−0.789337 + 0.613961i \(0.789575\pi\)
\(822\) 0 0
\(823\) 674989. 0.996545 0.498272 0.867021i \(-0.333968\pi\)
0.498272 + 0.867021i \(0.333968\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 1.05229e6i − 1.53860i −0.638887 0.769301i \(-0.720605\pi\)
0.638887 0.769301i \(-0.279395\pi\)
\(828\) 0 0
\(829\) −622368. −0.905603 −0.452802 0.891611i \(-0.649575\pi\)
−0.452802 + 0.891611i \(0.649575\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 73207.4i − 0.105503i
\(834\) 0 0
\(835\) −966175. −1.38574
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 653970.i 0.929038i 0.885563 + 0.464519i \(0.153773\pi\)
−0.885563 + 0.464519i \(0.846227\pi\)
\(840\) 0 0
\(841\) 493553. 0.697818
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.26233e6i 1.76790i
\(846\) 0 0
\(847\) 145699. 0.203090
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 23653.7i − 0.0326618i
\(852\) 0 0
\(853\) 1.05227e6 1.44621 0.723104 0.690739i \(-0.242715\pi\)
0.723104 + 0.690739i \(0.242715\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 336092.i 0.457611i 0.973472 + 0.228806i \(0.0734821\pi\)
−0.973472 + 0.228806i \(0.926518\pi\)
\(858\) 0 0
\(859\) 929784. 1.26007 0.630036 0.776566i \(-0.283040\pi\)
0.630036 + 0.776566i \(0.283040\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 760939.i 1.02171i 0.859666 + 0.510856i \(0.170671\pi\)
−0.859666 + 0.510856i \(0.829329\pi\)
\(864\) 0 0
\(865\) 183913. 0.245799
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 822526.i − 1.08921i
\(870\) 0 0
\(871\) −151611. −0.199846
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 128285.i − 0.167556i
\(876\) 0 0
\(877\) −50193.9 −0.0652607 −0.0326304 0.999467i \(-0.510388\pi\)
−0.0326304 + 0.999467i \(0.510388\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 421710.i − 0.543328i −0.962392 0.271664i \(-0.912426\pi\)
0.962392 0.271664i \(-0.0875740\pi\)
\(882\) 0 0
\(883\) −712187. −0.913424 −0.456712 0.889615i \(-0.650973\pi\)
−0.456712 + 0.889615i \(0.650973\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1.08271e6i − 1.37615i −0.725639 0.688075i \(-0.758456\pi\)
0.725639 0.688075i \(-0.241544\pi\)
\(888\) 0 0
\(889\) −656932. −0.831221
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 1.04062e6i − 1.30494i
\(894\) 0 0
\(895\) −1.40487e6 −1.75384
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 847426.i − 1.04853i
\(900\) 0 0
\(901\) 301048. 0.370840
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.66185e6i 2.02906i
\(906\) 0 0
\(907\) −73511.1 −0.0893590 −0.0446795 0.999001i \(-0.514227\pi\)
−0.0446795 + 0.999001i \(0.514227\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.20000e6i 1.44592i 0.690892 + 0.722958i \(0.257218\pi\)
−0.690892 + 0.722958i \(0.742782\pi\)
\(912\) 0 0
\(913\) −1.64570e6 −1.97429
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 695645.i 0.827274i
\(918\) 0 0
\(919\) 311383. 0.368692 0.184346 0.982861i \(-0.440983\pi\)
0.184346 + 0.982861i \(0.440983\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.20916e6i 1.41932i
\(924\) 0 0
\(925\) −183824. −0.214842
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 1.30768e6i − 1.51520i −0.652716 0.757602i \(-0.726371\pi\)
0.652716 0.757602i \(-0.273629\pi\)
\(930\) 0 0
\(931\) 421771. 0.486606
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 264831.i − 0.302932i
\(936\) 0 0
\(937\) 860787. 0.980430 0.490215 0.871601i \(-0.336918\pi\)
0.490215 + 0.871601i \(0.336918\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 260061.i − 0.293695i −0.989159 0.146848i \(-0.953087\pi\)
0.989159 0.146848i \(-0.0469127\pi\)
\(942\) 0 0
\(943\) −174335. −0.196048
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 630525.i − 0.703077i −0.936174 0.351538i \(-0.885659\pi\)
0.936174 0.351538i \(-0.114341\pi\)
\(948\) 0 0
\(949\) −706284. −0.784236
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 619620.i − 0.682244i −0.940019 0.341122i \(-0.889193\pi\)
0.940019 0.341122i \(-0.110807\pi\)
\(954\) 0 0
\(955\) 1.03213e6 1.13169
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 573054.i − 0.623101i
\(960\) 0 0
\(961\) 2.43651e6 2.63828
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 329280.i − 0.353598i
\(966\) 0 0
\(967\) 1.13400e6 1.21272 0.606359 0.795191i \(-0.292629\pi\)
0.606359 + 0.795191i \(0.292629\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 510281.i − 0.541216i −0.962690 0.270608i \(-0.912775\pi\)
0.962690 0.270608i \(-0.0872247\pi\)
\(972\) 0 0
\(973\) −531883. −0.561811
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1.65002e6i − 1.72863i −0.502954 0.864313i \(-0.667753\pi\)
0.502954 0.864313i \(-0.332247\pi\)
\(978\) 0 0
\(979\) 1.28743e6 1.34326
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 483351.i − 0.500214i −0.968218 0.250107i \(-0.919534\pi\)
0.968218 0.250107i \(-0.0804658\pi\)
\(984\) 0 0
\(985\) 667022. 0.687492
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 56582.2i − 0.0578478i
\(990\) 0 0
\(991\) 1.47602e6 1.50295 0.751477 0.659759i \(-0.229342\pi\)
0.751477 + 0.659759i \(0.229342\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.79435e6i 1.81243i
\(996\) 0 0
\(997\) 22655.9 0.0227924 0.0113962 0.999935i \(-0.496372\pi\)
0.0113962 + 0.999935i \(0.496372\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.5.c.b.161.8 yes 8
3.2 odd 2 inner 324.5.c.b.161.1 8
4.3 odd 2 1296.5.e.f.161.8 8
9.2 odd 6 324.5.g.f.53.8 16
9.4 even 3 324.5.g.f.269.8 16
9.5 odd 6 324.5.g.f.269.1 16
9.7 even 3 324.5.g.f.53.1 16
12.11 even 2 1296.5.e.f.161.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.5.c.b.161.1 8 3.2 odd 2 inner
324.5.c.b.161.8 yes 8 1.1 even 1 trivial
324.5.g.f.53.1 16 9.7 even 3
324.5.g.f.53.8 16 9.2 odd 6
324.5.g.f.269.1 16 9.5 odd 6
324.5.g.f.269.8 16 9.4 even 3
1296.5.e.f.161.1 8 12.11 even 2
1296.5.e.f.161.8 8 4.3 odd 2