Properties

Label 324.3.j.a.307.31
Level $324$
Weight $3$
Character 324.307
Analytic conductor $8.828$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,3,Mod(19,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 16])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 324.j (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.82836056527\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 307.31
Character \(\chi\) \(=\) 324.307
Dual form 324.3.j.a.19.31

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.90734 - 0.601703i) q^{2} +(3.27591 - 2.29531i) q^{4} +(0.755508 - 4.28470i) q^{5} +(-6.44162 - 7.67682i) q^{7} +(4.86718 - 6.34906i) q^{8} +(-1.13710 - 8.62697i) q^{10} +(-16.5915 + 2.92553i) q^{11} +(7.70282 - 2.80360i) q^{13} +(-16.9055 - 10.7664i) q^{14} +(5.46314 - 15.0384i) q^{16} +(-13.2638 + 22.9735i) q^{17} +(10.2637 - 5.92574i) q^{19} +(-7.35972 - 15.7704i) q^{20} +(-29.8854 + 15.5631i) q^{22} +(14.3578 - 17.1110i) q^{23} +(5.70448 + 2.07626i) q^{25} +(13.0050 - 9.98223i) q^{26} +(-38.7228 - 10.3631i) q^{28} +(29.1256 + 10.6009i) q^{29} +(12.9259 - 15.4045i) q^{31} +(1.37140 - 31.9706i) q^{32} +(-11.4753 + 51.7992i) q^{34} +(-37.7596 + 21.8005i) q^{35} +(20.1962 - 34.9808i) q^{37} +(16.0108 - 17.4781i) q^{38} +(-23.5266 - 25.6512i) q^{40} +(34.1160 - 12.4172i) q^{41} +(25.3466 - 4.46929i) q^{43} +(-47.6372 + 47.6664i) q^{44} +(17.0895 - 41.2756i) q^{46} +(12.9992 + 15.4919i) q^{47} +(-8.93040 + 50.6468i) q^{49} +(12.1297 + 0.527738i) q^{50} +(18.7986 - 26.8647i) q^{52} -46.7045 q^{53} +73.2998i q^{55} +(-80.0931 + 3.53372i) q^{56} +(61.9311 + 2.69449i) q^{58} +(-36.4280 - 6.42325i) q^{59} +(48.7491 - 40.9054i) q^{61} +(15.3852 - 37.1592i) q^{62} +(-16.6211 - 61.8040i) q^{64} +(-6.19303 - 35.1224i) q^{65} +(25.9527 + 71.3043i) q^{67} +(9.28040 + 105.704i) q^{68} +(-58.9030 + 64.3010i) q^{70} +(17.4692 + 10.0858i) q^{71} +(-50.2648 - 87.0613i) q^{73} +(17.4729 - 78.8724i) q^{74} +(20.0215 - 42.9705i) q^{76} +(129.335 + 108.525i) q^{77} +(-29.7876 + 81.8406i) q^{79} +(-60.3076 - 34.7695i) q^{80} +(57.5993 - 44.2115i) q^{82} +(-25.2237 + 69.3017i) q^{83} +(88.4137 + 74.1879i) q^{85} +(45.6555 - 23.7756i) q^{86} +(-62.1795 + 119.580i) q^{88} +(37.6081 + 65.1392i) q^{89} +(-71.1414 - 41.0735i) q^{91} +(7.75992 - 89.0095i) q^{92} +(34.1155 + 21.7266i) q^{94} +(-17.6357 - 48.4537i) q^{95} +(12.6145 + 71.5405i) q^{97} +(13.4410 + 101.974i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} + 12 q^{5} + 3 q^{8} - 3 q^{10} - 12 q^{13} - 39 q^{14} - 6 q^{16} + 6 q^{17} + 69 q^{20} - 6 q^{22} - 12 q^{25} + 174 q^{26} - 12 q^{28} - 60 q^{29} + 96 q^{32} + 6 q^{34} - 6 q^{37}+ \cdots - 510 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.90734 0.601703i 0.953671 0.300851i
\(3\) 0 0
\(4\) 3.27591 2.29531i 0.818977 0.573827i
\(5\) 0.755508 4.28470i 0.151102 0.856939i −0.811162 0.584821i \(-0.801165\pi\)
0.962264 0.272118i \(-0.0877242\pi\)
\(6\) 0 0
\(7\) −6.44162 7.67682i −0.920232 1.09669i −0.995038 0.0994912i \(-0.968278\pi\)
0.0748069 0.997198i \(-0.476166\pi\)
\(8\) 4.86718 6.34906i 0.608398 0.793632i
\(9\) 0 0
\(10\) −1.13710 8.62697i −0.113710 0.862697i
\(11\) −16.5915 + 2.92553i −1.50832 + 0.265957i −0.865830 0.500338i \(-0.833209\pi\)
−0.642489 + 0.766295i \(0.722098\pi\)
\(12\) 0 0
\(13\) 7.70282 2.80360i 0.592525 0.215661i −0.0283148 0.999599i \(-0.509014\pi\)
0.620840 + 0.783938i \(0.286792\pi\)
\(14\) −16.9055 10.7664i −1.20754 0.769028i
\(15\) 0 0
\(16\) 5.46314 15.0384i 0.341446 0.939901i
\(17\) −13.2638 + 22.9735i −0.780222 + 1.35138i 0.151590 + 0.988443i \(0.451561\pi\)
−0.931812 + 0.362941i \(0.881773\pi\)
\(18\) 0 0
\(19\) 10.2637 5.92574i 0.540194 0.311881i −0.204964 0.978770i \(-0.565708\pi\)
0.745158 + 0.666888i \(0.232374\pi\)
\(20\) −7.35972 15.7704i −0.367986 0.788519i
\(21\) 0 0
\(22\) −29.8854 + 15.5631i −1.35843 + 0.707416i
\(23\) 14.3578 17.1110i 0.624252 0.743955i −0.357543 0.933897i \(-0.616385\pi\)
0.981795 + 0.189942i \(0.0608299\pi\)
\(24\) 0 0
\(25\) 5.70448 + 2.07626i 0.228179 + 0.0830505i
\(26\) 13.0050 9.98223i 0.500192 0.383932i
\(27\) 0 0
\(28\) −38.7228 10.3631i −1.38296 0.370110i
\(29\) 29.1256 + 10.6009i 1.00433 + 0.365547i 0.791254 0.611488i \(-0.209429\pi\)
0.213078 + 0.977035i \(0.431651\pi\)
\(30\) 0 0
\(31\) 12.9259 15.4045i 0.416965 0.496920i −0.516150 0.856498i \(-0.672635\pi\)
0.933115 + 0.359579i \(0.117080\pi\)
\(32\) 1.37140 31.9706i 0.0428564 0.999081i
\(33\) 0 0
\(34\) −11.4753 + 51.7992i −0.337509 + 1.52351i
\(35\) −37.7596 + 21.8005i −1.07884 + 0.622871i
\(36\) 0 0
\(37\) 20.1962 34.9808i 0.545842 0.945426i −0.452711 0.891657i \(-0.649543\pi\)
0.998553 0.0537690i \(-0.0171235\pi\)
\(38\) 16.0108 17.4781i 0.421338 0.459950i
\(39\) 0 0
\(40\) −23.5266 25.6512i −0.588165 0.641279i
\(41\) 34.1160 12.4172i 0.832096 0.302858i 0.109377 0.994000i \(-0.465114\pi\)
0.722719 + 0.691142i \(0.242892\pi\)
\(42\) 0 0
\(43\) 25.3466 4.46929i 0.589456 0.103937i 0.129039 0.991640i \(-0.458811\pi\)
0.460417 + 0.887703i \(0.347700\pi\)
\(44\) −47.6372 + 47.6664i −1.08266 + 1.08333i
\(45\) 0 0
\(46\) 17.0895 41.2756i 0.371511 0.897295i
\(47\) 12.9992 + 15.4919i 0.276579 + 0.329614i 0.886396 0.462928i \(-0.153201\pi\)
−0.609817 + 0.792543i \(0.708757\pi\)
\(48\) 0 0
\(49\) −8.93040 + 50.6468i −0.182253 + 1.03361i
\(50\) 12.1297 + 0.527738i 0.242594 + 0.0105548i
\(51\) 0 0
\(52\) 18.7986 26.8647i 0.361512 0.516628i
\(53\) −46.7045 −0.881217 −0.440609 0.897699i \(-0.645237\pi\)
−0.440609 + 0.897699i \(0.645237\pi\)
\(54\) 0 0
\(55\) 73.2998i 1.33272i
\(56\) −80.0931 + 3.53372i −1.43023 + 0.0631021i
\(57\) 0 0
\(58\) 61.9311 + 2.69449i 1.06778 + 0.0464568i
\(59\) −36.4280 6.42325i −0.617424 0.108869i −0.143817 0.989604i \(-0.545938\pi\)
−0.473608 + 0.880736i \(0.657049\pi\)
\(60\) 0 0
\(61\) 48.7491 40.9054i 0.799166 0.670580i −0.148830 0.988863i \(-0.547551\pi\)
0.947996 + 0.318283i \(0.103106\pi\)
\(62\) 15.3852 37.1592i 0.248149 0.599342i
\(63\) 0 0
\(64\) −16.6211 61.8040i −0.259704 0.965688i
\(65\) −6.19303 35.1224i −0.0952773 0.540344i
\(66\) 0 0
\(67\) 25.9527 + 71.3043i 0.387353 + 1.06424i 0.968188 + 0.250223i \(0.0805038\pi\)
−0.580835 + 0.814021i \(0.697274\pi\)
\(68\) 9.28040 + 105.704i 0.136477 + 1.55446i
\(69\) 0 0
\(70\) −58.9030 + 64.3010i −0.841471 + 0.918586i
\(71\) 17.4692 + 10.0858i 0.246045 + 0.142054i 0.617952 0.786216i \(-0.287963\pi\)
−0.371907 + 0.928270i \(0.621296\pi\)
\(72\) 0 0
\(73\) −50.2648 87.0613i −0.688560 1.19262i −0.972304 0.233720i \(-0.924910\pi\)
0.283744 0.958900i \(-0.408423\pi\)
\(74\) 17.4729 78.8724i 0.236121 1.06584i
\(75\) 0 0
\(76\) 20.0215 42.9705i 0.263441 0.565401i
\(77\) 129.335 + 108.525i 1.67967 + 1.40941i
\(78\) 0 0
\(79\) −29.7876 + 81.8406i −0.377058 + 1.03596i 0.595512 + 0.803346i \(0.296949\pi\)
−0.972570 + 0.232611i \(0.925273\pi\)
\(80\) −60.3076 34.7695i −0.753845 0.434619i
\(81\) 0 0
\(82\) 57.5993 44.2115i 0.702431 0.539165i
\(83\) −25.2237 + 69.3017i −0.303900 + 0.834960i 0.689912 + 0.723893i \(0.257649\pi\)
−0.993813 + 0.111067i \(0.964573\pi\)
\(84\) 0 0
\(85\) 88.4137 + 74.1879i 1.04016 + 0.872799i
\(86\) 45.6555 23.7756i 0.530878 0.276461i
\(87\) 0 0
\(88\) −62.1795 + 119.580i −0.706586 + 1.35886i
\(89\) 37.6081 + 65.1392i 0.422563 + 0.731901i 0.996189 0.0872163i \(-0.0277971\pi\)
−0.573626 + 0.819117i \(0.694464\pi\)
\(90\) 0 0
\(91\) −71.1414 41.0735i −0.781774 0.451357i
\(92\) 7.75992 89.0095i 0.0843470 0.967494i
\(93\) 0 0
\(94\) 34.1155 + 21.7266i 0.362930 + 0.231134i
\(95\) −17.6357 48.4537i −0.185639 0.510039i
\(96\) 0 0
\(97\) 12.6145 + 71.5405i 0.130047 + 0.737531i 0.978182 + 0.207751i \(0.0666144\pi\)
−0.848135 + 0.529780i \(0.822274\pi\)
\(98\) 13.4410 + 101.974i 0.137153 + 1.04055i
\(99\) 0 0
\(100\) 23.4530 6.29190i 0.234530 0.0629190i
\(101\) −40.3702 + 33.8746i −0.399705 + 0.335392i −0.820379 0.571820i \(-0.806238\pi\)
0.420675 + 0.907211i \(0.361793\pi\)
\(102\) 0 0
\(103\) 42.8748 + 7.55998i 0.416260 + 0.0733979i 0.377856 0.925864i \(-0.376661\pi\)
0.0384042 + 0.999262i \(0.487773\pi\)
\(104\) 19.6908 62.5513i 0.189335 0.601455i
\(105\) 0 0
\(106\) −89.0815 + 28.1022i −0.840391 + 0.265115i
\(107\) 70.5658i 0.659493i 0.944069 + 0.329747i \(0.106963\pi\)
−0.944069 + 0.329747i \(0.893037\pi\)
\(108\) 0 0
\(109\) −89.3232 −0.819479 −0.409739 0.912203i \(-0.634380\pi\)
−0.409739 + 0.912203i \(0.634380\pi\)
\(110\) 44.1047 + 139.808i 0.400952 + 1.27098i
\(111\) 0 0
\(112\) −150.639 + 54.9323i −1.34499 + 0.490467i
\(113\) 13.7107 77.7573i 0.121334 0.688118i −0.862084 0.506765i \(-0.830841\pi\)
0.983418 0.181353i \(-0.0580476\pi\)
\(114\) 0 0
\(115\) −62.4678 74.4463i −0.543199 0.647359i
\(116\) 119.745 32.1248i 1.03228 0.276938i
\(117\) 0 0
\(118\) −73.3456 + 9.66753i −0.621573 + 0.0819282i
\(119\) 261.804 46.1631i 2.20003 0.387925i
\(120\) 0 0
\(121\) 153.017 55.6935i 1.26460 0.460277i
\(122\) 68.3684 107.353i 0.560397 0.879943i
\(123\) 0 0
\(124\) 6.98604 80.1327i 0.0563390 0.646231i
\(125\) 67.5909 117.071i 0.540727 0.936567i
\(126\) 0 0
\(127\) −82.1426 + 47.4250i −0.646792 + 0.373425i −0.787226 0.616665i \(-0.788483\pi\)
0.140434 + 0.990090i \(0.455150\pi\)
\(128\) −68.8897 107.881i −0.538201 0.842816i
\(129\) 0 0
\(130\) −32.9455 63.2641i −0.253427 0.486647i
\(131\) 7.26521 8.65835i 0.0554597 0.0660942i −0.737601 0.675236i \(-0.764042\pi\)
0.793061 + 0.609142i \(0.208486\pi\)
\(132\) 0 0
\(133\) −111.606 40.6211i −0.839140 0.305422i
\(134\) 92.4046 + 120.386i 0.689587 + 0.898403i
\(135\) 0 0
\(136\) 81.3031 + 196.029i 0.597817 + 1.44139i
\(137\) −147.499 53.6854i −1.07664 0.391864i −0.257982 0.966150i \(-0.583058\pi\)
−0.818655 + 0.574286i \(0.805280\pi\)
\(138\) 0 0
\(139\) 113.198 134.904i 0.814376 0.970535i −0.185551 0.982635i \(-0.559407\pi\)
0.999927 + 0.0120996i \(0.00385153\pi\)
\(140\) −73.6580 + 158.086i −0.526129 + 1.12919i
\(141\) 0 0
\(142\) 39.3884 + 8.72588i 0.277383 + 0.0614498i
\(143\) −119.599 + 69.0507i −0.836359 + 0.482872i
\(144\) 0 0
\(145\) 67.4261 116.785i 0.465008 0.805417i
\(146\) −148.257 135.811i −1.01546 0.930213i
\(147\) 0 0
\(148\) −14.1309 160.950i −0.0954788 1.08750i
\(149\) 92.5431 33.6829i 0.621094 0.226060i −0.0122562 0.999925i \(-0.503901\pi\)
0.633351 + 0.773865i \(0.281679\pi\)
\(150\) 0 0
\(151\) −0.769516 + 0.135686i −0.00509613 + 0.000898586i −0.176196 0.984355i \(-0.556379\pi\)
0.171100 + 0.985254i \(0.445268\pi\)
\(152\) 12.3324 94.0064i 0.0811339 0.618463i
\(153\) 0 0
\(154\) 311.986 + 129.173i 2.02588 + 0.838785i
\(155\) −56.2380 67.0219i −0.362826 0.432399i
\(156\) 0 0
\(157\) −30.8928 + 175.202i −0.196769 + 1.11593i 0.713107 + 0.701055i \(0.247287\pi\)
−0.909876 + 0.414879i \(0.863824\pi\)
\(158\) −7.57130 + 174.021i −0.0479196 + 1.10140i
\(159\) 0 0
\(160\) −135.948 30.0301i −0.849676 0.187688i
\(161\) −223.845 −1.39034
\(162\) 0 0
\(163\) 268.797i 1.64906i 0.565818 + 0.824530i \(0.308561\pi\)
−0.565818 + 0.824530i \(0.691439\pi\)
\(164\) 83.2594 118.984i 0.507679 0.725513i
\(165\) 0 0
\(166\) −6.41129 + 147.359i −0.0386222 + 0.887706i
\(167\) 21.3074 + 3.75708i 0.127589 + 0.0224975i 0.237078 0.971491i \(-0.423810\pi\)
−0.109489 + 0.993988i \(0.534921\pi\)
\(168\) 0 0
\(169\) −77.9882 + 65.4399i −0.461469 + 0.387218i
\(170\) 213.274 + 88.3029i 1.25455 + 0.519429i
\(171\) 0 0
\(172\) 72.7748 72.8192i 0.423109 0.423368i
\(173\) 20.3403 + 115.356i 0.117574 + 0.666796i 0.985443 + 0.170003i \(0.0543778\pi\)
−0.867869 + 0.496792i \(0.834511\pi\)
\(174\) 0 0
\(175\) −20.8070 57.1668i −0.118897 0.326668i
\(176\) −46.6463 + 265.493i −0.265036 + 1.50848i
\(177\) 0 0
\(178\) 110.926 + 101.614i 0.623180 + 0.570864i
\(179\) 17.3998 + 10.0458i 0.0972054 + 0.0561216i 0.547815 0.836600i \(-0.315460\pi\)
−0.450609 + 0.892721i \(0.648793\pi\)
\(180\) 0 0
\(181\) 96.6241 + 167.358i 0.533835 + 0.924629i 0.999219 + 0.0395201i \(0.0125829\pi\)
−0.465384 + 0.885109i \(0.654084\pi\)
\(182\) −160.405 35.5352i −0.881346 0.195249i
\(183\) 0 0
\(184\) −38.7564 174.441i −0.210633 0.948047i
\(185\) −134.624 112.963i −0.727695 0.610609i
\(186\) 0 0
\(187\) 152.856 419.969i 0.817413 2.24582i
\(188\) 78.1428 + 20.9127i 0.415653 + 0.111238i
\(189\) 0 0
\(190\) −62.7921 81.8064i −0.330485 0.430560i
\(191\) −87.6196 + 240.733i −0.458741 + 1.26038i 0.467682 + 0.883897i \(0.345089\pi\)
−0.926423 + 0.376484i \(0.877133\pi\)
\(192\) 0 0
\(193\) −217.111 182.178i −1.12493 0.943928i −0.126087 0.992019i \(-0.540242\pi\)
−0.998843 + 0.0480909i \(0.984686\pi\)
\(194\) 67.1064 + 128.862i 0.345909 + 0.664237i
\(195\) 0 0
\(196\) 86.9948 + 186.412i 0.443851 + 0.951083i
\(197\) −142.022 245.990i −0.720925 1.24868i −0.960630 0.277832i \(-0.910384\pi\)
0.239705 0.970846i \(-0.422949\pi\)
\(198\) 0 0
\(199\) −118.652 68.5039i −0.596242 0.344241i 0.171320 0.985216i \(-0.445197\pi\)
−0.767562 + 0.640975i \(0.778530\pi\)
\(200\) 40.9471 26.1126i 0.204735 0.130563i
\(201\) 0 0
\(202\) −56.6173 + 88.9013i −0.280283 + 0.440105i
\(203\) −106.235 291.879i −0.523326 1.43783i
\(204\) 0 0
\(205\) −27.4290 155.558i −0.133800 0.758818i
\(206\) 86.3258 11.3784i 0.419057 0.0552350i
\(207\) 0 0
\(208\) −0.0801338 131.155i −0.000385259 0.630552i
\(209\) −152.954 + 128.344i −0.731838 + 0.614085i
\(210\) 0 0
\(211\) 181.862 + 32.0671i 0.861903 + 0.151977i 0.587091 0.809521i \(-0.300273\pi\)
0.274813 + 0.961498i \(0.411384\pi\)
\(212\) −153.000 + 107.201i −0.721696 + 0.505666i
\(213\) 0 0
\(214\) 42.4596 + 134.593i 0.198409 + 0.628940i
\(215\) 111.979i 0.520833i
\(216\) 0 0
\(217\) −201.522 −0.928671
\(218\) −170.370 + 53.7460i −0.781513 + 0.246541i
\(219\) 0 0
\(220\) 168.246 + 240.123i 0.764753 + 1.09147i
\(221\) −37.7599 + 214.147i −0.170859 + 0.968992i
\(222\) 0 0
\(223\) −140.359 167.273i −0.629413 0.750105i 0.353245 0.935531i \(-0.385078\pi\)
−0.982658 + 0.185426i \(0.940634\pi\)
\(224\) −254.267 + 195.414i −1.13512 + 0.872386i
\(225\) 0 0
\(226\) −20.6358 156.560i −0.0913088 0.692741i
\(227\) 298.580 52.6476i 1.31533 0.231928i 0.528412 0.848988i \(-0.322788\pi\)
0.786916 + 0.617060i \(0.211676\pi\)
\(228\) 0 0
\(229\) −291.207 + 105.991i −1.27164 + 0.462841i −0.887660 0.460499i \(-0.847671\pi\)
−0.383985 + 0.923340i \(0.625448\pi\)
\(230\) −163.942 104.407i −0.712792 0.453945i
\(231\) 0 0
\(232\) 209.065 133.324i 0.901143 0.574672i
\(233\) 21.7586 37.6870i 0.0933845 0.161747i −0.815549 0.578688i \(-0.803565\pi\)
0.908933 + 0.416942i \(0.136898\pi\)
\(234\) 0 0
\(235\) 76.1989 43.9935i 0.324251 0.187206i
\(236\) −134.078 + 62.5716i −0.568128 + 0.265134i
\(237\) 0 0
\(238\) 471.573 245.577i 1.98140 1.03184i
\(239\) 214.161 255.227i 0.896069 1.06789i −0.101260 0.994860i \(-0.532287\pi\)
0.997329 0.0730337i \(-0.0232681\pi\)
\(240\) 0 0
\(241\) 325.919 + 118.625i 1.35236 + 0.492219i 0.913684 0.406426i \(-0.133225\pi\)
0.438677 + 0.898645i \(0.355447\pi\)
\(242\) 258.344 198.297i 1.06754 0.819409i
\(243\) 0 0
\(244\) 65.8073 245.896i 0.269702 1.00777i
\(245\) 210.259 + 76.5281i 0.858201 + 0.312360i
\(246\) 0 0
\(247\) 62.4460 74.4202i 0.252818 0.301296i
\(248\) −34.8913 157.044i −0.140691 0.633242i
\(249\) 0 0
\(250\) 58.4770 263.964i 0.233908 1.05585i
\(251\) 12.1468 7.01295i 0.0483935 0.0279400i −0.475608 0.879657i \(-0.657772\pi\)
0.524002 + 0.851717i \(0.324439\pi\)
\(252\) 0 0
\(253\) −188.159 + 325.901i −0.743711 + 1.28815i
\(254\) −128.138 + 139.881i −0.504481 + 0.550713i
\(255\) 0 0
\(256\) −196.308 164.314i −0.766829 0.641851i
\(257\) 159.478 58.0452i 0.620537 0.225857i −0.0125705 0.999921i \(-0.504001\pi\)
0.633107 + 0.774064i \(0.281779\pi\)
\(258\) 0 0
\(259\) −398.637 + 70.2905i −1.53914 + 0.271392i
\(260\) −100.904 100.843i −0.388094 0.387857i
\(261\) 0 0
\(262\) 8.64750 20.8859i 0.0330057 0.0797173i
\(263\) −208.683 248.699i −0.793473 0.945624i 0.205985 0.978555i \(-0.433960\pi\)
−0.999458 + 0.0329313i \(0.989516\pi\)
\(264\) 0 0
\(265\) −35.2856 + 200.115i −0.133153 + 0.755150i
\(266\) −237.312 10.3250i −0.892151 0.0388156i
\(267\) 0 0
\(268\) 248.684 + 174.017i 0.927924 + 0.649317i
\(269\) 281.085 1.04493 0.522463 0.852662i \(-0.325013\pi\)
0.522463 + 0.852662i \(0.325013\pi\)
\(270\) 0 0
\(271\) 270.921i 0.999709i −0.866109 0.499855i \(-0.833387\pi\)
0.866109 0.499855i \(-0.166613\pi\)
\(272\) 273.024 + 324.974i 1.00376 + 1.19476i
\(273\) 0 0
\(274\) −313.634 13.6456i −1.14465 0.0498014i
\(275\) −100.720 17.7597i −0.366255 0.0645807i
\(276\) 0 0
\(277\) 80.9996 67.9667i 0.292417 0.245367i −0.484763 0.874646i \(-0.661094\pi\)
0.777180 + 0.629279i \(0.216650\pi\)
\(278\) 134.735 325.420i 0.484659 1.17058i
\(279\) 0 0
\(280\) −45.3701 + 345.845i −0.162036 + 1.23516i
\(281\) −14.7191 83.4761i −0.0523811 0.297068i 0.947351 0.320196i \(-0.103749\pi\)
−0.999733 + 0.0231277i \(0.992638\pi\)
\(282\) 0 0
\(283\) 110.305 + 303.060i 0.389770 + 1.07088i 0.967105 + 0.254376i \(0.0818702\pi\)
−0.577336 + 0.816507i \(0.695908\pi\)
\(284\) 80.3775 7.05686i 0.283019 0.0248481i
\(285\) 0 0
\(286\) −186.569 + 203.667i −0.652339 + 0.712121i
\(287\) −315.087 181.915i −1.09786 0.633851i
\(288\) 0 0
\(289\) −207.355 359.150i −0.717493 1.24273i
\(290\) 58.3345 263.320i 0.201153 0.908001i
\(291\) 0 0
\(292\) −364.495 169.831i −1.24827 0.581614i
\(293\) −157.814 132.422i −0.538615 0.451952i 0.332449 0.943121i \(-0.392125\pi\)
−0.871064 + 0.491170i \(0.836570\pi\)
\(294\) 0 0
\(295\) −55.0433 + 151.230i −0.186588 + 0.512645i
\(296\) −123.797 298.484i −0.418232 1.00839i
\(297\) 0 0
\(298\) 156.244 119.928i 0.524309 0.402444i
\(299\) 62.6233 172.056i 0.209443 0.575439i
\(300\) 0 0
\(301\) −197.583 165.792i −0.656423 0.550804i
\(302\) −1.38609 + 0.721821i −0.00458969 + 0.00239013i
\(303\) 0 0
\(304\) −33.0419 186.723i −0.108691 0.614220i
\(305\) −138.437 239.780i −0.453891 0.786163i
\(306\) 0 0
\(307\) 194.400 + 112.237i 0.633225 + 0.365593i 0.782000 0.623278i \(-0.214200\pi\)
−0.148775 + 0.988871i \(0.547533\pi\)
\(308\) 672.787 + 58.6542i 2.18437 + 0.190436i
\(309\) 0 0
\(310\) −147.592 93.9950i −0.476104 0.303210i
\(311\) 76.8272 + 211.081i 0.247033 + 0.678717i 0.999791 + 0.0204207i \(0.00650055\pi\)
−0.752759 + 0.658297i \(0.771277\pi\)
\(312\) 0 0
\(313\) −69.3890 393.525i −0.221690 1.25727i −0.868912 0.494966i \(-0.835181\pi\)
0.647222 0.762301i \(-0.275931\pi\)
\(314\) 46.4963 + 352.758i 0.148077 + 1.12343i
\(315\) 0 0
\(316\) 90.2681 + 336.474i 0.285658 + 1.06479i
\(317\) −11.8267 + 9.92380i −0.0373083 + 0.0313054i −0.661251 0.750165i \(-0.729974\pi\)
0.623943 + 0.781470i \(0.285530\pi\)
\(318\) 0 0
\(319\) −514.251 90.6763i −1.61207 0.284252i
\(320\) −277.369 + 24.5228i −0.866778 + 0.0766338i
\(321\) 0 0
\(322\) −426.950 + 134.688i −1.32593 + 0.418287i
\(323\) 314.391i 0.973346i
\(324\) 0 0
\(325\) 49.7616 0.153113
\(326\) 161.736 + 512.688i 0.496122 + 1.57266i
\(327\) 0 0
\(328\) 87.2111 277.041i 0.265887 0.844637i
\(329\) 35.1923 199.585i 0.106967 0.606643i
\(330\) 0 0
\(331\) 178.560 + 212.799i 0.539455 + 0.642898i 0.965065 0.262009i \(-0.0843850\pi\)
−0.425610 + 0.904907i \(0.639941\pi\)
\(332\) 76.4379 + 284.922i 0.230235 + 0.858199i
\(333\) 0 0
\(334\) 42.9012 5.65472i 0.128447 0.0169303i
\(335\) 325.125 57.3283i 0.970522 0.171129i
\(336\) 0 0
\(337\) 524.664 190.962i 1.55687 0.566653i 0.586850 0.809696i \(-0.300368\pi\)
0.970015 + 0.243043i \(0.0781457\pi\)
\(338\) −109.375 + 171.742i −0.323594 + 0.508112i
\(339\) 0 0
\(340\) 459.919 + 40.0961i 1.35270 + 0.117930i
\(341\) −169.394 + 293.399i −0.496757 + 0.860408i
\(342\) 0 0
\(343\) 21.0731 12.1666i 0.0614376 0.0354710i
\(344\) 94.9908 182.680i 0.276136 0.531046i
\(345\) 0 0
\(346\) 108.206 + 207.784i 0.312733 + 0.600531i
\(347\) −288.093 + 343.336i −0.830241 + 0.989442i 0.169752 + 0.985487i \(0.445703\pi\)
−0.999992 + 0.00395526i \(0.998741\pi\)
\(348\) 0 0
\(349\) 479.457 + 174.508i 1.37380 + 0.500023i 0.920294 0.391228i \(-0.127950\pi\)
0.453509 + 0.891252i \(0.350172\pi\)
\(350\) −74.0836 96.5170i −0.211667 0.275763i
\(351\) 0 0
\(352\) 70.7773 + 534.452i 0.201072 + 1.51833i
\(353\) 194.831 + 70.9126i 0.551928 + 0.200885i 0.602903 0.797814i \(-0.294011\pi\)
−0.0509748 + 0.998700i \(0.516233\pi\)
\(354\) 0 0
\(355\) 56.4128 67.2302i 0.158909 0.189381i
\(356\) 272.715 + 127.068i 0.766054 + 0.356932i
\(357\) 0 0
\(358\) 39.2319 + 8.69121i 0.109586 + 0.0242771i
\(359\) −52.8592 + 30.5183i −0.147240 + 0.0850091i −0.571810 0.820386i \(-0.693759\pi\)
0.424570 + 0.905395i \(0.360425\pi\)
\(360\) 0 0
\(361\) −110.271 + 190.995i −0.305460 + 0.529073i
\(362\) 284.995 + 261.070i 0.787279 + 0.721187i
\(363\) 0 0
\(364\) −327.329 + 28.7383i −0.899255 + 0.0789515i
\(365\) −411.007 + 149.594i −1.12605 + 0.409847i
\(366\) 0 0
\(367\) 258.395 45.5620i 0.704073 0.124147i 0.189862 0.981811i \(-0.439196\pi\)
0.514211 + 0.857664i \(0.328085\pi\)
\(368\) −178.883 309.398i −0.486096 0.840756i
\(369\) 0 0
\(370\) −324.743 134.455i −0.877684 0.363392i
\(371\) 300.853 + 358.542i 0.810924 + 0.966421i
\(372\) 0 0
\(373\) −96.1685 + 545.399i −0.257824 + 1.46219i 0.530893 + 0.847439i \(0.321857\pi\)
−0.788717 + 0.614756i \(0.789254\pi\)
\(374\) 38.8525 892.999i 0.103884 2.38770i
\(375\) 0 0
\(376\) 161.628 7.13105i 0.429863 0.0189656i
\(377\) 254.070 0.673926
\(378\) 0 0
\(379\) 61.8712i 0.163249i 0.996663 + 0.0816243i \(0.0260107\pi\)
−0.996663 + 0.0816243i \(0.973989\pi\)
\(380\) −168.989 118.251i −0.444708 0.311186i
\(381\) 0 0
\(382\) −22.2709 + 511.881i −0.0583007 + 1.34000i
\(383\) 356.264 + 62.8189i 0.930193 + 0.164018i 0.618159 0.786053i \(-0.287879\pi\)
0.312034 + 0.950071i \(0.398990\pi\)
\(384\) 0 0
\(385\) 562.710 472.170i 1.46158 1.22641i
\(386\) −523.723 216.839i −1.35680 0.561760i
\(387\) 0 0
\(388\) 205.531 + 205.406i 0.529720 + 0.529397i
\(389\) 51.9683 + 294.727i 0.133595 + 0.757653i 0.975828 + 0.218540i \(0.0701294\pi\)
−0.842233 + 0.539113i \(0.818759\pi\)
\(390\) 0 0
\(391\) 202.661 + 556.805i 0.518313 + 1.42405i
\(392\) 278.094 + 303.207i 0.709423 + 0.773487i
\(393\) 0 0
\(394\) −418.898 383.731i −1.06319 0.973937i
\(395\) 328.158 + 189.462i 0.830778 + 0.479650i
\(396\) 0 0
\(397\) 197.081 + 341.354i 0.496425 + 0.859833i 0.999991 0.00412318i \(-0.00131245\pi\)
−0.503567 + 0.863956i \(0.667979\pi\)
\(398\) −267.529 59.2670i −0.672184 0.148912i
\(399\) 0 0
\(400\) 62.3881 74.4435i 0.155970 0.186109i
\(401\) 33.5438 + 28.1466i 0.0836503 + 0.0701909i 0.683654 0.729806i \(-0.260390\pi\)
−0.600004 + 0.799997i \(0.704834\pi\)
\(402\) 0 0
\(403\) 56.3780 154.897i 0.139896 0.384360i
\(404\) −54.4963 + 203.632i −0.134892 + 0.504039i
\(405\) 0 0
\(406\) −378.251 492.791i −0.931654 1.21377i
\(407\) −232.747 + 639.468i −0.571861 + 1.57117i
\(408\) 0 0
\(409\) −318.044 266.870i −0.777613 0.652495i 0.165033 0.986288i \(-0.447227\pi\)
−0.942646 + 0.333793i \(0.891671\pi\)
\(410\) −145.916 280.198i −0.355893 0.683409i
\(411\) 0 0
\(412\) 157.806 73.6450i 0.383025 0.178750i
\(413\) 185.346 + 321.028i 0.448778 + 0.777307i
\(414\) 0 0
\(415\) 277.880 + 160.434i 0.669590 + 0.386588i
\(416\) −79.0690 250.109i −0.190070 0.601223i
\(417\) 0 0
\(418\) −214.511 + 336.828i −0.513184 + 0.805809i
\(419\) 21.7249 + 59.6886i 0.0518493 + 0.142455i 0.962914 0.269809i \(-0.0869605\pi\)
−0.911065 + 0.412264i \(0.864738\pi\)
\(420\) 0 0
\(421\) 108.764 + 616.830i 0.258346 + 1.46515i 0.787335 + 0.616525i \(0.211460\pi\)
−0.528989 + 0.848629i \(0.677429\pi\)
\(422\) 366.167 48.2637i 0.867695 0.114369i
\(423\) 0 0
\(424\) −227.319 + 296.530i −0.536131 + 0.699362i
\(425\) −123.362 + 103.513i −0.290264 + 0.243560i
\(426\) 0 0
\(427\) −628.047 110.742i −1.47084 0.259348i
\(428\) 161.970 + 231.167i 0.378435 + 0.540110i
\(429\) 0 0
\(430\) −67.3782 213.583i −0.156693 0.496704i
\(431\) 127.048i 0.294775i 0.989079 + 0.147388i \(0.0470865\pi\)
−0.989079 + 0.147388i \(0.952914\pi\)
\(432\) 0 0
\(433\) 587.542 1.35691 0.678454 0.734642i \(-0.262650\pi\)
0.678454 + 0.734642i \(0.262650\pi\)
\(434\) −384.371 + 121.256i −0.885647 + 0.279392i
\(435\) 0 0
\(436\) −292.615 + 205.024i −0.671134 + 0.470239i
\(437\) 45.9688 260.702i 0.105192 0.596573i
\(438\) 0 0
\(439\) 277.190 + 330.342i 0.631412 + 0.752488i 0.982988 0.183672i \(-0.0587984\pi\)
−0.351576 + 0.936159i \(0.614354\pi\)
\(440\) 465.385 + 356.764i 1.05769 + 0.810826i
\(441\) 0 0
\(442\) 56.8319 + 431.172i 0.128579 + 0.975503i
\(443\) −774.476 + 136.561i −1.74825 + 0.308264i −0.954107 0.299465i \(-0.903192\pi\)
−0.794145 + 0.607729i \(0.792081\pi\)
\(444\) 0 0
\(445\) 307.515 111.926i 0.691045 0.251520i
\(446\) −368.362 234.593i −0.825923 0.525994i
\(447\) 0 0
\(448\) −367.392 + 525.715i −0.820072 + 1.17347i
\(449\) 242.525 420.066i 0.540145 0.935559i −0.458750 0.888566i \(-0.651703\pi\)
0.998895 0.0469939i \(-0.0149641\pi\)
\(450\) 0 0
\(451\) −529.708 + 305.827i −1.17452 + 0.678109i
\(452\) −133.562 286.196i −0.295491 0.633177i
\(453\) 0 0
\(454\) 537.815 280.073i 1.18461 0.616901i
\(455\) −229.735 + 273.788i −0.504913 + 0.601732i
\(456\) 0 0
\(457\) −813.496 296.088i −1.78008 0.647896i −0.999746 0.0225304i \(-0.992828\pi\)
−0.780332 0.625365i \(-0.784950\pi\)
\(458\) −491.656 + 377.380i −1.07348 + 0.823974i
\(459\) 0 0
\(460\) −375.516 100.496i −0.816339 0.218470i
\(461\) 652.111 + 237.349i 1.41456 + 0.514857i 0.932464 0.361263i \(-0.117654\pi\)
0.482094 + 0.876120i \(0.339876\pi\)
\(462\) 0 0
\(463\) 438.512 522.598i 0.947111 1.12872i −0.0444414 0.999012i \(-0.514151\pi\)
0.991552 0.129710i \(-0.0414048\pi\)
\(464\) 318.537 380.089i 0.686503 0.819158i
\(465\) 0 0
\(466\) 18.8247 84.9742i 0.0403964 0.182348i
\(467\) 388.222 224.140i 0.831310 0.479957i −0.0229910 0.999736i \(-0.507319\pi\)
0.854301 + 0.519779i \(0.173986\pi\)
\(468\) 0 0
\(469\) 380.214 658.549i 0.810690 1.40416i
\(470\) 118.866 129.760i 0.252907 0.276085i
\(471\) 0 0
\(472\) −218.083 + 200.021i −0.462041 + 0.423773i
\(473\) −407.463 + 148.305i −0.861445 + 0.313540i
\(474\) 0 0
\(475\) 70.8524 12.4932i 0.149163 0.0263015i
\(476\) 751.687 752.146i 1.57917 1.58014i
\(477\) 0 0
\(478\) 254.907 615.665i 0.533278 1.28800i
\(479\) −370.059 441.020i −0.772567 0.920709i 0.226006 0.974126i \(-0.427433\pi\)
−0.998572 + 0.0534168i \(0.982989\pi\)
\(480\) 0 0
\(481\) 57.4954 326.073i 0.119533 0.677905i
\(482\) 693.015 + 30.1517i 1.43779 + 0.0625553i
\(483\) 0 0
\(484\) 373.434 533.666i 0.771559 1.10262i
\(485\) 316.060 0.651670
\(486\) 0 0
\(487\) 109.976i 0.225824i −0.993605 0.112912i \(-0.963982\pi\)
0.993605 0.112912i \(-0.0360178\pi\)
\(488\) −22.4397 508.605i −0.0459830 1.04222i
\(489\) 0 0
\(490\) 447.083 + 19.4517i 0.912415 + 0.0396973i
\(491\) −382.906 67.5166i −0.779849 0.137508i −0.230467 0.973080i \(-0.574025\pi\)
−0.549381 + 0.835572i \(0.685137\pi\)
\(492\) 0 0
\(493\) −629.855 + 528.511i −1.27760 + 1.07203i
\(494\) 74.3269 179.519i 0.150459 0.363398i
\(495\) 0 0
\(496\) −161.043 278.542i −0.324684 0.561577i
\(497\) −35.1026 199.077i −0.0706290 0.400557i
\(498\) 0 0
\(499\) −36.1272 99.2586i −0.0723992 0.198915i 0.898215 0.439557i \(-0.144864\pi\)
−0.970614 + 0.240642i \(0.922642\pi\)
\(500\) −47.2920 538.655i −0.0945840 1.07731i
\(501\) 0 0
\(502\) 18.9484 20.6848i 0.0377457 0.0412049i
\(503\) −417.548 241.072i −0.830116 0.479268i 0.0237762 0.999717i \(-0.492431\pi\)
−0.853892 + 0.520449i \(0.825764\pi\)
\(504\) 0 0
\(505\) 114.642 + 198.566i 0.227015 + 0.393201i
\(506\) −162.788 + 734.820i −0.321715 + 1.45221i
\(507\) 0 0
\(508\) −160.236 + 343.902i −0.315426 + 0.676973i
\(509\) 466.979 + 391.842i 0.917443 + 0.769826i 0.973520 0.228600i \(-0.0734148\pi\)
−0.0560770 + 0.998426i \(0.517859\pi\)
\(510\) 0 0
\(511\) −344.567 + 946.690i −0.674299 + 1.85262i
\(512\) −473.295 195.283i −0.924405 0.381413i
\(513\) 0 0
\(514\) 269.253 206.670i 0.523839 0.402083i
\(515\) 64.7845 177.994i 0.125795 0.345619i
\(516\) 0 0
\(517\) −260.999 219.004i −0.504833 0.423605i
\(518\) −718.043 + 373.929i −1.38618 + 0.721871i
\(519\) 0 0
\(520\) −253.137 131.627i −0.486801 0.253129i
\(521\) 96.1278 + 166.498i 0.184506 + 0.319575i 0.943410 0.331628i \(-0.107598\pi\)
−0.758904 + 0.651203i \(0.774265\pi\)
\(522\) 0 0
\(523\) 261.108 + 150.751i 0.499250 + 0.288242i 0.728404 0.685148i \(-0.240262\pi\)
−0.229154 + 0.973390i \(0.573596\pi\)
\(524\) 3.92661 45.0398i 0.00749353 0.0859539i
\(525\) 0 0
\(526\) −547.673 348.789i −1.04120 0.663097i
\(527\) 182.449 + 501.276i 0.346204 + 0.951188i
\(528\) 0 0
\(529\) 5.22135 + 29.6117i 0.00987022 + 0.0559768i
\(530\) 53.1078 + 402.919i 0.100203 + 0.760224i
\(531\) 0 0
\(532\) −458.848 + 123.098i −0.862496 + 0.231387i
\(533\) 227.976 191.295i 0.427723 0.358902i
\(534\) 0 0
\(535\) 302.353 + 53.3130i 0.565146 + 0.0996504i
\(536\) 579.032 + 182.276i 1.08028 + 0.340068i
\(537\) 0 0
\(538\) 536.126 169.130i 0.996517 0.314368i
\(539\) 866.433i 1.60748i
\(540\) 0 0
\(541\) −53.7516 −0.0993561 −0.0496780 0.998765i \(-0.515820\pi\)
−0.0496780 + 0.998765i \(0.515820\pi\)
\(542\) −163.014 516.739i −0.300764 0.953394i
\(543\) 0 0
\(544\) 716.287 + 455.557i 1.31670 + 0.837421i
\(545\) −67.4844 + 382.723i −0.123825 + 0.702244i
\(546\) 0 0
\(547\) −309.469 368.810i −0.565756 0.674242i 0.404998 0.914318i \(-0.367272\pi\)
−0.970754 + 0.240076i \(0.922828\pi\)
\(548\) −606.418 + 162.688i −1.10660 + 0.296876i
\(549\) 0 0
\(550\) −202.794 + 26.7298i −0.368716 + 0.0485997i
\(551\) 361.754 63.7870i 0.656541 0.115766i
\(552\) 0 0
\(553\) 820.156 298.512i 1.48310 0.539806i
\(554\) 113.598 178.373i 0.205051 0.321974i
\(555\) 0 0
\(556\) 61.1799 701.759i 0.110036 1.26216i
\(557\) −220.981 + 382.751i −0.396735 + 0.687165i −0.993321 0.115384i \(-0.963190\pi\)
0.596586 + 0.802549i \(0.296523\pi\)
\(558\) 0 0
\(559\) 182.710 105.488i 0.326852 0.188708i
\(560\) 121.559 + 686.943i 0.217070 + 1.22668i
\(561\) 0 0
\(562\) −78.3021 150.361i −0.139328 0.267546i
\(563\) 539.434 642.872i 0.958142 1.14187i −0.0316719 0.999498i \(-0.510083\pi\)
0.989813 0.142370i \(-0.0454724\pi\)
\(564\) 0 0
\(565\) −322.808 117.492i −0.571341 0.207951i
\(566\) 392.741 + 511.668i 0.693889 + 0.904008i
\(567\) 0 0
\(568\) 149.061 61.8232i 0.262432 0.108844i
\(569\) −1001.95 364.680i −1.76090 0.640914i −0.760927 0.648838i \(-0.775255\pi\)
−0.999969 + 0.00792419i \(0.997478\pi\)
\(570\) 0 0
\(571\) −421.903 + 502.804i −0.738884 + 0.880567i −0.996319 0.0857285i \(-0.972678\pi\)
0.257435 + 0.966296i \(0.417123\pi\)
\(572\) −233.304 + 500.721i −0.407874 + 0.875387i
\(573\) 0 0
\(574\) −710.437 157.386i −1.23770 0.274192i
\(575\) 117.431 67.7987i 0.204227 0.117911i
\(576\) 0 0
\(577\) −117.795 + 204.027i −0.204151 + 0.353600i −0.949862 0.312670i \(-0.898777\pi\)
0.745711 + 0.666270i \(0.232110\pi\)
\(578\) −611.599 560.256i −1.05813 0.969300i
\(579\) 0 0
\(580\) −47.1767 537.342i −0.0813392 0.926451i
\(581\) 694.498 252.777i 1.19535 0.435072i
\(582\) 0 0
\(583\) 774.898 136.635i 1.32916 0.234366i
\(584\) −797.405 104.609i −1.36542 0.179124i
\(585\) 0 0
\(586\) −380.684 157.616i −0.649632 0.268970i
\(587\) −294.660 351.162i −0.501976 0.598232i 0.454245 0.890877i \(-0.349909\pi\)
−0.956221 + 0.292645i \(0.905465\pi\)
\(588\) 0 0
\(589\) 41.3844 234.703i 0.0702622 0.398477i
\(590\) −13.9907 + 321.568i −0.0237131 + 0.545030i
\(591\) 0 0
\(592\) −415.721 494.823i −0.702232 0.835850i
\(593\) −530.547 −0.894683 −0.447342 0.894363i \(-0.647629\pi\)
−0.447342 + 0.894363i \(0.647629\pi\)
\(594\) 0 0
\(595\) 1156.63i 1.94391i
\(596\) 225.850 322.757i 0.378943 0.541538i
\(597\) 0 0
\(598\) 15.9174 365.851i 0.0266177 0.611790i
\(599\) −367.257 64.7574i −0.613118 0.108109i −0.141538 0.989933i \(-0.545205\pi\)
−0.471579 + 0.881824i \(0.656316\pi\)
\(600\) 0 0
\(601\) −335.573 + 281.579i −0.558358 + 0.468518i −0.877759 0.479102i \(-0.840962\pi\)
0.319402 + 0.947619i \(0.396518\pi\)
\(602\) −476.616 197.336i −0.791722 0.327800i
\(603\) 0 0
\(604\) −2.20942 + 2.21077i −0.00365798 + 0.00366022i
\(605\) −123.024 697.706i −0.203346 1.15323i
\(606\) 0 0
\(607\) −56.8614 156.226i −0.0936762 0.257373i 0.884001 0.467484i \(-0.154840\pi\)
−0.977677 + 0.210111i \(0.932617\pi\)
\(608\) −175.374 336.263i −0.288444 0.553064i
\(609\) 0 0
\(610\) −408.322 374.044i −0.669381 0.613187i
\(611\) 143.564 + 82.8865i 0.234965 + 0.135657i
\(612\) 0 0
\(613\) −95.7272 165.804i −0.156162 0.270480i 0.777320 0.629106i \(-0.216579\pi\)
−0.933481 + 0.358626i \(0.883245\pi\)
\(614\) 438.321 + 97.1032i 0.713878 + 0.158149i
\(615\) 0 0
\(616\) 1318.53 292.945i 2.14047 0.475559i
\(617\) −216.274 181.476i −0.350526 0.294126i 0.450475 0.892789i \(-0.351255\pi\)
−0.801001 + 0.598663i \(0.795699\pi\)
\(618\) 0 0
\(619\) 22.1636 60.8940i 0.0358055 0.0983748i −0.920502 0.390739i \(-0.872220\pi\)
0.956307 + 0.292364i \(0.0944418\pi\)
\(620\) −338.066 90.4739i −0.545268 0.145926i
\(621\) 0 0
\(622\) 273.544 + 356.377i 0.439781 + 0.572953i
\(623\) 257.805 708.313i 0.413812 1.13694i
\(624\) 0 0
\(625\) −334.289 280.502i −0.534862 0.448803i
\(626\) −369.133 708.834i −0.589670 1.13232i
\(627\) 0 0
\(628\) 300.940 + 644.853i 0.479203 + 1.02684i
\(629\) 535.754 + 927.954i 0.851756 + 1.47528i
\(630\) 0 0
\(631\) −310.209 179.099i −0.491615 0.283834i 0.233629 0.972326i \(-0.424940\pi\)
−0.725244 + 0.688492i \(0.758273\pi\)
\(632\) 374.629 + 587.456i 0.592768 + 0.929519i
\(633\) 0 0
\(634\) −16.5864 + 26.0443i −0.0261616 + 0.0410793i
\(635\) 141.143 + 387.786i 0.222272 + 0.610686i
\(636\) 0 0
\(637\) 73.2040 + 415.161i 0.114920 + 0.651744i
\(638\) −1035.41 + 136.476i −1.62290 + 0.213912i
\(639\) 0 0
\(640\) −514.282 + 213.667i −0.803566 + 0.333855i
\(641\) 575.070 482.541i 0.897146 0.752795i −0.0724847 0.997370i \(-0.523093\pi\)
0.969630 + 0.244575i \(0.0786484\pi\)
\(642\) 0 0
\(643\) −899.318 158.574i −1.39863 0.246616i −0.577049 0.816709i \(-0.695796\pi\)
−0.821580 + 0.570093i \(0.806907\pi\)
\(644\) −733.297 + 513.794i −1.13866 + 0.797816i
\(645\) 0 0
\(646\) 189.170 + 599.651i 0.292833 + 0.928252i
\(647\) 457.889i 0.707710i 0.935300 + 0.353855i \(0.115129\pi\)
−0.935300 + 0.353855i \(0.884871\pi\)
\(648\) 0 0
\(649\) 623.187 0.960227
\(650\) 94.9125 29.9417i 0.146019 0.0460642i
\(651\) 0 0
\(652\) 616.971 + 880.554i 0.946275 + 1.35054i
\(653\) −44.8800 + 254.527i −0.0687289 + 0.389781i 0.930967 + 0.365104i \(0.118967\pi\)
−0.999695 + 0.0246765i \(0.992144\pi\)
\(654\) 0 0
\(655\) −31.6095 37.6707i −0.0482587 0.0575125i
\(656\) −0.354914 580.887i −0.000541028 0.885498i
\(657\) 0 0
\(658\) −52.9674 401.853i −0.0804976 0.610719i
\(659\) −773.092 + 136.317i −1.17313 + 0.206854i −0.726051 0.687640i \(-0.758647\pi\)
−0.447078 + 0.894495i \(0.647535\pi\)
\(660\) 0 0
\(661\) 871.348 317.145i 1.31823 0.479795i 0.415337 0.909668i \(-0.363664\pi\)
0.902890 + 0.429872i \(0.141441\pi\)
\(662\) 468.616 + 298.441i 0.707880 + 0.450817i
\(663\) 0 0
\(664\) 317.232 + 497.451i 0.477758 + 0.749173i
\(665\) −258.368 + 447.507i −0.388524 + 0.672943i
\(666\) 0 0
\(667\) 599.571 346.162i 0.898907 0.518984i
\(668\) 78.4248 36.5993i 0.117402 0.0547893i
\(669\) 0 0
\(670\) 585.630 304.973i 0.874074 0.455184i
\(671\) −689.152 + 821.299i −1.02705 + 1.22399i
\(672\) 0 0
\(673\) −435.450 158.491i −0.647029 0.235499i −0.00240244 0.999997i \(-0.500765\pi\)
−0.644626 + 0.764498i \(0.722987\pi\)
\(674\) 885.811 679.921i 1.31426 1.00879i
\(675\) 0 0
\(676\) −105.278 + 393.382i −0.155736 + 0.581926i
\(677\) −1255.40 456.930i −1.85436 0.674933i −0.982806 0.184642i \(-0.940887\pi\)
−0.871559 0.490291i \(-0.836890\pi\)
\(678\) 0 0
\(679\) 467.946 557.676i 0.689169 0.821320i
\(680\) 901.349 200.258i 1.32551 0.294497i
\(681\) 0 0
\(682\) −146.553 + 661.537i −0.214888 + 0.969996i
\(683\) 608.347 351.229i 0.890698 0.514245i 0.0165271 0.999863i \(-0.494739\pi\)
0.874171 + 0.485619i \(0.161406\pi\)
\(684\) 0 0
\(685\) −341.462 + 591.430i −0.498485 + 0.863402i
\(686\) 32.8730 35.8855i 0.0479198 0.0523113i
\(687\) 0 0
\(688\) 71.2609 405.589i 0.103577 0.589520i
\(689\) −359.757 + 130.941i −0.522143 + 0.190045i
\(690\) 0 0
\(691\) −57.8084 + 10.1932i −0.0836590 + 0.0147513i −0.215321 0.976543i \(-0.569080\pi\)
0.131662 + 0.991295i \(0.457969\pi\)
\(692\) 331.410 + 331.207i 0.478916 + 0.478623i
\(693\) 0 0
\(694\) −342.906 + 828.207i −0.494101 + 1.19338i
\(695\) −492.502 586.941i −0.708636 0.844520i
\(696\) 0 0
\(697\) −167.240 + 948.463i −0.239942 + 1.36078i
\(698\) 1019.49 + 44.3559i 1.46059 + 0.0635472i
\(699\) 0 0
\(700\) −199.377 139.515i −0.284825 0.199307i
\(701\) 50.6411 0.0722413 0.0361206 0.999347i \(-0.488500\pi\)
0.0361206 + 0.999347i \(0.488500\pi\)
\(702\) 0 0
\(703\) 478.709i 0.680951i
\(704\) 456.578 + 976.797i 0.648548 + 1.38750i
\(705\) 0 0
\(706\) 414.277 + 18.0243i 0.586795 + 0.0255302i
\(707\) 520.099 + 91.7074i 0.735641 + 0.129713i
\(708\) 0 0
\(709\) −541.957 + 454.756i −0.764397 + 0.641405i −0.939267 0.343186i \(-0.888494\pi\)
0.174870 + 0.984591i \(0.444049\pi\)
\(710\) 67.1459 162.175i 0.0945718 0.228415i
\(711\) 0 0
\(712\) 596.618 + 78.2681i 0.837947 + 0.109927i
\(713\) −77.9982 442.350i −0.109394 0.620406i
\(714\) 0 0
\(715\) 205.503 + 564.615i 0.287417 + 0.789672i
\(716\) 80.0581 7.02882i 0.111813 0.00981679i
\(717\) 0 0
\(718\) −82.4576 + 90.0143i −0.114843 + 0.125368i
\(719\) 1042.00 + 601.598i 1.44923 + 0.836715i 0.998436 0.0559107i \(-0.0178062\pi\)
0.450798 + 0.892626i \(0.351140\pi\)
\(720\) 0 0
\(721\) −218.147 377.841i −0.302561 0.524051i
\(722\) −95.4024 + 430.644i −0.132136 + 0.596459i
\(723\) 0 0
\(724\) 700.669 + 326.467i 0.967775 + 0.450921i
\(725\) 144.136 + 120.945i 0.198809 + 0.166821i
\(726\) 0 0
\(727\) −74.9737 + 205.989i −0.103128 + 0.283341i −0.980516 0.196441i \(-0.937062\pi\)
0.877388 + 0.479781i \(0.159284\pi\)
\(728\) −607.036 + 251.769i −0.833841 + 0.345836i
\(729\) 0 0
\(730\) −693.919 + 532.631i −0.950574 + 0.729632i
\(731\) −233.516 + 641.581i −0.319448 + 0.877676i
\(732\) 0 0
\(733\) 18.6768 + 15.6717i 0.0254799 + 0.0213802i 0.655439 0.755248i \(-0.272484\pi\)
−0.629959 + 0.776629i \(0.716928\pi\)
\(734\) 465.433 242.379i 0.634104 0.330217i
\(735\) 0 0
\(736\) −527.357 482.494i −0.716518 0.655562i
\(737\) −639.196 1107.12i −0.867295 1.50220i
\(738\) 0 0
\(739\) 223.668 + 129.135i 0.302664 + 0.174743i 0.643639 0.765329i \(-0.277424\pi\)
−0.340975 + 0.940072i \(0.610757\pi\)
\(740\) −700.298 61.0526i −0.946349 0.0825035i
\(741\) 0 0
\(742\) 789.565 + 502.839i 1.06410 + 0.677680i
\(743\) −118.080 324.422i −0.158923 0.436638i 0.834518 0.550980i \(-0.185746\pi\)
−0.993441 + 0.114342i \(0.963524\pi\)
\(744\) 0 0
\(745\) −74.4041 421.967i −0.0998713 0.566398i
\(746\) 144.742 + 1098.13i 0.194024 + 1.47202i
\(747\) 0 0
\(748\) −463.215 1726.63i −0.619271 2.30833i
\(749\) 541.721 454.558i 0.723259 0.606886i
\(750\) 0 0
\(751\) −461.870 81.4402i −0.615007 0.108442i −0.142538 0.989789i \(-0.545526\pi\)
−0.472470 + 0.881347i \(0.656637\pi\)
\(752\) 303.990 110.854i 0.404242 0.147412i
\(753\) 0 0
\(754\) 484.598 152.875i 0.642703 0.202752i
\(755\) 3.39966i 0.00450285i
\(756\) 0 0
\(757\) −653.653 −0.863479 −0.431739 0.901998i \(-0.642100\pi\)
−0.431739 + 0.901998i \(0.642100\pi\)
\(758\) 37.2281 + 118.010i 0.0491136 + 0.155685i
\(759\) 0 0
\(760\) −393.472 123.863i −0.517726 0.162978i
\(761\) −114.654 + 650.234i −0.150662 + 0.854446i 0.811983 + 0.583681i \(0.198388\pi\)
−0.962645 + 0.270766i \(0.912723\pi\)
\(762\) 0 0
\(763\) 575.386 + 685.719i 0.754110 + 0.898714i
\(764\) 265.522 + 989.732i 0.347542 + 1.29546i
\(765\) 0 0
\(766\) 717.316 94.5479i 0.936443 0.123431i
\(767\) −298.607 + 52.6525i −0.389318 + 0.0686473i
\(768\) 0 0
\(769\) −1263.92 + 460.030i −1.64359 + 0.598219i −0.987662 0.156602i \(-0.949946\pi\)
−0.655931 + 0.754821i \(0.727724\pi\)
\(770\) 789.174 1239.17i 1.02490 1.60932i
\(771\) 0 0
\(772\) −1129.39 98.4613i −1.46294 0.127541i
\(773\) 116.766 202.245i 0.151056 0.261637i −0.780560 0.625081i \(-0.785066\pi\)
0.931616 + 0.363444i \(0.118399\pi\)
\(774\) 0 0
\(775\) 105.720 61.0372i 0.136412 0.0787577i
\(776\) 515.612 + 268.110i 0.664449 + 0.345503i
\(777\) 0 0
\(778\) 276.460 + 530.876i 0.355346 + 0.682360i
\(779\) 276.574 329.609i 0.355038 0.423117i
\(780\) 0 0
\(781\) −319.346 116.233i −0.408894 0.148825i
\(782\) 721.574 + 940.077i 0.922729 + 1.20214i
\(783\) 0 0
\(784\) 712.860 + 410.989i 0.909260 + 0.524221i
\(785\) 727.346 + 264.732i 0.926556 + 0.337239i
\(786\) 0 0
\(787\) −393.189 + 468.584i −0.499604 + 0.595405i −0.955633 0.294560i \(-0.904827\pi\)
0.456029 + 0.889965i \(0.349271\pi\)
\(788\) −1029.87 479.855i −1.30695 0.608953i
\(789\) 0 0
\(790\) 739.908 + 163.915i 0.936593 + 0.207488i
\(791\) −685.248 + 395.628i −0.866306 + 0.500162i
\(792\) 0 0
\(793\) 260.824 451.760i 0.328908 0.569685i
\(794\) 581.294 + 532.494i 0.732108 + 0.670648i
\(795\) 0 0
\(796\) −545.931 + 47.9308i −0.685843 + 0.0602146i
\(797\) −494.327 + 179.920i −0.620234 + 0.225747i −0.632975 0.774172i \(-0.718167\pi\)
0.0127409 + 0.999919i \(0.495944\pi\)
\(798\) 0 0
\(799\) −528.321 + 93.1573i −0.661228 + 0.116592i
\(800\) 74.2025 179.528i 0.0927531 0.224411i
\(801\) 0 0
\(802\) 80.9153 + 33.5017i 0.100892 + 0.0417727i
\(803\) 1088.67 + 1297.43i 1.35575 + 1.61572i
\(804\) 0 0
\(805\) −169.117 + 959.109i −0.210083 + 1.19144i
\(806\) 14.3300 329.365i 0.0177791 0.408641i
\(807\) 0 0
\(808\) 18.5828 + 421.186i 0.0229985 + 0.521270i
\(809\) −544.887 −0.673531 −0.336766 0.941588i \(-0.609333\pi\)
−0.336766 + 0.941588i \(0.609333\pi\)
\(810\) 0 0
\(811\) 770.624i 0.950214i 0.879928 + 0.475107i \(0.157591\pi\)
−0.879928 + 0.475107i \(0.842409\pi\)
\(812\) −1017.97 712.326i −1.25366 0.877249i
\(813\) 0 0
\(814\) −59.1590 + 1359.73i −0.0726769 + 1.67043i
\(815\) 1151.71 + 203.078i 1.41315 + 0.249176i
\(816\) 0 0
\(817\) 233.666 196.069i 0.286005 0.239986i
\(818\) −767.195 317.645i −0.937891 0.388319i
\(819\) 0 0
\(820\) −446.908 446.635i −0.545009 0.544677i
\(821\) −11.4448 64.9068i −0.0139401 0.0790582i 0.977044 0.213037i \(-0.0683356\pi\)
−0.990984 + 0.133979i \(0.957224\pi\)
\(822\) 0 0
\(823\) −408.452 1122.21i −0.496297 1.36356i −0.894828 0.446410i \(-0.852702\pi\)
0.398531 0.917155i \(-0.369520\pi\)
\(824\) 256.678 235.419i 0.311503 0.285702i
\(825\) 0 0
\(826\) 546.681 + 500.787i 0.661841 + 0.606280i
\(827\) 956.879 + 552.455i 1.15705 + 0.668022i 0.950595 0.310434i \(-0.100474\pi\)
0.206454 + 0.978456i \(0.433808\pi\)
\(828\) 0 0
\(829\) 281.510 + 487.590i 0.339578 + 0.588167i 0.984353 0.176205i \(-0.0563823\pi\)
−0.644775 + 0.764372i \(0.723049\pi\)
\(830\) 626.545 + 138.801i 0.754874 + 0.167231i
\(831\) 0 0
\(832\) −301.303 429.467i −0.362143 0.516186i
\(833\) −1045.09 876.931i −1.25460 1.05274i
\(834\) 0 0
\(835\) 32.1959 88.4574i 0.0385579 0.105937i
\(836\) −206.475 + 771.519i −0.246980 + 0.922869i
\(837\) 0 0
\(838\) 77.3515 + 100.775i 0.0923049 + 0.120256i
\(839\) 341.688 938.779i 0.407256 1.11893i −0.551371 0.834260i \(-0.685895\pi\)
0.958627 0.284666i \(-0.0918828\pi\)
\(840\) 0 0
\(841\) 91.6803 + 76.9289i 0.109013 + 0.0914731i
\(842\) 578.598 + 1111.06i 0.687171 + 1.31955i
\(843\) 0 0
\(844\) 669.366 312.379i 0.793087 0.370118i
\(845\) 221.469 + 383.596i 0.262094 + 0.453960i
\(846\) 0 0
\(847\) −1413.22 815.925i −1.66850 0.963312i
\(848\) −255.153 + 702.362i −0.300888 + 0.828257i
\(849\) 0 0
\(850\) −173.010 + 271.662i −0.203541 + 0.319603i
\(851\) −308.582 847.823i −0.362611 0.996266i
\(852\) 0 0
\(853\) 23.3839 + 132.617i 0.0274137 + 0.155471i 0.995442 0.0953710i \(-0.0304037\pi\)
−0.968028 + 0.250842i \(0.919293\pi\)
\(854\) −1264.53 + 166.676i −1.48072 + 0.195170i
\(855\) 0 0
\(856\) 448.026 + 343.456i 0.523395 + 0.401234i
\(857\) −219.310 + 184.023i −0.255904 + 0.214729i −0.761710 0.647918i \(-0.775640\pi\)
0.505806 + 0.862647i \(0.331195\pi\)
\(858\) 0 0
\(859\) −1032.05 181.978i −1.20145 0.211848i −0.463126 0.886292i \(-0.653272\pi\)
−0.738326 + 0.674444i \(0.764383\pi\)
\(860\) −257.026 366.833i −0.298868 0.426550i
\(861\) 0 0
\(862\) 76.4452 + 242.324i 0.0886836 + 0.281119i
\(863\) 1607.61i 1.86282i −0.363973 0.931409i \(-0.618580\pi\)
0.363973 0.931409i \(-0.381420\pi\)
\(864\) 0 0
\(865\) 509.631 0.589169
\(866\) 1120.64 353.525i 1.29404 0.408228i
\(867\) 0 0
\(868\) −660.166 + 462.554i −0.760560 + 0.532896i
\(869\) 254.793 1445.00i 0.293203 1.66283i
\(870\) 0 0
\(871\) 399.817 + 476.484i 0.459032 + 0.547054i
\(872\) −434.752 + 567.118i −0.498569 + 0.650365i
\(873\) 0 0
\(874\) −69.1870 524.908i −0.0791613 0.600581i
\(875\) −1334.13 + 235.243i −1.52472 + 0.268849i
\(876\) 0 0
\(877\) 1014.63 369.294i 1.15693 0.421087i 0.308929 0.951085i \(-0.400030\pi\)
0.847999 + 0.529998i \(0.177807\pi\)
\(878\) 727.464 + 463.289i 0.828546 + 0.527664i
\(879\) 0 0
\(880\) 1102.31 + 400.447i 1.25263 + 0.455053i
\(881\) −152.141 + 263.516i −0.172691 + 0.299110i −0.939360 0.342933i \(-0.888580\pi\)
0.766668 + 0.642043i \(0.221913\pi\)
\(882\) 0 0
\(883\) 960.150 554.343i 1.08737 0.627795i 0.154497 0.987993i \(-0.450624\pi\)
0.932876 + 0.360198i \(0.117291\pi\)
\(884\) 367.836 + 788.197i 0.416104 + 0.891626i
\(885\) 0 0
\(886\) −1395.02 + 726.473i −1.57452 + 0.819947i
\(887\) 215.519 256.845i 0.242975 0.289566i −0.630750 0.775986i \(-0.717253\pi\)
0.873725 + 0.486419i \(0.161697\pi\)
\(888\) 0 0
\(889\) 893.205 + 325.100i 1.00473 + 0.365692i
\(890\) 519.190 398.514i 0.583359 0.447769i
\(891\) 0 0
\(892\) −843.747 225.805i −0.945905 0.253145i
\(893\) 225.221 + 81.9736i 0.252207 + 0.0917958i
\(894\) 0 0
\(895\) 56.1887 66.9631i 0.0627807 0.0748191i
\(896\) −384.418 + 1223.78i −0.429038 + 1.36583i
\(897\) 0 0
\(898\) 209.824 947.138i 0.233657 1.05472i
\(899\) 539.776 311.640i 0.600419 0.346652i
\(900\) 0 0
\(901\) 619.478 1072.97i 0.687545 1.19086i
\(902\) −826.317 + 902.044i −0.916095 + 1.00005i
\(903\) 0 0
\(904\) −426.953 465.509i −0.472293 0.514944i
\(905\) 790.078 287.565i 0.873014 0.317751i
\(906\) 0 0
\(907\) 187.688 33.0945i 0.206933 0.0364878i −0.0692208 0.997601i \(-0.522051\pi\)
0.276154 + 0.961114i \(0.410940\pi\)
\(908\) 857.276 857.800i 0.944137 0.944714i
\(909\) 0 0
\(910\) −273.445 + 660.440i −0.300489 + 0.725758i
\(911\) 358.732 + 427.520i 0.393778 + 0.469287i 0.926112 0.377248i \(-0.123129\pi\)
−0.532334 + 0.846534i \(0.678685\pi\)
\(912\) 0 0
\(913\) 215.756 1223.61i 0.236315 1.34021i
\(914\) −1729.77 75.2588i −1.89253 0.0823400i
\(915\) 0 0
\(916\) −710.685 + 1015.62i −0.775857 + 1.10876i
\(917\) −113.268 −0.123521
\(918\) 0 0
\(919\) 1133.08i 1.23295i 0.787376 + 0.616473i \(0.211439\pi\)
−0.787376 + 0.616473i \(0.788561\pi\)
\(920\) −776.706 + 34.2683i −0.844246 + 0.0372482i
\(921\) 0 0
\(922\) 1386.61 + 60.3286i 1.50392 + 0.0654323i
\(923\) 162.839 + 28.7128i 0.176423 + 0.0311082i
\(924\) 0 0
\(925\) 187.838 157.615i 0.203068 0.170394i
\(926\) 521.944 1260.63i 0.563654 1.36137i
\(927\) 0 0
\(928\) 378.859 916.626i 0.408253 0.987743i
\(929\) 2.83827 + 16.0966i 0.00305519 + 0.0173269i 0.986297 0.164978i \(-0.0527553\pi\)
−0.983242 + 0.182305i \(0.941644\pi\)
\(930\) 0 0
\(931\) 208.461 + 572.742i 0.223911 + 0.615190i
\(932\) −15.2241 173.402i −0.0163348 0.186053i
\(933\) 0 0
\(934\) 605.606 661.106i 0.648400 0.707822i
\(935\) −1683.96 972.232i −1.80102 1.03982i
\(936\) 0 0
\(937\) −208.069 360.386i −0.222059 0.384617i 0.733374 0.679825i \(-0.237944\pi\)
−0.955433 + 0.295208i \(0.904611\pi\)
\(938\) 328.946 1484.85i 0.350689 1.58300i
\(939\) 0 0
\(940\) 148.642 319.018i 0.158130 0.339381i
\(941\) 248.379 + 208.415i 0.263952 + 0.221482i 0.765153 0.643849i \(-0.222664\pi\)
−0.501200 + 0.865331i \(0.667108\pi\)
\(942\) 0 0
\(943\) 277.360 762.040i 0.294125 0.808102i
\(944\) −295.607 + 512.729i −0.313143 + 0.543145i
\(945\) 0 0
\(946\) −687.937 + 528.040i −0.727206 + 0.558181i
\(947\) 505.822 1389.74i 0.534131 1.46751i −0.319980 0.947424i \(-0.603676\pi\)
0.854112 0.520090i \(-0.174101\pi\)
\(948\) 0 0
\(949\) −631.266 529.695i −0.665191 0.558161i
\(950\) 127.623 66.4609i 0.134340 0.0699589i
\(951\) 0 0
\(952\) 981.155 1886.89i 1.03063 1.98203i
\(953\) 711.138 + 1231.73i 0.746210 + 1.29247i 0.949627 + 0.313382i \(0.101462\pi\)
−0.203417 + 0.979092i \(0.565205\pi\)
\(954\) 0 0
\(955\) 965.270 + 557.299i 1.01075 + 0.583559i
\(956\) 115.747 1327.66i 0.121074 1.38877i
\(957\) 0 0
\(958\) −971.193 618.510i −1.01377 0.645626i
\(959\) 538.002 + 1478.15i 0.561003 + 1.54134i
\(960\) 0 0
\(961\) 96.6563 + 548.165i 0.100579 + 0.570411i
\(962\) −86.5354 656.527i −0.0899537 0.682460i
\(963\) 0 0
\(964\) 1339.96 359.480i 1.39000 0.372904i
\(965\) −944.607 + 792.620i −0.978868 + 0.821368i
\(966\) 0 0
\(967\) 1199.62 + 211.526i 1.24056 + 0.218745i 0.755156 0.655545i \(-0.227561\pi\)
0.485405 + 0.874289i \(0.338672\pi\)
\(968\) 391.158 1242.58i 0.404089 1.28366i
\(969\) 0 0
\(970\) 602.834 190.174i 0.621478 0.196056i
\(971\) 203.866i 0.209955i 0.994475 + 0.104977i \(0.0334770\pi\)
−0.994475 + 0.104977i \(0.966523\pi\)
\(972\) 0 0
\(973\) −1764.82 −1.81379
\(974\) −66.1730 209.762i −0.0679394 0.215362i
\(975\) 0 0
\(976\) −348.829 956.582i −0.357407 0.980104i
\(977\) 65.5958 372.012i 0.0671400 0.380770i −0.932660 0.360757i \(-0.882518\pi\)
0.999800 0.0200126i \(-0.00637062\pi\)
\(978\) 0 0
\(979\) −814.542 970.733i −0.832014 0.991556i
\(980\) 864.445 231.910i 0.882087 0.236643i
\(981\) 0 0
\(982\) −770.957 + 101.618i −0.785089 + 0.103481i
\(983\) 215.781 38.0481i 0.219513 0.0387061i −0.0628098 0.998026i \(-0.520006\pi\)
0.282323 + 0.959319i \(0.408895\pi\)
\(984\) 0 0
\(985\) −1161.29 + 422.675i −1.17897 + 0.429112i
\(986\) −883.342 + 1387.04i −0.895884 + 1.40673i
\(987\) 0 0
\(988\) 33.7500 387.126i 0.0341599 0.391828i
\(989\) 287.448 497.874i 0.290645 0.503412i
\(990\) 0 0
\(991\) −1357.24 + 783.603i −1.36957 + 0.790720i −0.990873 0.134802i \(-0.956960\pi\)
−0.378694 + 0.925522i \(0.623627\pi\)
\(992\) −474.765 434.375i −0.478594 0.437878i
\(993\) 0 0
\(994\) −186.738 358.586i −0.187865 0.360751i
\(995\) −383.161 + 456.633i −0.385086 + 0.458928i
\(996\) 0 0
\(997\) 136.762 + 49.7773i 0.137174 + 0.0499271i 0.409695 0.912223i \(-0.365635\pi\)
−0.272521 + 0.962150i \(0.587857\pi\)
\(998\) −128.631 167.582i −0.128889 0.167918i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.3.j.a.307.31 204
3.2 odd 2 108.3.j.a.31.4 yes 204
4.3 odd 2 inner 324.3.j.a.307.23 204
12.11 even 2 108.3.j.a.31.12 yes 204
27.7 even 9 inner 324.3.j.a.19.23 204
27.20 odd 18 108.3.j.a.7.12 yes 204
108.7 odd 18 inner 324.3.j.a.19.31 204
108.47 even 18 108.3.j.a.7.4 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.3.j.a.7.4 204 108.47 even 18
108.3.j.a.7.12 yes 204 27.20 odd 18
108.3.j.a.31.4 yes 204 3.2 odd 2
108.3.j.a.31.12 yes 204 12.11 even 2
324.3.j.a.19.23 204 27.7 even 9 inner
324.3.j.a.19.31 204 108.7 odd 18 inner
324.3.j.a.307.23 204 4.3 odd 2 inner
324.3.j.a.307.31 204 1.1 even 1 trivial