Properties

Label 108.3.j.a.7.4
Level 108
Weight 3
Character 108.7
Analytic conductor 2.943
Analytic rank 0
Dimension 204
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 108.j (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.94278685509\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 7.4
Character \(\chi\) \(=\) 108.7
Dual form 108.3.j.a.31.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.90734 - 0.601703i) q^{2} +(-2.99807 + 0.107643i) q^{3} +(3.27591 + 2.29531i) q^{4} +(-0.755508 - 4.28470i) q^{5} +(5.78311 + 1.59863i) q^{6} +(-6.44162 + 7.67682i) q^{7} +(-4.86718 - 6.34906i) q^{8} +(8.97683 - 0.645444i) q^{9} +O(q^{10})\) \(q+(-1.90734 - 0.601703i) q^{2} +(-2.99807 + 0.107643i) q^{3} +(3.27591 + 2.29531i) q^{4} +(-0.755508 - 4.28470i) q^{5} +(5.78311 + 1.59863i) q^{6} +(-6.44162 + 7.67682i) q^{7} +(-4.86718 - 6.34906i) q^{8} +(8.97683 - 0.645444i) q^{9} +(-1.13710 + 8.62697i) q^{10} +(16.5915 + 2.92553i) q^{11} +(-10.0685 - 6.52886i) q^{12} +(7.70282 + 2.80360i) q^{13} +(16.9055 - 10.7664i) q^{14} +(2.72628 + 12.7645i) q^{15} +(5.46314 + 15.0384i) q^{16} +(13.2638 + 22.9735i) q^{17} +(-17.5102 - 4.17030i) q^{18} +(10.2637 + 5.92574i) q^{19} +(7.35972 - 15.7704i) q^{20} +(18.4861 - 23.7090i) q^{21} +(-29.8854 - 15.5631i) q^{22} +(-14.3578 - 17.1110i) q^{23} +(15.2756 + 18.5110i) q^{24} +(5.70448 - 2.07626i) q^{25} +(-13.0050 - 9.98223i) q^{26} +(-26.8437 + 2.90138i) q^{27} +(-38.7228 + 10.3631i) q^{28} +(-29.1256 + 10.6009i) q^{29} +(2.48048 - 25.9867i) q^{30} +(12.9259 + 15.4045i) q^{31} +(-1.37140 - 31.9706i) q^{32} +(-50.0574 - 6.98497i) q^{33} +(-11.4753 - 51.7992i) q^{34} +(37.7596 + 21.8005i) q^{35} +(30.8887 + 18.4902i) q^{36} +(20.1962 + 34.9808i) q^{37} +(-16.0108 - 17.4781i) q^{38} +(-23.3954 - 7.57622i) q^{39} +(-23.5266 + 25.6512i) q^{40} +(-34.1160 - 12.4172i) q^{41} +(-49.5250 + 34.0981i) q^{42} +(25.3466 + 4.46929i) q^{43} +(47.6372 + 47.6664i) q^{44} +(-9.54759 - 37.9753i) q^{45} +(17.0895 + 41.2756i) q^{46} +(-12.9992 + 15.4919i) q^{47} +(-17.9976 - 44.4981i) q^{48} +(-8.93040 - 50.6468i) q^{49} +(-12.1297 + 0.527738i) q^{50} +(-42.2386 - 67.4484i) q^{51} +(18.7986 + 26.8647i) q^{52} +46.7045 q^{53} +(52.9458 + 10.6180i) q^{54} -73.2998i q^{55} +(80.0931 + 3.53372i) q^{56} +(-31.4091 - 16.6610i) q^{57} +(61.9311 - 2.69449i) q^{58} +(36.4280 - 6.42325i) q^{59} +(-20.3674 + 48.0729i) q^{60} +(48.7491 + 40.9054i) q^{61} +(-15.3852 - 37.1592i) q^{62} +(-52.8703 + 73.0712i) q^{63} +(-16.6211 + 61.8040i) q^{64} +(6.19303 - 35.1224i) q^{65} +(91.2737 + 43.4424i) q^{66} +(25.9527 - 71.3043i) q^{67} +(-9.28040 + 105.704i) q^{68} +(44.8875 + 49.7543i) q^{69} +(-58.9030 - 64.3010i) q^{70} +(-17.4692 + 10.0858i) q^{71} +(-47.7898 - 53.8529i) q^{72} +(-50.2648 + 87.0613i) q^{73} +(-17.4729 - 78.8724i) q^{74} +(-16.8789 + 6.83883i) q^{75} +(20.0215 + 42.9705i) q^{76} +(-129.335 + 108.525i) q^{77} +(40.0643 + 28.5275i) q^{78} +(-29.7876 - 81.8406i) q^{79} +(60.3076 - 34.7695i) q^{80} +(80.1668 - 11.5881i) q^{81} +(57.5993 + 44.2115i) q^{82} +(25.2237 + 69.3017i) q^{83} +(114.978 - 35.2374i) q^{84} +(88.4137 - 74.1879i) q^{85} +(-45.6555 - 23.7756i) q^{86} +(86.1795 - 34.9173i) q^{87} +(-62.1795 - 119.580i) q^{88} +(-37.6081 + 65.1392i) q^{89} +(-4.63935 + 78.1768i) q^{90} +(-71.1414 + 41.0735i) q^{91} +(-7.75992 - 89.0095i) q^{92} +(-40.4110 - 44.7924i) q^{93} +(34.1155 - 21.7266i) q^{94} +(17.6357 - 48.4537i) q^{95} +(7.55298 + 95.7024i) q^{96} +(12.6145 - 71.5405i) q^{97} +(-13.4410 + 101.974i) q^{98} +(150.827 + 15.5531i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204q - 6q^{2} - 6q^{4} - 12q^{5} - 6q^{6} - 3q^{8} - 12q^{9} + O(q^{10}) \) \( 204q - 6q^{2} - 6q^{4} - 12q^{5} - 6q^{6} - 3q^{8} - 12q^{9} - 3q^{10} + 39q^{12} - 12q^{13} + 39q^{14} - 6q^{16} - 6q^{17} - 27q^{18} - 69q^{20} - 12q^{21} - 6q^{22} - 138q^{24} - 12q^{25} - 174q^{26} - 12q^{28} + 60q^{29} - 153q^{30} - 96q^{32} + 48q^{33} + 6q^{34} + 24q^{36} - 6q^{37} + 72q^{38} + 69q^{40} - 192q^{41} - 126q^{42} - 219q^{44} - 132q^{45} - 3q^{46} - 219q^{48} - 12q^{49} - 165q^{50} + 21q^{52} - 24q^{53} + 78q^{54} + 99q^{56} - 150q^{57} - 141q^{58} + 210q^{60} - 12q^{61} + 294q^{62} - 3q^{64} - 156q^{65} + 393q^{66} + 375q^{68} - 60q^{69} - 165q^{70} + 228q^{72} - 6q^{73} + 447q^{74} - 54q^{76} + 132q^{77} + 750q^{78} + 798q^{80} + 228q^{81} - 12q^{82} + 762q^{84} + 138q^{85} + 606q^{86} - 198q^{88} - 114q^{89} + 894q^{90} + 723q^{92} - 1020q^{93} - 357q^{94} + 474q^{96} + 168q^{97} + 510q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.90734 0.601703i −0.953671 0.300851i
\(3\) −2.99807 + 0.107643i −0.999356 + 0.0358811i
\(4\) 3.27591 + 2.29531i 0.818977 + 0.573827i
\(5\) −0.755508 4.28470i −0.151102 0.856939i −0.962264 0.272118i \(-0.912276\pi\)
0.811162 0.584821i \(-0.198835\pi\)
\(6\) 5.78311 + 1.59863i 0.963852 + 0.266439i
\(7\) −6.44162 + 7.67682i −0.920232 + 1.09669i 0.0748069 + 0.997198i \(0.476166\pi\)
−0.995038 + 0.0994912i \(0.968278\pi\)
\(8\) −4.86718 6.34906i −0.608398 0.793632i
\(9\) 8.97683 0.645444i 0.997425 0.0717160i
\(10\) −1.13710 + 8.62697i −0.113710 + 0.862697i
\(11\) 16.5915 + 2.92553i 1.50832 + 0.265957i 0.865830 0.500338i \(-0.166791\pi\)
0.642489 + 0.766295i \(0.277902\pi\)
\(12\) −10.0685 6.52886i −0.839039 0.544071i
\(13\) 7.70282 + 2.80360i 0.592525 + 0.215661i 0.620840 0.783938i \(-0.286792\pi\)
−0.0283148 + 0.999599i \(0.509014\pi\)
\(14\) 16.9055 10.7664i 1.20754 0.769028i
\(15\) 2.72628 + 12.7645i 0.181752 + 0.850966i
\(16\) 5.46314 + 15.0384i 0.341446 + 0.939901i
\(17\) 13.2638 + 22.9735i 0.780222 + 1.35138i 0.931812 + 0.362941i \(0.118227\pi\)
−0.151590 + 0.988443i \(0.548439\pi\)
\(18\) −17.5102 4.17030i −0.972791 0.231683i
\(19\) 10.2637 + 5.92574i 0.540194 + 0.311881i 0.745158 0.666888i \(-0.232374\pi\)
−0.204964 + 0.978770i \(0.565708\pi\)
\(20\) 7.35972 15.7704i 0.367986 0.788519i
\(21\) 18.4861 23.7090i 0.880289 1.12900i
\(22\) −29.8854 15.5631i −1.35843 0.707416i
\(23\) −14.3578 17.1110i −0.624252 0.743955i 0.357543 0.933897i \(-0.383615\pi\)
−0.981795 + 0.189942i \(0.939170\pi\)
\(24\) 15.2756 + 18.5110i 0.636482 + 0.771291i
\(25\) 5.70448 2.07626i 0.228179 0.0830505i
\(26\) −13.0050 9.98223i −0.500192 0.383932i
\(27\) −26.8437 + 2.90138i −0.994210 + 0.107459i
\(28\) −38.7228 + 10.3631i −1.38296 + 0.370110i
\(29\) −29.1256 + 10.6009i −1.00433 + 0.365547i −0.791254 0.611488i \(-0.790571\pi\)
−0.213078 + 0.977035i \(0.568349\pi\)
\(30\) 2.48048 25.9867i 0.0826825 0.866222i
\(31\) 12.9259 + 15.4045i 0.416965 + 0.496920i 0.933115 0.359579i \(-0.117080\pi\)
−0.516150 + 0.856498i \(0.672635\pi\)
\(32\) −1.37140 31.9706i −0.0428564 0.999081i
\(33\) −50.0574 6.98497i −1.51689 0.211666i
\(34\) −11.4753 51.7992i −0.337509 1.52351i
\(35\) 37.7596 + 21.8005i 1.07884 + 0.622871i
\(36\) 30.8887 + 18.4902i 0.858021 + 0.513615i
\(37\) 20.1962 + 34.9808i 0.545842 + 0.945426i 0.998553 + 0.0537690i \(0.0171235\pi\)
−0.452711 + 0.891657i \(0.649543\pi\)
\(38\) −16.0108 17.4781i −0.421338 0.459950i
\(39\) −23.3954 7.57622i −0.599881 0.194262i
\(40\) −23.5266 + 25.6512i −0.588165 + 0.641279i
\(41\) −34.1160 12.4172i −0.832096 0.302858i −0.109377 0.994000i \(-0.534886\pi\)
−0.722719 + 0.691142i \(0.757108\pi\)
\(42\) −49.5250 + 34.0981i −1.17917 + 0.811860i
\(43\) 25.3466 + 4.46929i 0.589456 + 0.103937i 0.460417 0.887703i \(-0.347700\pi\)
0.129039 + 0.991640i \(0.458811\pi\)
\(44\) 47.6372 + 47.6664i 1.08266 + 1.08333i
\(45\) −9.54759 37.9753i −0.212169 0.843896i
\(46\) 17.0895 + 41.2756i 0.371511 + 0.897295i
\(47\) −12.9992 + 15.4919i −0.276579 + 0.329614i −0.886396 0.462928i \(-0.846799\pi\)
0.609817 + 0.792543i \(0.291243\pi\)
\(48\) −17.9976 44.4981i −0.374951 0.927045i
\(49\) −8.93040 50.6468i −0.182253 1.03361i
\(50\) −12.1297 + 0.527738i −0.242594 + 0.0105548i
\(51\) −42.2386 67.4484i −0.828209 1.32252i
\(52\) 18.7986 + 26.8647i 0.361512 + 0.516628i
\(53\) 46.7045 0.881217 0.440609 0.897699i \(-0.354763\pi\)
0.440609 + 0.897699i \(0.354763\pi\)
\(54\) 52.9458 + 10.6180i 0.980478 + 0.196629i
\(55\) 73.2998i 1.33272i
\(56\) 80.0931 + 3.53372i 1.43023 + 0.0631021i
\(57\) −31.4091 16.6610i −0.551037 0.292298i
\(58\) 61.9311 2.69449i 1.06778 0.0464568i
\(59\) 36.4280 6.42325i 0.617424 0.108869i 0.143817 0.989604i \(-0.454062\pi\)
0.473608 + 0.880736i \(0.342951\pi\)
\(60\) −20.3674 + 48.0729i −0.339456 + 0.801215i
\(61\) 48.7491 + 40.9054i 0.799166 + 0.670580i 0.947996 0.318283i \(-0.103106\pi\)
−0.148830 + 0.988863i \(0.547551\pi\)
\(62\) −15.3852 37.1592i −0.248149 0.599342i
\(63\) −52.8703 + 73.0712i −0.839212 + 1.15986i
\(64\) −16.6211 + 61.8040i −0.259704 + 0.965688i
\(65\) 6.19303 35.1224i 0.0952773 0.540344i
\(66\) 91.2737 + 43.4424i 1.38293 + 0.658218i
\(67\) 25.9527 71.3043i 0.387353 1.06424i −0.580835 0.814021i \(-0.697274\pi\)
0.968188 0.250223i \(-0.0805038\pi\)
\(68\) −9.28040 + 105.704i −0.136477 + 1.55446i
\(69\) 44.8875 + 49.7543i 0.650544 + 0.721077i
\(70\) −58.9030 64.3010i −0.841471 0.918586i
\(71\) −17.4692 + 10.0858i −0.246045 + 0.142054i −0.617952 0.786216i \(-0.712037\pi\)
0.371907 + 0.928270i \(0.378704\pi\)
\(72\) −47.7898 53.8529i −0.663747 0.747957i
\(73\) −50.2648 + 87.0613i −0.688560 + 1.19262i 0.283744 + 0.958900i \(0.408423\pi\)
−0.972304 + 0.233720i \(0.924910\pi\)
\(74\) −17.4729 78.8724i −0.236121 1.06584i
\(75\) −16.8789 + 6.83883i −0.225053 + 0.0911844i
\(76\) 20.0215 + 42.9705i 0.263441 + 0.565401i
\(77\) −129.335 + 108.525i −1.67967 + 1.40941i
\(78\) 40.0643 + 28.5275i 0.513645 + 0.365737i
\(79\) −29.7876 81.8406i −0.377058 1.03596i −0.972570 0.232611i \(-0.925273\pi\)
0.595512 0.803346i \(1.70305\pi\)
\(80\) 60.3076 34.7695i 0.753845 0.434619i
\(81\) 80.1668 11.5881i 0.989714 0.143063i
\(82\) 57.5993 + 44.2115i 0.702431 + 0.539165i
\(83\) 25.2237 + 69.3017i 0.303900 + 0.834960i 0.993813 + 0.111067i \(0.0354268\pi\)
−0.689912 + 0.723893i \(0.742351\pi\)
\(84\) 114.978 35.2374i 1.36879 0.419493i
\(85\) 88.4137 74.1879i 1.04016 0.872799i
\(86\) −45.6555 23.7756i −0.530878 0.276461i
\(87\) 86.1795 34.9173i 0.990569 0.401348i
\(88\) −62.1795 119.580i −0.706586 1.35886i
\(89\) −37.6081 + 65.1392i −0.422563 + 0.731901i −0.996189 0.0872163i \(-0.972203\pi\)
0.573626 + 0.819117i \(0.305536\pi\)
\(90\) −4.63935 + 78.1768i −0.0515483 + 0.868631i
\(91\) −71.1414 + 41.0735i −0.781774 + 0.451357i
\(92\) −7.75992 89.0095i −0.0843470 0.967494i
\(93\) −40.4110 44.7924i −0.434527 0.481639i
\(94\) 34.1155 21.7266i 0.362930 0.231134i
\(95\) 17.6357 48.4537i 0.185639 0.510039i
\(96\) 7.55298 + 95.7024i 0.0786769 + 0.996900i
\(97\) 12.6145 71.5405i 0.130047 0.737531i −0.848135 0.529780i \(-0.822274\pi\)
0.978182 0.207751i \(-0.0666144\pi\)
\(98\) −13.4410 + 101.974i −0.137153 + 1.04055i
\(99\) 150.827 + 15.5531i 1.52351 + 0.157102i
\(100\) 23.4530 + 6.29190i 0.234530 + 0.0629190i
\(101\) 40.3702 + 33.8746i 0.399705 + 0.335392i 0.820379 0.571820i \(-0.193762\pi\)
−0.420675 + 0.907211i \(0.638207\pi\)
\(102\) 39.9796 + 154.062i 0.391957 + 1.51042i
\(103\) 42.8748 7.55998i 0.416260 0.0733979i 0.0384042 0.999262i \(-0.487773\pi\)
0.377856 + 0.925864i \(0.376661\pi\)
\(104\) −19.6908 62.5513i −0.189335 0.601455i
\(105\) −115.552 61.2948i −1.10050 0.583760i
\(106\) −89.0815 28.1022i −0.840391 0.265115i
\(107\) 70.5658i 0.659493i 0.944069 + 0.329747i \(0.106963\pi\)
−0.944069 + 0.329747i \(0.893037\pi\)
\(108\) −94.5969 52.1098i −0.875897 0.482498i
\(109\) −89.3232 −0.819479 −0.409739 0.912203i \(-0.634380\pi\)
−0.409739 + 0.912203i \(0.634380\pi\)
\(110\) −44.1047 + 139.808i −0.400952 + 1.27098i
\(111\) −64.3149 102.701i −0.579413 0.925232i
\(112\) −150.639 54.9323i −1.34499 0.490467i
\(113\) −13.7107 77.7573i −0.121334 0.688118i −0.983418 0.181353i \(-0.941952\pi\)
0.862084 0.506765i \(-0.169159\pi\)
\(114\) 49.8829 + 50.6771i 0.437570 + 0.444536i
\(115\) −62.4678 + 74.4463i −0.543199 + 0.647359i
\(116\) −119.745 32.1248i −1.03228 0.276938i
\(117\) 70.9565 + 20.1957i 0.606465 + 0.172613i
\(118\) −73.3456 9.66753i −0.621573 0.0819282i
\(119\) −261.804 46.1631i −2.20003 0.387925i
\(120\) 67.7731 79.4364i 0.564776 0.661970i
\(121\) 153.017 + 55.6935i 1.26460 + 0.460277i
\(122\) −68.3684 107.353i −0.560397 0.879943i
\(123\) 103.619 + 33.5552i 0.842427 + 0.272807i
\(124\) 6.98604 + 80.1327i 0.0563390 + 0.646231i
\(125\) −67.5909 117.071i −0.540727 0.936567i
\(126\) 144.809 107.560i 1.14928 0.853647i
\(127\) −82.1426 47.4250i −0.646792 0.373425i 0.140434 0.990090i \(-0.455150\pi\)
−0.787226 + 0.616665i \(0.788483\pi\)
\(128\) 68.8897 107.881i 0.538201 0.842816i
\(129\) −76.4720 10.6708i −0.592806 0.0827198i
\(130\) −32.9455 + 63.2641i −0.253427 + 0.486647i
\(131\) −7.26521 8.65835i −0.0554597 0.0660942i 0.737601 0.675236i \(-0.235958\pi\)
−0.793061 + 0.609142i \(0.791514\pi\)
\(132\) −147.951 137.779i −1.12084 1.04378i
\(133\) −111.606 + 40.6211i −0.839140 + 0.305422i
\(134\) −92.4046 + 120.386i −0.689587 + 0.898403i
\(135\) 32.7121 + 112.825i 0.242312 + 0.835740i
\(136\) 81.3031 196.029i 0.597817 1.44139i
\(137\) 147.499 53.6854i 1.07664 0.391864i 0.257982 0.966150i \(-0.416942\pi\)
0.818655 + 0.574286i \(0.194720\pi\)
\(138\) −55.6786 121.907i −0.403468 0.883387i
\(139\) 113.198 + 134.904i 0.814376 + 0.970535i 0.999927 0.0120996i \(-0.00385153\pi\)
−0.185551 + 0.982635i \(0.559407\pi\)
\(140\) 73.6580 + 158.086i 0.526129 + 1.12919i
\(141\) 37.3049 47.8449i 0.264574 0.339326i
\(142\) 39.3884 8.72588i 0.277383 0.0614498i
\(143\) 119.599 + 69.0507i 0.836359 + 0.482872i
\(144\) 58.7481 + 131.471i 0.407973 + 0.912994i
\(145\) 67.4261 + 116.785i 0.465008 + 0.805417i
\(146\) 148.257 135.811i 1.01546 0.930213i
\(147\) 32.2257 + 150.881i 0.219223 + 1.02640i
\(148\) −14.1309 + 160.950i −0.0954788 + 1.08750i
\(149\) −92.5431 33.6829i −0.621094 0.226060i 0.0122562 0.999925i \(-0.496099\pi\)
−0.633351 + 0.773865i \(0.718321\pi\)
\(150\) 36.3089 2.88787i 0.242059 0.0192525i
\(151\) −0.769516 0.135686i −0.00509613 0.000898586i 0.171100 0.985254i \(-0.445268\pi\)
−0.176196 + 0.984355i \(0.556379\pi\)
\(152\) −12.3324 94.0064i −0.0811339 0.618463i
\(153\) 133.895 + 197.668i 0.875129 + 1.29195i
\(154\) 311.986 129.173i 2.02588 0.838785i
\(155\) 56.2380 67.0219i 0.362826 0.432399i
\(156\) −59.2513 78.5186i −0.379816 0.503324i
\(157\) −30.8928 175.202i −0.196769 1.11593i −0.909876 0.414879i \(-0.863824\pi\)
0.713107 0.701055i \(-0.247287\pi\)
\(158\) 7.57130 + 174.021i 0.0479196 + 1.10140i
\(159\) −140.023 + 5.02743i −0.880650 + 0.0316191i
\(160\) −135.948 + 30.0301i −0.849676 + 0.187688i
\(161\) 223.845 1.39034
\(162\) −159.878 26.1342i −0.986902 0.161322i
\(163\) 268.797i 1.64906i −0.565818 0.824530i \(-0.691439\pi\)
0.565818 0.824530i \(-0.308561\pi\)
\(164\) −83.2594 118.984i −0.507679 0.725513i
\(165\) 7.89024 + 219.758i 0.0478196 + 1.33187i
\(166\) −6.41129 147.359i −0.0386222 0.887706i
\(167\) −21.3074 + 3.75708i −0.127589 + 0.0224975i −0.237078 0.971491i \(-0.576190\pi\)
0.109489 + 0.993988i \(0.465079\pi\)
\(168\) −240.505 1.97282i −1.43158 0.0117430i
\(169\) −77.9882 65.4399i −0.461469 0.387218i
\(170\) −213.274 + 88.3029i −1.25455 + 0.519429i
\(171\) 95.9601 + 46.5697i 0.561170 + 0.272338i
\(172\) 72.7748 + 72.8192i 0.423109 + 0.423368i
\(173\) −20.3403 + 115.356i −0.117574 + 0.666796i 0.867869 + 0.496792i \(0.165489\pi\)
−0.985443 + 0.170003i \(0.945622\pi\)
\(174\) −185.384 + 14.7447i −1.06542 + 0.0847399i
\(175\) −20.8070 + 57.1668i −0.118897 + 0.326668i
\(176\) 46.6463 + 265.493i 0.265036 + 1.50848i
\(177\) −108.522 + 23.1786i −0.613121 + 0.130952i
\(178\) 110.926 101.614i 0.623180 0.570864i
\(179\) −17.3998 + 10.0458i −0.0972054 + 0.0561216i −0.547815 0.836600i \(-0.684540\pi\)
0.450609 + 0.892721i \(0.351207\pi\)
\(180\) 55.8880 146.318i 0.310489 0.812880i
\(181\) 96.6241 167.358i 0.533835 0.924629i −0.465384 0.885109i \(-0.654084\pi\)
0.999219 0.0395201i \(-0.0125829\pi\)
\(182\) 160.405 35.5352i 0.881346 0.195249i
\(183\) −150.556 117.390i −0.822713 0.641473i
\(184\) −38.7564 + 174.441i −0.210633 + 0.948047i
\(185\) 134.624 112.963i 0.727695 0.610609i
\(186\) 50.1258 + 109.750i 0.269494 + 0.590053i
\(187\) 152.856 + 419.969i 0.817413 + 2.24582i
\(188\) −78.1428 + 20.9127i −0.415653 + 0.111238i
\(189\) 150.643 224.764i 0.797054 1.18923i
\(190\) −62.7921 + 81.8064i −0.330485 + 0.430560i
\(191\) 87.6196 + 240.733i 0.458741 + 1.26038i 0.926423 + 0.376484i \(0.122867\pi\)
−0.467682 + 0.883897i \(0.654911\pi\)
\(192\) 43.1783 187.082i 0.224887 0.974385i
\(193\) −217.111 + 182.178i −1.12493 + 0.943928i −0.998843 0.0480909i \(-0.984686\pi\)
−0.126087 + 0.992019i \(0.540242\pi\)
\(194\) −67.1064 + 128.862i −0.345909 + 0.664237i
\(195\) −14.7864 + 105.966i −0.0758278 + 0.543415i
\(196\) 86.9948 186.412i 0.443851 0.951083i
\(197\) 142.022 245.990i 0.720925 1.24868i −0.239705 0.970846i \(-0.577051\pi\)
0.960630 0.277832i \(-0.0896160\pi\)
\(198\) −278.321 120.418i −1.40566 0.608173i
\(199\) −118.652 + 68.5039i −0.596242 + 0.344241i −0.767562 0.640975i \(-0.778530\pi\)
0.171320 + 0.985216i \(0.445197\pi\)
\(200\) −40.9471 26.1126i −0.204735 0.130563i
\(201\) −70.1324 + 216.569i −0.348917 + 1.07746i
\(202\) −56.6173 88.9013i −0.280283 0.440105i
\(203\) 106.235 291.879i 0.523326 1.43783i
\(204\) 16.4450 317.905i 0.0806127 1.55836i
\(205\) −27.4290 + 155.558i −0.133800 + 0.758818i
\(206\) −86.3258 11.3784i −0.419057 0.0552350i
\(207\) −139.932 144.335i −0.675998 0.697270i
\(208\) −0.0801338 + 131.155i −0.000385259 + 0.630552i
\(209\) 152.954 + 128.344i 0.731838 + 0.614085i
\(210\) 183.517 + 186.438i 0.873889 + 0.887802i
\(211\) 181.862 32.0671i 0.861903 0.151977i 0.274813 0.961498i \(-0.411384\pi\)
0.587091 + 0.809521i \(0.300273\pi\)
\(212\) 153.000 + 107.201i 0.721696 + 0.505666i
\(213\) 51.2881 32.1185i 0.240789 0.150791i
\(214\) 42.4596 134.593i 0.198409 0.628940i
\(215\) 111.979i 0.520833i
\(216\) 149.074 + 156.310i 0.690158 + 0.723659i
\(217\) −201.522 −0.928671
\(218\) 170.370 + 53.7460i 0.781513 + 0.246541i
\(219\) 141.326 266.426i 0.645324 1.21656i
\(220\) 168.246 240.123i 0.764753 1.09147i
\(221\) 37.7599 + 214.147i 0.170859 + 0.968992i
\(222\) 60.8752 + 234.584i 0.274212 + 1.05668i
\(223\) −140.359 + 167.273i −0.629413 + 0.750105i −0.982658 0.185426i \(-0.940634\pi\)
0.353245 + 0.935531i \(0.385078\pi\)
\(224\) 254.267 + 195.414i 1.13512 + 0.872386i
\(225\) 49.8681 22.3202i 0.221636 0.0992008i
\(226\) −20.6358 + 156.560i −0.0913088 + 0.692741i
\(227\) −298.580 52.6476i −1.31533 0.231928i −0.528412 0.848988i \(-0.677212\pi\)
−0.786916 + 0.617060i \(0.788324\pi\)
\(228\) −64.6513 126.673i −0.283558 0.555585i
\(229\) −291.207 105.991i −1.27164 0.462841i −0.383985 0.923340i \(-0.625448\pi\)
−0.887660 + 0.460499i \(0.847671\pi\)
\(230\) 163.942 104.407i 0.712792 0.453945i
\(231\) 376.073 339.287i 1.62802 1.46878i
\(232\) 209.065 + 133.324i 0.901143 + 0.574672i
\(233\) −21.7586 37.6870i −0.0933845 0.161747i 0.815549 0.578688i \(-0.196435\pi\)
−0.908933 + 0.416942i \(0.863102\pi\)
\(234\) −123.186 81.2148i −0.526438 0.347072i
\(235\) 76.1989 + 43.9935i 0.324251 + 0.187206i
\(236\) 134.078 + 62.5716i 0.568128 + 0.265134i
\(237\) 98.1147 + 242.157i 0.413986 + 1.02176i
\(238\) 471.573 + 245.577i 1.98140 + 1.03184i
\(239\) −214.161 255.227i −0.896069 1.06789i −0.997329 0.0730337i \(-0.976732\pi\)
0.101260 0.994860i \(1.53229\pi\)
\(240\) −177.064 + 110.733i −0.737765 + 0.461388i
\(241\) 325.919 118.625i 1.35236 0.492219i 0.438677 0.898645i \(-0.355447\pi\)
0.913684 + 0.406426i \(0.133225\pi\)
\(242\) −258.344 198.297i −1.06754 0.819409i
\(243\) −239.098 + 43.3713i −0.983943 + 0.178483i
\(244\) 65.8073 + 245.896i 0.269702 + 1.00777i
\(245\) −210.259 + 76.5281i −0.858201 + 0.312360i
\(246\) −177.446 126.349i −0.721324 0.513613i
\(247\) 62.4460 + 74.4202i 0.252818 + 0.301296i
\(248\) 34.8913 157.044i 0.140691 0.633242i
\(249\) −83.0823 205.056i −0.333664 0.823518i
\(250\) 58.4770 + 263.964i 0.233908 + 1.05585i
\(251\) −12.1468 7.01295i −0.0483935 0.0279400i 0.475608 0.879657i \(-0.342228\pi\)
−0.524002 + 0.851717i \(0.675561\pi\)
\(252\) −340.919 + 118.021i −1.35285 + 0.468337i
\(253\) −188.159 325.901i −0.743711 1.28815i
\(254\) 128.138 + 139.881i 0.504481 + 0.550713i
\(255\) −257.084 + 231.938i −1.00817 + 0.909559i
\(256\) −196.308 + 164.314i −0.766829 + 0.641851i
\(257\) −159.478 58.0452i −0.620537 0.225857i 0.0125705 0.999921i \(-0.495999\pi\)
−0.633107 + 0.774064i \(0.718221\pi\)
\(258\) 139.438 + 66.3664i 0.540456 + 0.257234i
\(259\) −398.637 70.2905i −1.53914 0.271392i
\(260\) 100.904 100.843i 0.388094 0.387857i
\(261\) −254.613 + 113.961i −0.975530 + 0.436632i
\(262\) 8.64750 + 20.8859i 0.0330057 + 0.0797173i
\(263\) 208.683 248.699i 0.793473 0.945624i −0.205985 0.978555i \(-0.566040\pi\)
0.999458 + 0.0329313i \(0.0104843\pi\)
\(264\) 199.290 + 351.814i 0.754888 + 1.33263i
\(265\) −35.2856 200.115i −0.133153 0.755150i
\(266\) 237.312 10.3250i 0.892151 0.0388156i
\(267\) 105.740 199.340i 0.396030 0.746592i
\(268\) 248.684 174.017i 0.927924 0.649317i
\(269\) −281.085 −1.04493 −0.522463 0.852662i \(-0.674987\pi\)
−0.522463 + 0.852662i \(0.674987\pi\)
\(270\) 5.49387 234.879i 0.0203477 0.869921i
\(271\) 270.921i 0.999709i 0.866109 + 0.499855i \(0.166613\pi\)
−0.866109 + 0.499855i \(0.833387\pi\)
\(272\) −273.024 + 324.974i −1.00376 + 1.19476i
\(273\) 208.865 130.799i 0.765075 0.479117i
\(274\) −313.634 + 13.6456i −1.14465 + 0.0498014i
\(275\) 100.720 17.7597i 0.366255 0.0645807i
\(276\) 32.8461 + 266.021i 0.119007 + 0.963845i
\(277\) 80.9996 + 67.9667i 0.292417 + 0.245367i 0.777180 0.629279i \(-0.216650\pi\)
−0.484763 + 0.874646i \(0.661094\pi\)
\(278\) −134.735 325.420i −0.484659 1.17058i
\(279\) 125.976 + 129.941i 0.451529 + 0.465737i
\(280\) −45.3701 345.845i −0.162036 1.23516i
\(281\) 14.7191 83.4761i 0.0523811 0.297068i −0.947351 0.320196i \(-0.896251\pi\)
0.999733 + 0.0231277i \(0.00736245\pi\)
\(282\) −99.9417 + 68.8102i −0.354403 + 0.244008i
\(283\) 110.305 303.060i 0.389770 1.07088i −0.577336 0.816507i \(-0.695908\pi\)
0.967105 0.254376i \(-0.0818702\pi\)
\(284\) −80.3775 7.05686i −0.283019 0.0248481i
\(285\) −47.6574 + 147.166i −0.167219 + 0.516372i
\(286\) −186.569 203.667i −0.652339 0.712121i
\(287\) 315.087 181.915i 1.09786 0.633851i
\(288\) −32.9461 286.109i −0.114396 0.993435i
\(289\) −207.355 + 359.150i −0.717493 + 1.24273i
\(290\) −58.3345 263.320i −0.201153 0.908001i
\(291\) −30.1183 + 215.841i −0.103499 + 0.741722i
\(292\) −364.495 + 169.831i −1.24827 + 0.581614i
\(293\) 157.814 132.422i 0.538615 0.451952i −0.332449 0.943121i \(-0.607875\pi\)
0.871064 + 0.491170i \(0.163430\pi\)
\(294\) 29.3202 307.173i 0.0997286 1.04480i
\(295\) −55.0433 151.230i −0.186588 0.512645i
\(296\) 123.797 298.484i 0.418232 1.00839i
\(297\) −453.865 30.3936i −1.52816 0.102335i
\(298\) 156.244 + 119.928i 0.524309 + 0.402444i
\(299\) −62.6233 172.056i −0.209443 0.575439i
\(300\) −70.9910 16.3390i −0.236637 0.0544633i
\(301\) −197.583 + 165.792i −0.656423 + 0.550804i
\(302\) 1.38609 + 0.721821i 0.00458969 + 0.00239013i
\(303\) −124.679 97.2127i −0.411481 0.320834i
\(304\) −33.0419 + 186.723i −0.108691 + 0.614220i
\(305\) 138.437 239.780i 0.453891 0.786163i
\(306\) −136.445 457.586i −0.445900 1.49538i
\(307\) 194.400 112.237i 0.633225 0.365593i −0.148775 0.988871i \(-0.547533\pi\)
0.782000 + 0.623278i \(0.214200\pi\)
\(308\) −672.787 + 58.6542i −2.18437 + 0.190436i
\(309\) −127.728 + 27.2805i −0.413359 + 0.0882865i
\(310\) −147.592 + 93.9950i −0.476104 + 0.303210i
\(311\) −76.8272 + 211.081i −0.247033 + 0.678717i 0.752759 + 0.658297i \(0.228723\pi\)
−0.999791 + 0.0204207i \(0.993499\pi\)
\(312\) 65.7677 + 185.413i 0.210794 + 0.594274i
\(313\) −69.3890 + 393.525i −0.221690 + 1.25727i 0.647222 + 0.762301i \(0.275931\pi\)
−0.868912 + 0.494966i \(0.835181\pi\)
\(314\) −46.4963 + 352.758i −0.148077 + 1.12343i
\(315\) 353.032 + 171.328i 1.12074 + 0.543897i
\(316\) 90.2681 336.474i 0.285658 1.06479i
\(317\) 11.8267 + 9.92380i 0.0373083 + 0.0313054i 0.661251 0.750165i \(-0.270026\pi\)
−0.623943 + 0.781470i \(0.714470\pi\)
\(318\) 270.097 + 74.6634i 0.849363 + 0.234791i
\(319\) −514.251 + 90.6763i −1.61207 + 0.284252i
\(320\) 277.369 + 24.5228i 0.866778 + 0.0766338i
\(321\) −7.59594 211.561i −0.0236634 0.659069i
\(322\) −426.950 134.688i −1.32593 0.418287i
\(323\) 314.391i 0.973346i
\(324\) 289.217 + 146.046i 0.892646 + 0.450759i
\(325\) 49.7616 0.153113
\(326\) −161.736 + 512.688i −0.496122 + 1.57266i
\(327\) 267.797 9.61505i 0.818951 0.0294038i
\(328\) 87.2111 + 277.041i 0.265887 + 0.844637i
\(329\) −35.1923 199.585i −0.106967 0.606643i
\(330\) 117.180 423.901i 0.355090 1.28455i
\(331\) 178.560 212.799i 0.539455 0.642898i −0.425610 0.904907i \(-0.639941\pi\)
0.965065 + 0.262009i \(0.0843850\pi\)
\(332\) −76.4379 + 284.922i −0.230235 + 0.858199i
\(333\) 203.875 + 300.981i 0.612239 + 0.903846i
\(334\) 42.9012 + 5.65472i 0.128447 + 0.0169303i
\(335\) −325.125 57.3283i −0.970522 0.171129i
\(336\) 457.538 + 148.475i 1.36172 + 0.441891i
\(337\) 524.664 + 190.962i 1.55687 + 0.566653i 0.970015 0.243043i \(-0.0781457\pi\)
0.586850 + 0.809696i \(0.300368\pi\)
\(338\) 109.375 + 171.742i 0.323594 + 0.508112i
\(339\) 49.4757 + 231.646i 0.145946 + 0.683321i
\(340\) 459.919 40.0961i 1.35270 0.117930i
\(341\) 169.394 + 293.399i 0.496757 + 0.860408i
\(342\) −155.008 146.564i −0.453238 0.428549i
\(343\) 21.0731 + 12.1666i 0.0614376 + 0.0354710i
\(344\) −94.9908 182.680i −0.276136 0.531046i
\(345\) 179.269 229.919i 0.519621 0.666433i
\(346\) 108.206 207.784i 0.312733 0.600531i
\(347\) 288.093 + 343.336i 0.830241 + 0.989442i 0.999992 + 0.00395526i \(0.00125900\pi\)
−0.169752 + 0.985487i \(0.554297\pi\)
\(348\) 362.462 + 83.4226i 1.04156 + 0.239720i
\(349\) 479.457 174.508i 1.37380 0.500023i 0.453509 0.891252i \(-0.350172\pi\)
0.920294 + 0.391228i \(0.127950\pi\)
\(350\) 74.0836 96.5170i 0.211667 0.275763i
\(351\) −214.906 52.9100i −0.612268 0.150741i
\(352\) 70.7773 534.452i 0.201072 1.51833i
\(353\) −194.831 + 70.9126i −0.551928 + 0.200885i −0.602903 0.797814i \(-0.705989\pi\)
0.0509748 + 0.998700i \(0.483767\pi\)
\(354\) 220.936 + 21.0888i 0.624113 + 0.0595727i
\(355\) 56.4128 + 67.2302i 0.158909 + 0.189381i
\(356\) −272.715 + 127.068i −0.766054 + 0.356932i
\(357\) 789.875 + 110.219i 2.21254 + 0.308736i
\(358\) 39.2319 8.69121i 0.109586 0.0242771i
\(359\) 52.8592 + 30.5183i 0.147240 + 0.0850091i 0.571810 0.820386i \(-0.306241\pi\)
−0.424570 + 0.905395i \(0.639575\pi\)
\(360\) −194.638 + 245.451i −0.540660 + 0.681809i
\(361\) −110.271 190.995i −0.305460 0.529073i
\(362\) −284.995 + 261.070i −0.787279 + 0.721187i
\(363\) −464.749 150.502i −1.28030 0.414605i
\(364\) −327.329 28.7383i −0.899255 0.0789515i
\(365\) 411.007 + 149.594i 1.12605 + 0.409847i
\(366\) 216.529 + 314.492i 0.591609 + 0.859269i
\(367\) 258.395 + 45.5620i 0.704073 + 0.124147i 0.514211 0.857664i \(-0.328085\pi\)
0.189862 + 0.981811i \(0.439196\pi\)
\(368\) 178.883 309.398i 0.486096 0.840756i
\(369\) −314.268 89.4470i −0.851674 0.242404i
\(370\) −324.743 + 134.455i −0.877684 + 0.363392i
\(371\) −300.853 + 358.542i −0.810924 + 0.966421i
\(372\) −29.5704 239.491i −0.0794902 0.643794i
\(373\) −96.1685 545.399i −0.257824 1.46219i −0.788717 0.614756i \(-0.789254\pi\)
0.530893 0.847439i \(-0.321857\pi\)
\(374\) −38.8525 892.999i −0.103884 2.38770i
\(375\) 215.244 + 343.711i 0.573984 + 0.916562i
\(376\) 161.628 + 7.13105i 0.429863 + 0.0189656i
\(377\) −254.070 −0.673926
\(378\) −422.569 + 338.059i −1.11791 + 0.894335i
\(379\) 61.8712i 0.163249i −0.996663 0.0816243i \(-0.973989\pi\)
0.996663 0.0816243i \(-0.0260107\pi\)
\(380\) 168.989 118.251i 0.444708 0.311186i
\(381\) 251.374 + 133.341i 0.659774 + 0.349977i
\(382\) −22.2709 511.881i −0.0583007 1.34000i
\(383\) −356.264 + 62.8189i −0.930193 + 0.164018i −0.618159 0.786053i \(-0.712121\pi\)
−0.312034 + 0.950071i \(0.601010\pi\)
\(384\) −194.924 + 330.849i −0.507613 + 0.861585i
\(385\) 562.710 + 472.170i 1.46158 + 1.22641i
\(386\) 523.723 216.839i 1.35680 0.561760i
\(387\) 230.417 + 23.7602i 0.595392 + 0.0613959i
\(388\) 205.531 205.406i 0.529720 0.529397i
\(389\) −51.9683 + 294.727i −0.133595 + 0.757653i 0.842233 + 0.539113i \(0.181241\pi\)
−0.975828 + 0.218540i \(0.929871\pi\)
\(390\) 91.9628 193.216i 0.235802 0.495426i
\(391\) 202.661 556.805i 0.518313 1.42405i
\(392\) −278.094 + 303.207i −0.709423 + 0.773487i
\(393\) 22.7136 + 25.1763i 0.0577955 + 0.0640617i
\(394\) −418.898 + 383.731i −1.06319 + 0.973937i
\(395\) −328.158 + 189.462i −0.830778 + 0.479650i
\(396\) 458.397 + 397.145i 1.15757 + 1.00289i
\(397\) 197.081 341.354i 0.496425 0.859833i −0.503567 0.863956i \(-0.667979\pi\)
0.999991 + 0.00412318i \(0.00131245\pi\)
\(398\) 267.529 59.2670i 0.672184 0.148912i
\(399\) 330.229 133.799i 0.827641 0.335335i
\(400\) 62.3881 + 74.4435i 0.155970 + 0.186109i
\(401\) −33.5438 + 28.1466i −0.0836503 + 0.0701909i −0.683654 0.729806i \(-0.739610\pi\)
0.600004 + 0.799997i \(0.295166\pi\)
\(402\) 264.077 370.872i 0.656907 0.922567i
\(403\) 56.3780 + 154.897i 0.139896 + 0.384360i
\(404\) 54.4963 + 203.632i 0.134892 + 0.504039i
\(405\) −110.218 334.736i −0.272143 0.826507i
\(406\) −378.251 + 492.791i −0.931654 + 1.21377i
\(407\) 232.747 + 639.468i 0.571861 + 1.57117i
\(408\) −222.651 + 596.459i −0.545713 + 1.46191i
\(409\) −318.044 + 266.870i −0.777613 + 0.652495i −0.942646 0.333793i \(-0.891671\pi\)
0.165033 + 0.986288i \(0.447227\pi\)
\(410\) 145.916 280.198i 0.355893 0.683409i
\(411\) −436.434 + 176.830i −1.06188 + 0.430243i
\(412\) 157.806 + 73.6450i 0.383025 + 0.178750i
\(413\) −185.346 + 321.028i −0.448778 + 0.777307i
\(414\) 180.051 + 359.493i 0.434905 + 0.868342i
\(415\) 277.880 160.434i 0.669590 0.386588i
\(416\) 79.0690 250.109i 0.190070 0.601223i
\(417\) −353.897 392.267i −0.848675 0.940689i
\(418\) −214.511 336.828i −0.513184 0.805809i
\(419\) −21.7249 + 59.6886i −0.0518493 + 0.142455i −0.962914 0.269809i \(-0.913039\pi\)
0.911065 + 0.412264i \(0.135262\pi\)
\(420\) −237.849 466.024i −0.566306 1.10958i
\(421\) 108.764 616.830i 0.258346 1.46515i −0.528989 0.848629i \(-0.677429\pi\)
0.787335 0.616525i \(-0.211460\pi\)
\(422\) −366.167 48.2637i −0.867695 0.114369i
\(423\) −106.693 + 147.458i −0.252228 + 0.348601i
\(424\) −227.319 296.530i −0.536131 0.699362i
\(425\) 123.362 + 103.513i 0.290264 + 0.243560i
\(426\) −117.150 + 30.4007i −0.274999 + 0.0713631i
\(427\) −628.047 + 110.742i −1.47084 + 0.259348i
\(428\) −161.970 + 231.167i −0.378435 + 0.540110i
\(429\) −366.000 194.145i −0.853147 0.452552i
\(430\) −67.3782 + 213.583i −0.156693 + 0.496704i
\(431\) 127.048i 0.294775i 0.989079 + 0.147388i \(0.0470865\pi\)
−0.989079 + 0.147388i \(0.952914\pi\)
\(432\) −190.283 387.836i −0.440469 0.897768i
\(433\) 587.542 1.35691 0.678454 0.734642i \(-0.262650\pi\)
0.678454 + 0.734642i \(0.262650\pi\)
\(434\) 384.371 + 121.256i 0.885647 + 0.279392i
\(435\) −214.719 342.873i −0.493607 0.788213i
\(436\) −292.615 205.024i −0.671134 0.470239i
\(437\) −45.9688 260.702i −0.105192 0.596573i
\(438\) −429.866 + 423.130i −0.981430 + 0.966050i
\(439\) 277.190 330.342i 0.631412 0.752488i −0.351576 0.936159i \(-0.614354\pi\)
0.982988 + 0.183672i \(0.0587984\pi\)
\(440\) −465.385 + 356.764i −1.05769 + 0.810826i
\(441\) −112.856 448.884i −0.255910 1.01788i
\(442\) 56.8319 431.172i 0.128579 0.975503i
\(443\) 774.476 + 136.561i 1.74825 + 0.308264i 0.954107 0.299465i \(-0.0968081\pi\)
0.794145 + 0.607729i \(0.207919\pi\)
\(444\) 25.0401 484.060i 0.0563965 1.09023i
\(445\) 307.515 + 111.926i 0.691045 + 0.251520i
\(446\) 368.362 234.593i 0.825923 0.525994i
\(447\) 281.076 + 91.0220i 0.628806 + 0.203629i
\(448\) −367.392 525.715i −0.820072 1.17347i
\(449\) −242.525 420.066i −0.540145 0.935559i −0.998895 0.0469939i \(-0.985036\pi\)
0.458750 0.888566i \(-0.348297\pi\)
\(450\) −108.546 + 12.5665i −0.241212 + 0.0279254i
\(451\) −529.708 305.827i −1.17452 0.678109i
\(452\) 133.562 286.196i 0.295491 0.633177i
\(453\) 2.32167 + 0.323964i 0.00512509 + 0.000715152i
\(454\) 537.815 + 280.073i 1.18461 + 0.616901i
\(455\) 229.735 + 273.788i 0.504913 + 0.601732i
\(456\) 47.0924 + 280.510i 0.103273 + 0.615154i
\(457\) −813.496 + 296.088i −1.78008 + 0.647896i −0.780332 + 0.625365i \(0.784950\pi\)
−0.999746 + 0.0225304i \(0.992828\pi\)
\(458\) 491.656 + 377.380i 1.07348 + 0.823974i
\(459\) −422.703 578.210i −0.920922 1.25972i
\(460\) −375.516 + 100.496i −0.816339 + 0.218470i
\(461\) −652.111 + 237.349i −1.41456 + 0.514857i −0.932464 0.361263i \(-0.882346\pi\)
−0.482094 + 0.876120i \(0.660124\pi\)
\(462\) −921.450 + 420.852i −1.99448 + 0.910936i
\(463\) 438.512 + 522.598i 0.947111 + 1.12872i 0.991552 + 0.129710i \(0.0414048\pi\)
−0.0444414 + 0.999012i \(0.514151\pi\)
\(464\) −318.537 380.089i −0.686503 0.819158i
\(465\) −161.391 + 206.990i −0.347077 + 0.445139i
\(466\) 18.8247 + 84.9742i 0.0403964 + 0.182348i
\(467\) −388.222 224.140i −0.831310 0.479957i 0.0229910 0.999736i \(-0.492681\pi\)
−0.854301 + 0.519779i \(0.826014\pi\)
\(468\) 186.092 + 229.026i 0.397631 + 0.489372i
\(469\) 380.214 + 658.549i 0.810690 + 1.40416i
\(470\) −118.866 129.760i −0.252907 0.276085i
\(471\) 111.478 + 521.941i 0.236684 + 1.10816i
\(472\) −218.083 200.021i −0.462041 0.423773i
\(473\) 407.463 + 148.305i 0.861445 + 0.313540i
\(474\) −41.4315 520.913i −0.0874083 1.09897i
\(475\) 70.8524 + 12.4932i 0.149163 + 0.0263015i
\(476\) −751.687 752.146i −1.57917 1.58014i
\(477\) 419.258 30.1452i 0.878948 0.0631974i
\(478\) 254.907 + 615.665i 0.533278 + 1.28800i
\(479\) 370.059 441.020i 0.772567 0.920709i −0.226006 0.974126i \(-0.572567\pi\)
0.998572 + 0.0534168i \(0.0170112\pi\)
\(480\) 404.349 104.666i 0.842395 0.218054i
\(481\) 57.4954 + 326.073i 0.119533 + 0.677905i
\(482\) −693.015 + 30.1517i −1.43779 + 0.0625553i
\(483\) −671.104 + 24.0955i −1.38945 + 0.0498871i
\(484\) 373.434 + 533.666i 0.771559 + 1.10262i
\(485\) −316.060 −0.651670
\(486\) 482.139 + 61.1422i 0.992055 + 0.125807i
\(487\) 109.976i 0.225824i 0.993605 + 0.112912i \(0.0360178\pi\)
−0.993605 + 0.112912i \(0.963982\pi\)
\(488\) 22.4397 508.605i 0.0459830 1.04222i
\(489\) 28.9342 + 805.872i 0.0591702 + 1.64800i
\(490\) 447.083 19.4517i 0.912415 0.0396973i
\(491\) 382.906 67.5166i 0.779849 0.137508i 0.230467 0.973080i \(-0.425975\pi\)
0.549381 + 0.835572i \(0.314863\pi\)
\(492\) 262.425 + 347.760i 0.533385 + 0.706830i
\(493\) −629.855 528.511i −1.27760 1.07203i
\(494\) −74.3269 179.519i −0.150459 0.363398i
\(495\) −47.3109 658.000i −0.0955777 1.32929i
\(496\) −161.043 + 278.542i −0.324684 + 0.561577i
\(497\) 35.1026 199.077i 0.0706290 0.400557i
\(498\) 35.0837 + 441.103i 0.0704492 + 0.885748i
\(499\) −36.1272 + 99.2586i −0.0723992 + 0.198915i −0.970614 0.240642i \(-0.922642\pi\)
0.898215 + 0.439557i \(0.144864\pi\)
\(500\) 47.2920 538.655i 0.0945840 1.07731i
\(501\) 63.4767 13.5576i 0.126700 0.0270610i
\(502\) 18.9484 + 20.6848i 0.0377457 + 0.0412049i
\(503\) 417.548 241.072i 0.830116 0.479268i −0.0237762 0.999717i \(-0.507569\pi\)
0.853892 + 0.520449i \(0.174236\pi\)
\(504\) 721.263 19.9741i 1.43108 0.0396312i
\(505\) 114.642 198.566i 0.227015 0.393201i
\(506\) 162.788 + 734.820i 0.321715 + 1.45221i
\(507\) 240.858 + 187.798i 0.475065 + 0.370411i
\(508\) −160.236 343.902i −0.315426 0.676973i
\(509\) −466.979 + 391.842i −0.917443 + 0.769826i −0.973520 0.228600i \(-0.926585\pi\)
0.0560770 + 0.998426i \(0.482141\pi\)
\(510\) 629.906 287.696i 1.23511 0.564109i
\(511\) −344.567 946.690i −0.674299 1.85262i
\(512\) 473.295 195.283i 0.924405 0.381413i
\(513\) −292.708 129.290i −0.570580 0.252027i
\(514\) 269.253 + 206.670i 0.523839 + 0.402083i
\(515\) −64.7845 177.994i −0.125795 0.345619i
\(516\) −226.022 210.483i −0.438028 0.407913i
\(517\) −260.999 + 219.004i −0.504833 + 0.423605i
\(518\) 718.043 + 373.929i 1.38618 + 0.721871i
\(519\) 48.5644 348.034i 0.0935730 0.670585i
\(520\) −253.137 + 131.627i −0.486801 + 0.253129i
\(521\) −96.1278 + 166.498i −0.184506 + 0.319575i −0.943410 0.331628i \(-0.892402\pi\)
0.758904 + 0.651203i \(0.225735\pi\)
\(522\) 554.205 64.1611i 1.06170 0.122914i
\(523\) 261.108 150.751i 0.499250 0.288242i −0.229154 0.973390i \(-0.573596\pi\)
0.728404 + 0.685148i \(0.240262\pi\)
\(524\) −3.92661 45.0398i −0.00749353 0.0859539i
\(525\) 56.2272 173.630i 0.107100 0.330723i
\(526\) −547.673 + 348.789i −1.04120 + 0.663097i
\(527\) −182.449 + 501.276i −0.346204 + 0.951188i
\(528\) −168.427 790.944i −0.318991 1.49800i
\(529\) 5.22135 29.6117i 0.00987022 0.0559768i
\(530\) −53.1078 + 402.919i −0.100203 + 0.760224i
\(531\) 322.862 81.1726i 0.608027 0.152867i
\(532\) −458.848 123.098i −0.862496 0.231387i
\(533\) −227.976 191.295i −0.427723 0.358902i
\(534\) −321.626 + 316.585i −0.602295 + 0.592857i
\(535\) 302.353 53.3130i 0.565146 0.0996504i
\(536\) −579.032 + 182.276i −1.08028 + 0.340068i
\(537\) 51.0843 31.9908i 0.0951291 0.0595733i
\(538\) 536.126 + 169.130i 0.996517 + 0.314368i
\(539\) 866.433i 1.60748i
\(540\) −151.806 + 444.688i −0.281122 + 0.823497i
\(541\) −53.7516 −0.0993561 −0.0496780 0.998765i \(-0.515820\pi\)
−0.0496780 + 0.998765i \(0.515820\pi\)
\(542\) 163.014 516.739i 0.300764 0.953394i
\(543\) −271.671 + 512.151i −0.500314 + 0.943188i
\(544\) 716.287 455.557i 1.31670 0.837421i
\(545\) 67.4844 + 382.723i 0.123825 + 0.702244i
\(546\) −477.080 + 123.804i −0.873773 + 0.226746i
\(547\) −309.469 + 368.810i −0.565756 + 0.674242i −0.970754 0.240076i \(-0.922828\pi\)
0.404998 + 0.914318i \(0.367272\pi\)
\(548\) 606.418 + 162.688i 1.10660 + 0.296876i
\(549\) 464.015 + 335.736i 0.845200 + 0.611540i
\(550\) −202.794 26.7298i −0.368716 0.0485997i
\(551\) −361.754 63.7870i −0.656541 0.115766i
\(552\) 97.4171 527.157i 0.176480 0.954994i
\(553\) 820.156 + 298.512i 1.48310 + 0.539806i
\(554\) −113.598 178.373i −0.205051 0.321974i
\(555\) −391.451 + 353.161i −0.705317 + 0.636326i
\(556\) 61.1799 + 701.759i 0.110036 + 1.26216i
\(557\) 220.981 + 382.751i 0.396735 + 0.687165i 0.993321 0.115384i \(-0.0368100\pi\)
−0.596586 + 0.802549i \(0.703477\pi\)
\(558\) −162.095 323.642i −0.290492 0.580003i
\(559\) 182.710 + 105.488i 0.326852 + 0.188708i
\(560\) −121.559 + 686.943i −0.217070 + 1.22668i
\(561\) −503.480 1242.64i −0.897469 2.21505i
\(562\) −78.3021 + 150.361i −0.139328 + 0.267546i
\(563\) −539.434 642.872i −0.958142 1.14187i −0.989813 0.142370i \(-0.954528\pi\)
0.0316719 0.999498i \(1.51008\pi\)
\(564\) 232.026 71.1093i 0.411394 0.126080i
\(565\) −322.808 + 117.492i −0.571341 + 0.207951i
\(566\) −392.741 + 511.668i −0.693889 + 0.904008i
\(567\) −427.444 + 690.073i −0.753870 + 1.21706i
\(568\) 149.061 + 61.8232i 0.262432 + 0.108844i
\(569\) 1001.95 364.680i 1.76090 0.640914i 0.760927 0.648838i \(-0.224745\pi\)
0.999969 + 0.00792419i \(0.00252237\pi\)
\(570\) 179.449 252.020i 0.314823 0.442141i
\(571\) −421.903 502.804i −0.738884 0.880567i 0.257435 0.966296i \(-0.417123\pi\)
−0.996319 + 0.0857285i \(0.972678\pi\)
\(572\) 233.304 + 500.721i 0.407874 + 0.875387i
\(573\) −288.603 712.302i −0.503670 1.24311i
\(574\) −710.437 + 157.386i −1.23770 + 0.274192i
\(575\) −117.431 67.7987i −0.204227 0.117911i
\(576\) −109.313 + 565.532i −0.189780 + 0.981827i
\(577\) −117.795 204.027i −0.204151 0.353600i 0.745711 0.666270i \(-0.232110\pi\)
−0.949862 + 0.312670i \(0.898777\pi\)
\(578\) 611.599 560.256i 1.05813 0.969300i
\(579\) 631.305 569.553i 1.09034 0.983684i
\(580\) −47.1767 + 537.342i −0.0813392 + 0.926451i
\(581\) −694.498 252.777i −1.19535 0.435072i
\(582\) 187.318 393.561i 0.321853 0.676221i
\(583\) 774.898 + 136.635i 1.32916 + 0.234366i
\(584\) 797.405 104.609i 1.36542 0.179124i
\(585\) 32.9242 319.285i 0.0562806 0.545786i
\(586\) −380.684 + 157.616i −0.649632 + 0.268970i
\(587\) 294.660 351.162i 0.501976 0.598232i −0.454245 0.890877i \(-0.650091\pi\)
0.956221 + 0.292645i \(0.0945354\pi\)
\(588\) −240.750 + 568.241i −0.409439 + 0.966396i
\(589\) 41.3844 + 234.703i 0.0702622 + 0.398477i
\(590\) 13.9907 + 321.568i 0.0237131 + 0.545030i
\(591\) −399.313 + 752.781i −0.675657 + 1.27374i
\(592\) −415.721 + 494.823i −0.702232 + 0.835850i
\(593\) 530.547 0.894683 0.447342 0.894363i \(-0.352371\pi\)
0.447342 + 0.894363i \(0.352371\pi\)
\(594\) 847.387 + 331.063i 1.42658 + 0.557345i
\(595\) 1156.63i 1.94391i
\(596\) −225.850 322.757i −0.378943 0.541538i
\(597\) 348.353 218.151i 0.583507 0.365413i
\(598\) 15.9174 + 365.851i 0.0266177 + 0.611790i
\(599\) 367.257 64.7574i 0.613118 0.108109i 0.141538 0.989933i \(-0.454795\pi\)
0.471579 + 0.881824i \(0.343684\pi\)
\(600\) 125.573 + 73.8795i 0.209288 + 0.123133i
\(601\) −335.573 281.579i −0.558358 0.468518i 0.319402 0.947619i \(-0.396518\pi\)
−0.877759 + 0.479102i \(0.840962\pi\)
\(602\) 476.616 197.336i 0.791722 0.327800i
\(603\) 186.949 656.837i 0.310032 1.08928i
\(604\) −2.20942 2.21077i −0.00365798 0.00366022i
\(605\) 123.024 697.706i 0.203346 1.15323i
\(606\) 179.312 + 260.438i 0.295894 + 0.429765i
\(607\) −56.8614 + 156.226i −0.0936762 + 0.257373i −0.977677 0.210111i \(-0.932617\pi\)
0.884001 + 0.467484i \(0.154840\pi\)
\(608\) 175.374 336.263i 0.288444 0.553064i
\(609\) −287.082 + 886.509i −0.471399 + 1.45568i
\(610\) −408.322 + 374.044i −0.669381 + 0.613187i
\(611\) −143.564 + 82.8865i −0.234965 + 0.135657i
\(612\) −15.0828 + 954.873i −0.0246451 + 1.56025i
\(613\) −95.7272 + 165.804i −0.156162 + 0.270480i −0.933481 0.358626i \(-0.883245\pi\)
0.777320 + 0.629106i \(0.216579\pi\)
\(614\) −438.321 + 97.1032i −0.713878 + 0.158149i
\(615\) 65.4893 469.325i 0.106487 0.763131i
\(616\) 1318.53 + 292.945i 2.14047 + 0.475559i
\(617\) 216.274 181.476i 0.350526 0.294126i −0.450475 0.892789i \(-0.648745\pi\)
0.801001 + 0.598663i \(0.204301\pi\)
\(618\) 260.035 + 24.8209i 0.420769 + 0.0401632i
\(619\) 22.1636 + 60.8940i 0.0358055 + 0.0983748i 0.956307 0.292364i \(-0.0944418\pi\)
−0.920502 + 0.390739i \(0.872220\pi\)
\(620\) 338.066 90.4739i 0.545268 0.145926i
\(621\) 435.061 + 417.663i 0.700582 + 0.672566i
\(622\) 273.544 356.377i 0.439781 0.572953i
\(623\) −257.805 708.313i −0.413812 1.13694i
\(624\) −13.8777 393.219i −0.0222399 0.630159i
\(625\) −334.289 + 280.502i −0.534862 + 0.448803i
\(626\) 369.133 708.834i 0.589670 1.13232i
\(627\) −472.382 368.319i −0.753401 0.587430i
\(628\) 300.940 644.853i 0.479203 1.02684i
\(629\) −535.754 + 927.954i −0.851756 + 1.47528i
\(630\) −570.264 539.201i −0.905182 0.855874i
\(631\) −310.209 + 179.099i −0.491615 + 0.283834i −0.725244 0.688492i \(-0.758273\pi\)
0.233629 + 0.972326i \(0.424940\pi\)
\(632\) −374.629 + 587.456i −0.592768 + 0.929519i
\(633\) −541.782 + 115.716i −0.855895 + 0.182805i
\(634\) −16.5864 26.0443i −0.0261616 0.0410793i
\(635\) −141.143 + 387.786i −0.222272 + 0.610686i
\(636\) −470.243 304.927i −0.739376 0.479445i
\(637\) 73.2040 415.161i 0.114920 0.651744i
\(638\) 1035.41 + 136.476i 1.62290 + 0.213912i
\(639\) −150.308 + 101.814i −0.235224 + 0.159334i
\(640\) −514.282 213.667i −0.803566 0.333855i
\(641\) −575.070 482.541i −0.897146 0.752795i 0.0724847 0.997370i \(-0.476907\pi\)
−0.969630 + 0.244575i \(0.921352\pi\)
\(642\) −112.809 + 408.090i −0.175715 + 0.635654i
\(643\) −899.318 + 158.574i −1.39863 + 0.246616i −0.821580 0.570093i \(-0.806907\pi\)
−0.577049 + 0.816709i \(0.695796\pi\)
\(644\) 733.297 + 513.794i 1.13866 + 0.797816i
\(645\) 12.0538 + 335.721i 0.0186881 + 0.520498i
\(646\) 189.170 599.651i 0.292833 0.928252i
\(647\) 457.889i 0.707710i 0.935300 + 0.353855i \(0.115129\pi\)
−0.935300 + 0.353855i \(0.884871\pi\)
\(648\) −463.760 452.582i −0.715679 0.698430i
\(649\) 623.187 0.960227
\(650\) −94.9125 29.9417i −0.146019 0.0460642i
\(651\) 604.175 21.6925i 0.928073 0.0333218i
\(652\) 616.971 880.554i 0.946275 1.35054i
\(653\) 44.8800 + 254.527i 0.0687289 + 0.389781i 0.999695 + 0.0246765i \(0.00785556\pi\)
−0.930967 + 0.365104i \(0.881033\pi\)
\(654\) −516.566 142.795i −0.789856 0.218341i
\(655\) −31.6095 + 37.6707i −0.0482587 + 0.0575125i
\(656\) 0.354914 580.887i 0.000541028 0.885498i
\(657\) −395.026 + 813.977i −0.601257 + 1.23893i
\(658\) −52.9674 + 401.853i −0.0804976 + 0.610719i
\(659\) 773.092 + 136.317i 1.17313 + 0.206854i 0.726051 0.687640i \(-0.241353\pi\)
0.447078 + 0.894495i \(0.352465\pi\)
\(660\) −478.564 + 738.017i −0.725097 + 1.11821i
\(661\) 871.348 + 317.145i 1.31823 + 0.479795i 0.902890 0.429872i \(-0.141441\pi\)
0.415337 + 0.909668i \(0.363664\pi\)
\(662\) −468.616 + 298.441i −0.707880 + 0.450817i
\(663\) −136.258 637.964i −0.205518 0.962238i
\(664\) 317.232 497.451i 0.477758 0.749173i
\(665\) 258.368 + 447.507i 0.388524 + 0.672943i
\(666\) −207.759 696.746i −0.311951 1.04616i
\(667\) 599.571 + 346.162i 0.898907 + 0.518984i
\(668\) −78.4248 36.5993i −0.117402 0.0547893i
\(669\) 402.800 516.606i 0.602093 0.772206i
\(670\) 585.630 + 304.973i 0.874074 + 0.455184i
\(671\) 689.152 + 821.299i 1.02705 + 1.22399i
\(672\) −783.344 558.496i −1.16569 0.831095i
\(673\) −435.450 + 158.491i −0.647029 + 0.235499i −0.644626 0.764498i \(-0.722987\pi\)
−0.00240244 + 0.999997i \(0.500765\pi\)
\(674\) −885.811 679.921i −1.31426 1.00879i
\(675\) −147.105 + 72.2854i −0.217934 + 0.107089i
\(676\) −105.278 393.382i −0.155736 0.581926i
\(677\) 1255.40 456.930i 1.85436 0.674933i 0.871559 0.490291i \(-0.163110\pi\)
0.982806 0.184642i \(-0.0591126\pi\)
\(678\) 45.0149 471.598i 0.0663937 0.695572i
\(679\) 467.946 + 557.676i 0.689169 + 0.821320i
\(680\) −901.349 200.258i −1.32551 0.294497i
\(681\) 900.829 + 125.701i 1.32280 + 0.184583i
\(682\) −146.553 661.537i −0.214888 0.969996i
\(683\) −608.347 351.229i −0.890698 0.514245i −0.0165271 0.999863i \(-0.505261\pi\)
−0.874171 + 0.485619i \(0.838594\pi\)
\(684\) 207.464 + 372.816i 0.303311 + 0.545052i
\(685\) −341.462 591.430i −0.498485 0.863402i
\(686\) −32.8730 35.8855i −0.0479198 0.0523113i
\(687\) 884.467 + 286.420i 1.28743 + 0.416915i
\(688\) 71.2609 + 405.589i 0.103577 + 0.589520i
\(689\) 359.757 + 130.941i 0.522143 + 0.190045i
\(690\) −480.271 + 330.668i −0.696045 + 0.479229i
\(691\) −57.8084 10.1932i −0.0836590 0.0147513i 0.131662 0.991295i \(-0.457969\pi\)
−0.215321 + 0.976543i \(0.569080\pi\)
\(692\) −331.410 + 331.207i −0.478916 + 0.478623i
\(693\) −1090.97 + 1057.69i −1.57427 + 1.52625i
\(694\) −342.906 828.207i −0.494101 1.19338i
\(695\) 492.502 586.941i 0.708636 0.844520i
\(696\) −641.143 377.210i −0.921183 0.541968i
\(697\) −167.240 948.463i −0.239942 1.36078i
\(698\) −1019.49 + 44.3559i −1.46059 + 0.0635472i
\(699\) 69.2905 + 110.646i 0.0991280 + 0.158292i
\(700\) −199.377 + 139.515i −0.284825 + 0.199307i
\(701\) −50.6411 −0.0722413 −0.0361206 0.999347i \(-0.511500\pi\)
−0.0361206 + 0.999347i \(0.511500\pi\)
\(702\) 378.064 + 230.227i 0.538552 + 0.327959i
\(703\) 478.709i 0.680951i
\(704\) −456.578 + 976.797i −0.648548 + 1.38750i
\(705\) −233.185 123.693i −0.330759 0.175451i
\(706\) 414.277 18.0243i 0.586795 0.0255302i
\(707\) −520.099 + 91.7074i −0.735641 + 0.129713i
\(708\) −408.711 173.161i −0.577275 0.244578i
\(709\) −541.957 454.756i −0.764397 0.641405i 0.174870 0.984591i \(-0.444049\pi\)
−0.939267 + 0.343186i \(0.888494\pi\)
\(710\) −67.1459 162.175i −0.0945718 0.228415i
\(711\) −320.221 715.443i −0.450381 1.00625i
\(712\) 596.618 78.2681i 0.837947 0.109927i
\(713\) 77.9982 442.350i 0.109394 0.620406i
\(714\) −1440.24 685.495i −2.01715 0.960077i
\(715\) 205.503 564.615i 0.287417 0.789672i
\(716\) −80.0581 7.02882i −0.111813 0.00981679i
\(717\) 669.541 + 742.134i 0.933809 + 1.03505i
\(718\) −82.4576 90.0143i −0.114843 0.125368i
\(719\) −1042.00 + 601.598i −1.44923 + 0.836715i −0.998436 0.0559107i \(-0.982194\pi\)
−0.450798 + 0.892626i \(0.648860\pi\)
\(720\) 518.929 351.045i 0.720735 0.487563i
\(721\) −218.147 + 377.841i −0.302561 + 0.524051i
\(722\) 95.4024 + 430.644i 0.132136 + 0.596459i
\(723\) −964.358 + 390.728i −1.33383 + 0.540426i
\(724\) 700.669 326.467i 0.967775 0.450921i
\(725\) −144.136 + 120.945i −0.198809 + 0.166821i
\(726\) 795.878 + 566.699i 1.09625 + 0.780577i
\(727\) −74.9737 205.989i −0.103128 0.283341i 0.877388 0.479781i \(-0.159284\pi\)
−0.980516 + 0.196441i \(0.937062\pi\)
\(728\) 607.036 + 251.769i 0.833841 + 0.345836i
\(729\) 712.164 155.767i 0.976905 0.213673i
\(730\) −693.919 532.631i −0.950574 0.729632i
\(731\) 233.516 + 641.581i 0.319448 + 0.877676i
\(732\) −223.764 730.131i −0.305688 0.997446i
\(733\) 18.6768 15.6717i 0.0254799 0.0213802i −0.629959 0.776629i \(-0.716928\pi\)
0.655439 + 0.755248i \(0.272484\pi\)
\(734\) −465.433 242.379i −0.634104 0.330217i
\(735\) 622.134 252.069i 0.846440 0.342952i
\(736\) −527.357 + 482.494i −0.716518 + 0.655562i
\(737\) 639.196 1107.12i 0.867295 1.50220i
\(738\) 545.595 + 359.702i 0.739289 + 0.487401i
\(739\) 223.668 129.135i 0.302664 0.174743i −0.340975 0.940072i \(-0.610757\pi\)
0.643639 + 0.765329i \(0.277424\pi\)
\(740\) 700.298 61.0526i 0.946349 0.0825035i
\(741\) −195.228 216.395i −0.263466 0.292031i
\(742\) 789.565 502.839i 1.06410 0.677680i
\(743\) 118.080 324.422i 0.158923 0.436638i −0.834518 0.550980i \(-0.814254\pi\)
0.993441 + 0.114342i \(0.0364761\pi\)
\(744\) −87.7018 + 474.584i −0.117879 + 0.637882i
\(745\) −74.4041 + 421.967i −0.0998713 + 0.566398i
\(746\) −144.742 + 1098.13i −0.194024 + 1.47202i
\(747\) 271.159 + 605.828i 0.362998 + 0.811015i
\(748\) −463.215 + 1726.63i −0.619271 + 2.30833i
\(749\) −541.721 454.558i −0.723259 0.606886i
\(750\) −203.732 785.087i −0.271643 1.04678i
\(751\) −461.870 + 81.4402i −0.615007 + 0.108442i −0.472470 0.881347i \(-0.656637\pi\)
−0.142538 + 0.989789i \(0.545526\pi\)
\(752\) −303.990 110.854i −0.404242 0.147412i
\(753\) 37.1718 + 19.7178i 0.0493649 + 0.0261856i
\(754\) 484.598 + 152.875i 0.642703 + 0.202752i
\(755\) 3.39966i 0.00450285i