[N,k,chi] = [322,2,Mod(9,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(66))
chi = DirichletCharacter(H, H._module([22, 30]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.9");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{160} - 2 T_{3}^{159} - 24 T_{3}^{158} + 82 T_{3}^{157} + 182 T_{3}^{156} - 1181 T_{3}^{155} + 1151 T_{3}^{154} + 5957 T_{3}^{153} - 33616 T_{3}^{152} + 49492 T_{3}^{151} + 274975 T_{3}^{150} - 1117439 T_{3}^{149} + \cdots + 35\!\cdots\!41 \)
acting on \(S_{2}^{\mathrm{new}}(322, [\chi])\).