Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [322,2,Mod(9,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(66))
chi = DirichletCharacter(H, H._module([22, 30]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.9");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.m (of order \(33\), degree \(20\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.57118294509\) |
Analytic rank: | \(0\) |
Dimension: | \(160\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{33})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{33}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 | −0.235759 | + | 0.971812i | −0.899762 | + | 2.59969i | −0.888835 | − | 0.458227i | −0.684642 | − | 0.274089i | −2.31428 | − | 1.48730i | −2.64563 | − | 0.0257032i | 0.654861 | − | 0.755750i | −3.59067 | − | 2.82373i | 0.427774 | − | 0.600724i |
9.2 | −0.235759 | + | 0.971812i | −0.457151 | + | 1.32085i | −0.888835 | − | 0.458227i | −4.01090 | − | 1.60572i | −1.17584 | − | 0.755667i | 1.65184 | − | 2.06674i | 0.654861 | − | 0.755750i | 0.822498 | + | 0.646819i | 2.50607 | − | 3.51928i |
9.3 | −0.235759 | + | 0.971812i | −0.289551 | + | 0.836604i | −0.888835 | − | 0.458227i | 2.56790 | + | 1.02803i | −0.744757 | − | 0.478626i | 2.64344 | − | 0.110492i | 0.654861 | − | 0.755750i | 1.74209 | + | 1.37000i | −1.60446 | + | 2.25314i |
9.4 | −0.235759 | + | 0.971812i | −0.245677 | + | 0.709838i | −0.888835 | − | 0.458227i | 1.32131 | + | 0.528973i | −0.631908 | − | 0.406103i | −0.478358 | − | 2.60215i | 0.654861 | − | 0.755750i | 1.91465 | + | 1.50569i | −0.825572 | + | 1.15935i |
9.5 | −0.235759 | + | 0.971812i | 0.207322 | − | 0.599019i | −0.888835 | − | 0.458227i | −0.965092 | − | 0.386365i | 0.533255 | + | 0.342702i | −1.55248 | + | 2.14239i | 0.654861 | − | 0.755750i | 2.04232 | + | 1.60610i | 0.603003 | − | 0.846799i |
9.6 | −0.235759 | + | 0.971812i | 0.635615 | − | 1.83649i | −0.888835 | − | 0.458227i | 0.639202 | + | 0.255898i | 1.63487 | + | 1.05067i | −0.520133 | − | 2.59412i | 0.654861 | − | 0.755750i | −0.610530 | − | 0.480126i | −0.399382 | + | 0.560854i |
9.7 | −0.235759 | + | 0.971812i | 0.774374 | − | 2.23741i | −0.888835 | − | 0.458227i | 3.37590 | + | 1.35151i | 1.99177 | + | 1.28003i | −0.224436 | + | 2.63621i | 0.654861 | − | 0.755750i | −2.04818 | − | 1.61070i | −2.10931 | + | 2.96211i |
9.8 | −0.235759 | + | 0.971812i | 0.902469 | − | 2.60751i | −0.888835 | − | 0.458227i | −1.02777 | − | 0.411456i | 2.32125 | + | 1.49177i | 2.58489 | + | 0.564210i | 0.654861 | − | 0.755750i | −3.62651 | − | 2.85192i | 0.642162 | − | 0.901791i |
25.1 | −0.0475819 | + | 0.998867i | −3.01871 | − | 1.20851i | −0.995472 | − | 0.0950560i | −0.530176 | − | 2.18541i | 1.35077 | − | 2.95778i | −2.53173 | − | 0.768337i | 0.142315 | − | 0.989821i | 5.48089 | + | 5.22602i | 2.20817 | − | 0.425589i |
25.2 | −0.0475819 | + | 0.998867i | −1.62223 | − | 0.649442i | −0.995472 | − | 0.0950560i | 0.0716832 | + | 0.295482i | 0.725895 | − | 1.58949i | 2.51052 | + | 0.835042i | 0.142315 | − | 0.989821i | 0.0386478 | + | 0.0368506i | −0.298558 | + | 0.0575424i |
25.3 | −0.0475819 | + | 0.998867i | −0.846875 | − | 0.339038i | −0.995472 | − | 0.0950560i | 0.0344685 | + | 0.142081i | 0.378950 | − | 0.829784i | 0.462244 | − | 2.60506i | 0.142315 | − | 0.989821i | −1.56895 | − | 1.49599i | −0.143560 | + | 0.0276690i |
25.4 | −0.0475819 | + | 0.998867i | −0.473143 | − | 0.189418i | −0.995472 | − | 0.0950560i | 0.994090 | + | 4.09770i | 0.211716 | − | 0.463594i | −2.53885 | + | 0.744474i | 0.142315 | − | 0.989821i | −1.98322 | − | 1.89099i | −4.14036 | + | 0.797988i |
25.5 | −0.0475819 | + | 0.998867i | 0.421611 | + | 0.168788i | −0.995472 | − | 0.0950560i | −0.751910 | − | 3.09942i | −0.188658 | + | 0.413103i | −2.62384 | + | 0.339832i | 0.142315 | − | 0.989821i | −2.02194 | − | 1.92791i | 3.13168 | − | 0.603582i |
25.6 | −0.0475819 | + | 0.998867i | 2.32492 | + | 0.930757i | −0.995472 | − | 0.0950560i | 0.378372 | + | 1.55967i | −1.04033 | + | 2.27800i | −1.47479 | − | 2.19659i | 0.142315 | − | 0.989821i | 2.36774 | + | 2.25763i | −1.57591 | + | 0.303731i |
25.7 | −0.0475819 | + | 0.998867i | 2.33543 | + | 0.934966i | −0.995472 | − | 0.0950560i | −0.786581 | − | 3.24233i | −1.04503 | + | 2.28830i | 2.61565 | − | 0.397974i | 0.142315 | − | 0.989821i | 2.40888 | + | 2.29686i | 3.27608 | − | 0.631414i |
25.8 | −0.0475819 | + | 0.998867i | 2.44097 | + | 0.977219i | −0.995472 | − | 0.0950560i | 0.657157 | + | 2.70884i | −1.09226 | + | 2.39171i | 2.36993 | + | 1.17620i | 0.142315 | − | 0.989821i | 2.83220 | + | 2.70050i | −2.73704 | + | 0.527521i |
39.1 | −0.981929 | − | 0.189251i | −0.150806 | − | 3.16580i | 0.928368 | + | 0.371662i | −0.753896 | + | 1.05870i | −0.451052 | + | 3.13713i | −0.989718 | + | 2.45366i | −0.841254 | − | 0.540641i | −7.01315 | + | 0.669675i | 0.940632 | − | 0.896891i |
39.2 | −0.981929 | − | 0.189251i | −0.121146 | − | 2.54317i | 0.928368 | + | 0.371662i | 1.79650 | − | 2.52283i | −0.362342 | + | 2.52014i | −0.443953 | − | 2.60824i | −0.841254 | − | 0.540641i | −3.46663 | + | 0.331023i | −2.24148 | + | 2.13725i |
39.3 | −0.981929 | − | 0.189251i | −0.0679970 | − | 1.42743i | 0.928368 | + | 0.371662i | −1.39707 | + | 1.96191i | −0.203375 | + | 1.41451i | 2.62689 | − | 0.315333i | −0.841254 | − | 0.540641i | 0.953474 | − | 0.0910457i | 1.74312 | − | 1.66206i |
39.4 | −0.981929 | − | 0.189251i | −0.0525591 | − | 1.10335i | 0.928368 | + | 0.371662i | −1.42783 | + | 2.00510i | −0.157201 | + | 1.09336i | −2.61494 | − | 0.402583i | −0.841254 | − | 0.540641i | 1.77179 | − | 0.169186i | 1.78149 | − | 1.69865i |
See next 80 embeddings (of 160 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
23.c | even | 11 | 1 | inner |
161.m | even | 33 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.2.m.a | ✓ | 160 |
7.c | even | 3 | 1 | inner | 322.2.m.a | ✓ | 160 |
23.c | even | 11 | 1 | inner | 322.2.m.a | ✓ | 160 |
161.m | even | 33 | 1 | inner | 322.2.m.a | ✓ | 160 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.2.m.a | ✓ | 160 | 1.a | even | 1 | 1 | trivial |
322.2.m.a | ✓ | 160 | 7.c | even | 3 | 1 | inner |
322.2.m.a | ✓ | 160 | 23.c | even | 11 | 1 | inner |
322.2.m.a | ✓ | 160 | 161.m | even | 33 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{160} - 2 T_{3}^{159} - 24 T_{3}^{158} + 82 T_{3}^{157} + 182 T_{3}^{156} - 1181 T_{3}^{155} + \cdots + 35\!\cdots\!41 \)
acting on \(S_{2}^{\mathrm{new}}(322, [\chi])\).