Properties

Label 322.2.i.c
Level $322$
Weight $2$
Character orbit 322.i
Analytic conductor $2.571$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 322.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.57118294509\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 9 x^{19} + 41 x^{18} - 119 x^{17} + 245 x^{16} - 404 x^{15} + 623 x^{14} - 898 x^{13} + 1048 x^{12} - 693 x^{11} + 859 x^{10} - 935 x^{9} + 620 x^{8} + 679 x^{7} + 1220 x^{6} + 2241 x^{5} + 1750 x^{4} + 1079 x^{3} + 534 x^{2} + 38 x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{19} q^{2} + ( \beta_{1} + \beta_{2} + \beta_{4} + \beta_{5} - \beta_{6} + \beta_{8} - \beta_{10} - \beta_{16} ) q^{3} + \beta_{11} q^{4} + ( \beta_{1} + \beta_{2} + \beta_{4} + \beta_{9} - \beta_{10} ) q^{5} + ( -\beta_{5} - \beta_{12} ) q^{6} + ( -1 - \beta_{11} - \beta_{12} + \beta_{13} - \beta_{14} - \beta_{15} - \beta_{16} - \beta_{17} - \beta_{18} - \beta_{19} ) q^{7} + \beta_{17} q^{8} + ( -\beta_{3} + \beta_{4} + \beta_{5} - \beta_{7} - \beta_{9} - \beta_{13} + \beta_{17} ) q^{9} +O(q^{10})\) \( q + \beta_{19} q^{2} + ( \beta_{1} + \beta_{2} + \beta_{4} + \beta_{5} - \beta_{6} + \beta_{8} - \beta_{10} - \beta_{16} ) q^{3} + \beta_{11} q^{4} + ( \beta_{1} + \beta_{2} + \beta_{4} + \beta_{9} - \beta_{10} ) q^{5} + ( -\beta_{5} - \beta_{12} ) q^{6} + ( -1 - \beta_{11} - \beta_{12} + \beta_{13} - \beta_{14} - \beta_{15} - \beta_{16} - \beta_{17} - \beta_{18} - \beta_{19} ) q^{7} + \beta_{17} q^{8} + ( -\beta_{3} + \beta_{4} + \beta_{5} - \beta_{7} - \beta_{9} - \beta_{13} + \beta_{17} ) q^{9} + ( \beta_{1} + \beta_{3} - \beta_{5} + \beta_{6} + \beta_{10} ) q^{10} + ( -\beta_{5} - \beta_{7} - \beta_{8} - \beta_{9} + \beta_{10} + \beta_{11} - \beta_{13} ) q^{11} + ( \beta_{10} - \beta_{18} ) q^{12} + ( \beta_{2} + \beta_{4} + \beta_{5} - 2 \beta_{7} - \beta_{8} - \beta_{9} - \beta_{11} - \beta_{12} + \beta_{13} - 2 \beta_{14} - \beta_{15} - 2 \beta_{16} - \beta_{19} ) q^{13} + \beta_{15} q^{14} + ( 1 - \beta_{1} + \beta_{4} - \beta_{7} - 2 \beta_{8} - \beta_{9} + \beta_{10} + \beta_{14} - \beta_{17} ) q^{15} + ( -1 - \beta_{11} - \beta_{12} + \beta_{13} - \beta_{14} - \beta_{15} - \beta_{16} - \beta_{17} - \beta_{18} - \beta_{19} ) q^{16} + ( \beta_{1} - \beta_{5} + \beta_{7} + \beta_{11} + \beta_{12} - 2 \beta_{14} + \beta_{15} + \beta_{16} + \beta_{18} - 2 \beta_{19} ) q^{17} + ( -1 + \beta_{2} + 2 \beta_{9} - \beta_{10} - \beta_{11} - \beta_{12} + \beta_{13} - \beta_{14} - \beta_{15} - \beta_{17} - \beta_{18} - \beta_{19} ) q^{18} + ( 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} + 3 \beta_{5} - 2 \beta_{6} + 2 \beta_{8} + \beta_{9} - 4 \beta_{10} - 2 \beta_{11} - 2 \beta_{12} - 2 \beta_{14} - \beta_{15} - 2 \beta_{17} - \beta_{18} - 2 \beta_{19} ) q^{19} + ( -\beta_{1} - \beta_{2} + \beta_{3} - \beta_{4} - \beta_{5} + \beta_{6} - \beta_{7} - \beta_{8} - \beta_{9} + 2 \beta_{10} ) q^{20} + ( -\beta_{3} - \beta_{4} + \beta_{7} + \beta_{9} - \beta_{19} ) q^{21} + ( -\beta_{1} - \beta_{3} - \beta_{4} + \beta_{6} + \beta_{9} + \beta_{10} + \beta_{16} + \beta_{17} ) q^{22} + ( \beta_{1} + \beta_{2} + 2 \beta_{3} + \beta_{4} + \beta_{5} + 2 \beta_{6} - 3 \beta_{7} - 2 \beta_{11} - \beta_{12} + \beta_{13} - \beta_{14} - 3 \beta_{15} - \beta_{17} - \beta_{18} ) q^{23} + ( -1 - \beta_{7} ) q^{24} + ( 3 - 3 \beta_{1} - 2 \beta_{2} - \beta_{3} - \beta_{4} - \beta_{7} - 2 \beta_{8} - 2 \beta_{9} + 2 \beta_{10} + 3 \beta_{11} - 4 \beta_{13} + 4 \beta_{14} + 2 \beta_{15} + 2 \beta_{16} + \beta_{17} + \beta_{18} ) q^{25} + ( \beta_{2} - \beta_{3} - \beta_{4} + \beta_{6} + \beta_{7} + \beta_{8} + 2 \beta_{9} - \beta_{10} - \beta_{11} - 2 \beta_{12} + 2 \beta_{13} - \beta_{14} - \beta_{16} - \beta_{17} - \beta_{18} ) q^{26} + ( -\beta_{2} + \beta_{3} - 3 \beta_{5} + \beta_{6} - \beta_{7} - 3 \beta_{9} + \beta_{10} + 3 \beta_{11} + 2 \beta_{12} - 3 \beta_{13} + 2 \beta_{14} + 4 \beta_{15} + 3 \beta_{16} + 4 \beta_{17} + 4 \beta_{18} + 4 \beta_{19} ) q^{27} + \beta_{14} q^{28} + ( -2 \beta_{1} - 2 \beta_{2} - 2 \beta_{4} - \beta_{5} + 2 \beta_{6} - 2 \beta_{8} - \beta_{11} - 2 \beta_{12} - 2 \beta_{14} - \beta_{15} + \beta_{16} + \beta_{18} - 2 \beta_{19} ) q^{29} + ( 1 + \beta_{1} + 2 \beta_{2} + \beta_{4} + \beta_{5} + \beta_{6} - \beta_{7} + \beta_{8} + \beta_{9} - \beta_{10} + \beta_{11} + \beta_{12} - 2 \beta_{13} + \beta_{14} + \beta_{15} + \beta_{16} + \beta_{17} + \beta_{18} + 2 \beta_{19} ) q^{30} + ( \beta_{7} + 2 \beta_{8} + \beta_{9} - 3 \beta_{12} + 3 \beta_{13} - \beta_{15} - 3 \beta_{16} - 4 \beta_{17} - 3 \beta_{18} - \beta_{19} ) q^{31} + \beta_{15} q^{32} + ( 2 + 2 \beta_{1} + \beta_{3} - \beta_{5} + \beta_{7} + \beta_{8} + \beta_{11} + 2 \beta_{12} - 2 \beta_{13} + 3 \beta_{14} + 2 \beta_{15} + 3 \beta_{16} + 2 \beta_{17} + \beta_{19} ) q^{33} + ( 1 - \beta_{1} - \beta_{2} + \beta_{3} - \beta_{5} + \beta_{6} - \beta_{7} - \beta_{8} - \beta_{9} + 2 \beta_{10} - 2 \beta_{11} + \beta_{12} + 2 \beta_{13} + \beta_{14} + \beta_{17} + \beta_{18} ) q^{34} + ( -\beta_{3} + \beta_{5} - \beta_{6} + \beta_{7} + \beta_{8} + \beta_{9} - 2 \beta_{10} ) q^{35} + ( 2 \beta_{1} + \beta_{7} + \beta_{8} + \beta_{12} + \beta_{15} ) q^{36} + ( -1 - \beta_{1} + \beta_{3} + \beta_{4} + \beta_{5} - \beta_{7} - \beta_{8} - \beta_{9} + \beta_{12} + 2 \beta_{13} - 4 \beta_{15} - 2 \beta_{17} - \beta_{18} + \beta_{19} ) q^{37} + ( 1 + 3 \beta_{1} + 2 \beta_{2} + 2 \beta_{4} - 2 \beta_{6} + 2 \beta_{7} + 2 \beta_{8} + 2 \beta_{9} - 3 \beta_{10} + 2 \beta_{12} + \beta_{14} + 2 \beta_{15} + 2 \beta_{16} + 2 \beta_{19} ) q^{38} + ( 1 - 3 \beta_{2} - 2 \beta_{5} - 2 \beta_{6} - 3 \beta_{9} + 2 \beta_{10} + \beta_{11} + \beta_{12} + \beta_{14} + 3 \beta_{15} + \beta_{16} + 3 \beta_{17} + \beta_{18} ) q^{39} + ( -\beta_{1} - \beta_{3} - \beta_{4} + \beta_{5} ) q^{40} + ( 1 - 3 \beta_{1} - \beta_{2} - 3 \beta_{4} - 2 \beta_{5} - 2 \beta_{8} - \beta_{9} + \beta_{10} + 4 \beta_{11} + 3 \beta_{12} - 2 \beta_{13} + 2 \beta_{15} + 3 \beta_{17} + 4 \beta_{18} + \beta_{19} ) q^{41} + ( -\beta_{2} - \beta_{11} ) q^{42} + ( -2 + 3 \beta_{1} + 2 \beta_{2} - 3 \beta_{3} + 3 \beta_{5} + 3 \beta_{7} + 2 \beta_{8} + 4 \beta_{9} - 4 \beta_{10} - 3 \beta_{11} - \beta_{12} + \beta_{13} - 3 \beta_{14} - 2 \beta_{15} - 3 \beta_{16} - 3 \beta_{17} - 3 \beta_{18} ) q^{43} + ( -1 + \beta_{1} + \beta_{5} - \beta_{6} + \beta_{8} + \beta_{9} - \beta_{10} - \beta_{11} + \beta_{13} - \beta_{14} - \beta_{15} - \beta_{16} - \beta_{17} - \beta_{18} - \beta_{19} ) q^{44} + ( 2 - 2 \beta_{2} + \beta_{3} - 3 \beta_{4} - 2 \beta_{5} + 2 \beta_{7} - \beta_{9} + 3 \beta_{10} - 2 \beta_{16} - 2 \beta_{17} - \beta_{18} - \beta_{19} ) q^{45} + ( -3 \beta_{4} - \beta_{5} + \beta_{6} + 2 \beta_{7} + \beta_{9} + \beta_{11} + \beta_{12} - 2 \beta_{14} + \beta_{15} - \beta_{17} + \beta_{19} ) q^{46} + ( -4 + \beta_{1} + \beta_{3} + 2 \beta_{4} - \beta_{6} + \beta_{7} - \beta_{9} - 2 \beta_{10} - 3 \beta_{16} - 3 \beta_{17} ) q^{47} + ( -\beta_{3} - \beta_{4} + \beta_{7} + \beta_{9} - \beta_{19} ) q^{48} + \beta_{16} q^{49} + ( 2 \beta_{2} - 2 \beta_{3} + \beta_{4} + 3 \beta_{5} - \beta_{6} + \beta_{8} + 2 \beta_{9} - 3 \beta_{10} - \beta_{11} + \beta_{12} - 3 \beta_{13} + \beta_{14} - \beta_{15} + 3 \beta_{16} + 2 \beta_{17} - \beta_{18} + 2 \beta_{19} ) q^{50} + ( 1 + \beta_{1} + 2 \beta_{2} + \beta_{4} + 4 \beta_{5} + 4 \beta_{8} + \beta_{9} - 2 \beta_{10} - \beta_{11} + 3 \beta_{12} + 3 \beta_{17} - \beta_{18} + \beta_{19} ) q^{51} + ( \beta_{1} - \beta_{2} + \beta_{3} - \beta_{6} + \beta_{7} + \beta_{8} + \beta_{11} + \beta_{14} + \beta_{15} - \beta_{16} - \beta_{18} + \beta_{19} ) q^{52} + ( 2 - 2 \beta_{1} - \beta_{2} - \beta_{3} - 2 \beta_{4} - \beta_{5} + \beta_{6} + 2 \beta_{7} - \beta_{8} + \beta_{9} + \beta_{10} + 4 \beta_{11} + 4 \beta_{12} - 3 \beta_{13} + 4 \beta_{14} + 4 \beta_{15} + 2 \beta_{16} + 4 \beta_{17} + 4 \beta_{18} + 3 \beta_{19} ) q^{53} + ( -3 \beta_{1} - \beta_{4} - \beta_{8} + 3 \beta_{10} - \beta_{12} + 2 \beta_{13} - 4 \beta_{15} - \beta_{16} - \beta_{17} - 2 \beta_{18} - 4 \beta_{19} ) q^{54} + ( \beta_{1} + \beta_{3} - 2 \beta_{4} - 2 \beta_{5} + \beta_{6} + \beta_{7} + \beta_{8} + \beta_{9} + \beta_{10} + \beta_{11} + \beta_{12} - \beta_{13} - \beta_{15} + \beta_{16} + \beta_{17} + \beta_{19} ) q^{55} -\beta_{13} q^{56} + ( -1 - 4 \beta_{1} - 4 \beta_{2} - 3 \beta_{8} - 3 \beta_{9} + 2 \beta_{10} - 2 \beta_{11} - \beta_{12} + 2 \beta_{13} + \beta_{14} - 2 \beta_{16} + \beta_{17} + \beta_{18} - 2 \beta_{19} ) q^{57} + ( 1 + 2 \beta_{5} + 2 \beta_{7} - \beta_{10} - 2 \beta_{11} + \beta_{12} + 2 \beta_{13} - \beta_{14} - \beta_{17} - 2 \beta_{18} ) q^{58} + ( -5 + 3 \beta_{1} + 3 \beta_{2} + 5 \beta_{3} + 3 \beta_{4} - 2 \beta_{5} - \beta_{6} - 2 \beta_{7} + \beta_{8} - 3 \beta_{9} - \beta_{10} + 2 \beta_{11} - \beta_{12} + 2 \beta_{13} - \beta_{14} - \beta_{15} - \beta_{16} - 5 \beta_{17} + 2 \beta_{19} ) q^{59} + ( \beta_{1} + \beta_{3} - \beta_{4} - \beta_{5} + \beta_{7} + \beta_{8} + \beta_{9} + \beta_{11} - \beta_{15} + \beta_{16} ) q^{60} + ( -3 - \beta_{1} - \beta_{2} - 2 \beta_{4} + \beta_{6} + 2 \beta_{7} - \beta_{8} + 2 \beta_{9} + \beta_{10} + \beta_{12} + 3 \beta_{13} - 3 \beta_{14} + \beta_{16} - \beta_{17} - 3 \beta_{18} ) q^{61} + ( 1 + \beta_{1} + \beta_{3} + \beta_{4} - 2 \beta_{6} - \beta_{7} - \beta_{9} + 3 \beta_{11} + \beta_{12} - 4 \beta_{13} + 3 \beta_{14} + 4 \beta_{15} + \beta_{16} + 4 \beta_{17} + \beta_{18} + 4 \beta_{19} ) q^{62} + ( 1 + \beta_{2} - \beta_{3} + 2 \beta_{5} - \beta_{13} ) q^{63} + \beta_{14} q^{64} + ( -4 \beta_{2} - 3 \beta_{3} - \beta_{4} - \beta_{5} - 4 \beta_{6} + 5 \beta_{7} - \beta_{8} - 2 \beta_{10} - \beta_{15} - \beta_{18} ) q^{65} + ( -2 - 2 \beta_{1} - 2 \beta_{2} + \beta_{3} - \beta_{4} - 2 \beta_{5} + \beta_{6} - \beta_{7} - 2 \beta_{8} - 2 \beta_{9} + 3 \beta_{10} - \beta_{11} + \beta_{12} - \beta_{13} - 2 \beta_{15} - \beta_{17} ) q^{66} + ( -5 + 2 \beta_{1} + \beta_{2} + \beta_{3} + \beta_{4} + \beta_{5} - \beta_{6} + \beta_{9} - 5 \beta_{11} + 2 \beta_{13} - 2 \beta_{14} - 4 \beta_{15} - 4 \beta_{16} + 2 \beta_{17} + 2 \beta_{18} - \beta_{19} ) q^{67} + ( \beta_{2} + \beta_{5} - \beta_{7} - \beta_{11} - \beta_{12} - \beta_{14} - \beta_{15} - 3 \beta_{16} - 3 \beta_{17} ) q^{68} + ( 2 - 3 \beta_{1} - \beta_{2} + 3 \beta_{3} + \beta_{4} - 3 \beta_{5} + \beta_{6} - 4 \beta_{7} - 4 \beta_{8} - 4 \beta_{9} + 4 \beta_{10} + 5 \beta_{11} - \beta_{12} - \beta_{13} + \beta_{14} + 3 \beta_{16} + 2 \beta_{17} + 5 \beta_{18} + 3 \beta_{19} ) q^{69} + ( \beta_{1} + \beta_{4} - \beta_{6} + \beta_{7} - \beta_{10} ) q^{70} + ( -3 + \beta_{1} + \beta_{2} + 2 \beta_{3} + 2 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} - \beta_{7} + 3 \beta_{8} - \beta_{9} - 3 \beta_{10} - 3 \beta_{11} + \beta_{13} - \beta_{14} - \beta_{17} - \beta_{18} - 3 \beta_{19} ) q^{71} + ( -2 \beta_{1} - 2 \beta_{2} + \beta_{3} - \beta_{4} - 2 \beta_{5} + \beta_{6} - \beta_{7} - 2 \beta_{8} - \beta_{9} + 2 \beta_{10} + \beta_{14} + \beta_{18} ) q^{72} + ( 3 \beta_{2} + \beta_{3} + 2 \beta_{4} + 4 \beta_{5} - 2 \beta_{7} + 2 \beta_{8} + 2 \beta_{9} - \beta_{10} - 4 \beta_{11} + \beta_{17} + \beta_{19} ) q^{73} + ( 1 + \beta_{1} + 2 \beta_{2} + \beta_{4} + \beta_{5} + \beta_{8} - 2 \beta_{10} + 3 \beta_{11} + 2 \beta_{12} - 2 \beta_{13} - 2 \beta_{14} + 2 \beta_{15} + 2 \beta_{17} + 3 \beta_{18} + \beta_{19} ) q^{74} + ( 2 + 4 \beta_{1} - 3 \beta_{2} + 3 \beta_{3} - \beta_{5} - \beta_{6} + 4 \beta_{7} + \beta_{8} + \beta_{11} + 4 \beta_{12} - 2 \beta_{13} + 3 \beta_{14} + \beta_{15} + \beta_{16} + \beta_{18} + 3 \beta_{19} ) q^{75} + ( \beta_{1} - \beta_{2} + 2 \beta_{3} + \beta_{4} - 3 \beta_{5} + \beta_{6} - \beta_{7} - \beta_{8} - 2 \beta_{9} + 3 \beta_{10} + 2 \beta_{11} + 2 \beta_{12} - \beta_{13} + 2 \beta_{14} + 2 \beta_{18} + \beta_{19} ) q^{76} + ( 1 - \beta_{1} - \beta_{2} + \beta_{6} - \beta_{8} + \beta_{10} + \beta_{14} ) q^{77} + ( -2 - 3 \beta_{1} - 2 \beta_{3} - 2 \beta_{7} - 3 \beta_{8} + 2 \beta_{10} - 3 \beta_{11} - 2 \beta_{12} + 2 \beta_{13} - 3 \beta_{15} - 3 \beta_{16} - 2 \beta_{17} - 2 \beta_{18} - 2 \beta_{19} ) q^{78} + ( -1 - 3 \beta_{1} + \beta_{2} - 3 \beta_{3} + \beta_{4} + 4 \beta_{5} + \beta_{6} - \beta_{7} - \beta_{9} + \beta_{10} - 5 \beta_{11} - 5 \beta_{12} + 3 \beta_{13} - 2 \beta_{14} - 5 \beta_{15} - 2 \beta_{16} - \beta_{17} - 5 \beta_{19} ) q^{79} + ( -\beta_{3} + \beta_{5} - \beta_{6} + \beta_{7} + \beta_{8} + \beta_{9} - 2 \beta_{10} ) q^{80} + ( -4 - 2 \beta_{1} - 2 \beta_{2} + 4 \beta_{3} - 5 \beta_{5} + 4 \beta_{6} - 5 \beta_{7} - 2 \beta_{8} - 2 \beta_{9} + 4 \beta_{10} - 3 \beta_{11} - 4 \beta_{12} + 3 \beta_{13} + 4 \beta_{14} + 2 \beta_{16} + 4 \beta_{17} + 2 \beta_{19} ) q^{81} + ( 1 - \beta_{1} - 3 \beta_{3} + 3 \beta_{5} - \beta_{6} + 2 \beta_{7} + 2 \beta_{8} - \beta_{10} - 2 \beta_{11} - 3 \beta_{12} + 3 \beta_{13} - \beta_{14} - 3 \beta_{15} - \beta_{16} + \beta_{17} - 2 \beta_{19} ) q^{82} + ( 2 + 2 \beta_{1} + 3 \beta_{3} - 3 \beta_{4} - 3 \beta_{5} + 2 \beta_{7} + 2 \beta_{8} + 3 \beta_{9} + \beta_{10} + 6 \beta_{11} + 3 \beta_{12} - \beta_{13} + 5 \beta_{15} + 6 \beta_{16} + \beta_{17} + 2 \beta_{18} + 3 \beta_{19} ) q^{83} + ( -\beta_{8} - \beta_{17} ) q^{84} + ( 1 - 3 \beta_{1} + \beta_{2} - 7 \beta_{3} - 3 \beta_{4} + 7 \beta_{5} - 6 \beta_{6} + 3 \beta_{7} + 4 \beta_{8} + 4 \beta_{9} - 7 \beta_{10} + 2 \beta_{11} - 2 \beta_{13} + 2 \beta_{14} + \beta_{16} + 2 \beta_{19} ) q^{85} + ( \beta_{1} - 3 \beta_{2} + 3 \beta_{3} - 3 \beta_{5} + \beta_{6} + \beta_{7} - \beta_{8} + 3 \beta_{11} + \beta_{14} + 3 \beta_{15} + 2 \beta_{16} + 2 \beta_{18} + \beta_{19} ) q^{86} + ( 1 - 3 \beta_{1} + \beta_{3} - 2 \beta_{4} + 3 \beta_{9} + 2 \beta_{11} + \beta_{12} + 6 \beta_{13} + \beta_{14} - 6 \beta_{15} + \beta_{17} + 2 \beta_{18} + \beta_{19} ) q^{87} + ( -\beta_{2} - \beta_{3} - \beta_{4} - \beta_{5} + \beta_{7} - \beta_{8} + \beta_{15} + \beta_{18} ) q^{88} + ( 2 + 3 \beta_{1} - 2 \beta_{2} - \beta_{3} + 3 \beta_{4} + 3 \beta_{5} - 3 \beta_{6} + \beta_{7} - 2 \beta_{8} - 3 \beta_{10} - \beta_{11} + 3 \beta_{12} - 3 \beta_{13} + 3 \beta_{14} + 2 \beta_{15} + 2 \beta_{16} - \beta_{17} + 3 \beta_{18} ) q^{89} + ( 1 - 4 \beta_{1} - 3 \beta_{2} - \beta_{3} - \beta_{4} - 2 \beta_{7} - 2 \beta_{8} - 3 \beta_{9} + 2 \beta_{10} + \beta_{11} - 2 \beta_{13} + 2 \beta_{14} + 2 \beta_{15} + 2 \beta_{16} + 2 \beta_{17} + 2 \beta_{18} + 4 \beta_{19} ) q^{90} + ( -1 - \beta_{1} + \beta_{2} - \beta_{3} + \beta_{5} + \beta_{6} + \beta_{9} - \beta_{11} - \beta_{12} - \beta_{14} - \beta_{15} - 2 \beta_{18} - 2 \beta_{19} ) q^{91} + ( 1 - 2 \beta_{1} - 3 \beta_{2} - \beta_{4} + \beta_{7} - 2 \beta_{9} + \beta_{10} + 2 \beta_{11} + \beta_{12} + \beta_{13} + 2 \beta_{14} + \beta_{15} + \beta_{16} + 2 \beta_{17} + 2 \beta_{18} + \beta_{19} ) q^{92} + ( -3 + \beta_{1} + 2 \beta_{2} - 4 \beta_{3} + 2 \beta_{5} - \beta_{6} + 3 \beta_{7} + 4 \beta_{9} - 4 \beta_{11} - 4 \beta_{12} - \beta_{14} - \beta_{15} - 5 \beta_{16} - 5 \beta_{17} - 4 \beta_{18} - 4 \beta_{19} ) q^{93} + ( 3 + \beta_{2} + 2 \beta_{3} + 2 \beta_{4} - \beta_{5} + \beta_{6} - \beta_{7} - \beta_{8} - 2 \beta_{9} + \beta_{10} + 3 \beta_{11} - 3 \beta_{13} + 3 \beta_{14} + 3 \beta_{15} + 3 \beta_{16} + 3 \beta_{17} + 3 \beta_{18} - \beta_{19} ) q^{94} + ( 4 - 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} - 2 \beta_{5} - 2 \beta_{7} - 2 \beta_{8} - 4 \beta_{9} + 4 \beta_{10} - 4 \beta_{11} - \beta_{12} + \beta_{13} + 2 \beta_{14} + 4 \beta_{15} - 4 \beta_{16} - 4 \beta_{17} + 2 \beta_{18} ) q^{95} + ( -\beta_{2} - \beta_{11} ) q^{96} + ( 2 - 4 \beta_{1} - 5 \beta_{2} - 4 \beta_{4} - 4 \beta_{5} - 4 \beta_{8} - \beta_{9} + 5 \beta_{10} + 3 \beta_{11} + 5 \beta_{12} - 5 \beta_{13} + 9 \beta_{14} + 5 \beta_{15} + 5 \beta_{17} + 3 \beta_{18} + 2 \beta_{19} ) q^{97} + \beta_{12} q^{98} + ( 1 + \beta_{1} + 2 \beta_{2} - \beta_{3} + \beta_{4} + 2 \beta_{5} + \beta_{6} - \beta_{7} + 2 \beta_{8} + \beta_{9} - 2 \beta_{10} + \beta_{11} + 2 \beta_{12} - \beta_{13} + \beta_{14} + \beta_{15} + \beta_{16} + \beta_{17} + 2 \beta_{18} + \beta_{19} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 2q^{2} + 4q^{3} - 2q^{4} - 5q^{5} + 4q^{6} - 2q^{7} - 2q^{8} - 12q^{9} + O(q^{10}) \) \( 20q - 2q^{2} + 4q^{3} - 2q^{4} - 5q^{5} + 4q^{6} - 2q^{7} - 2q^{8} - 12q^{9} + 6q^{10} + 6q^{11} + 4q^{12} + 14q^{13} - 2q^{14} + 13q^{15} - 2q^{16} + 7q^{17} - 12q^{18} - 2q^{19} + 6q^{20} + 4q^{21} - 16q^{22} + 9q^{23} - 18q^{24} + 23q^{25} + 3q^{26} - 47q^{27} - 2q^{28} + 2q^{29} - 20q^{30} + 28q^{31} - 2q^{32} + 26q^{33} + 18q^{34} - 5q^{35} + 10q^{36} - 17q^{37} + 9q^{38} + 36q^{39} - 5q^{40} - 7q^{41} + 4q^{42} - 17q^{43} + 6q^{44} + 90q^{45} + 9q^{46} - 68q^{47} + 4q^{48} - 2q^{49} - 43q^{50} - 15q^{51} + 14q^{52} - 35q^{53} + 19q^{54} + 8q^{55} - 2q^{56} - 20q^{57} + 24q^{58} - 60q^{59} + 13q^{60} - 48q^{61} - 5q^{62} + 10q^{63} - 2q^{64} + 40q^{65} - 29q^{66} - 57q^{67} + 18q^{68} + 4q^{69} + 6q^{70} - 39q^{71} - q^{72} - 30q^{73} - 17q^{74} + 57q^{75} - 2q^{76} + 6q^{77} - 19q^{78} - 18q^{79} - 5q^{80} - 90q^{81} + 26q^{82} + 28q^{83} + 4q^{84} - 13q^{85} - 6q^{86} + 13q^{87} + 6q^{88} + 34q^{89} - 20q^{90} - 30q^{91} - 2q^{92} - 16q^{93} + 9q^{94} + 110q^{95} + 4q^{96} - 2q^{98} - 28q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{20} - 9 x^{19} + 41 x^{18} - 119 x^{17} + 245 x^{16} - 404 x^{15} + 623 x^{14} - 898 x^{13} + 1048 x^{12} - 693 x^{11} + 859 x^{10} - 935 x^{9} + 620 x^{8} + 679 x^{7} + 1220 x^{6} + 2241 x^{5} + 1750 x^{4} + 1079 x^{3} + 534 x^{2} + 38 x + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\(-\)\(20\!\cdots\!71\)\( \nu^{19} + \)\(18\!\cdots\!73\)\( \nu^{18} - \)\(79\!\cdots\!96\)\( \nu^{17} + \)\(19\!\cdots\!51\)\( \nu^{16} - \)\(28\!\cdots\!26\)\( \nu^{15} + \)\(18\!\cdots\!94\)\( \nu^{14} + \)\(11\!\cdots\!02\)\( \nu^{13} - \)\(52\!\cdots\!92\)\( \nu^{12} + \)\(15\!\cdots\!68\)\( \nu^{11} - \)\(39\!\cdots\!96\)\( \nu^{10} + \)\(49\!\cdots\!57\)\( \nu^{9} - \)\(37\!\cdots\!13\)\( \nu^{8} + \)\(42\!\cdots\!79\)\( \nu^{7} - \)\(85\!\cdots\!84\)\( \nu^{6} + \)\(51\!\cdots\!86\)\( \nu^{5} - \)\(52\!\cdots\!52\)\( \nu^{4} - \)\(90\!\cdots\!07\)\( \nu^{3} + \)\(16\!\cdots\!40\)\( \nu^{2} + \)\(21\!\cdots\!28\)\( \nu + \)\(25\!\cdots\!26\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(\beta_{3}\)\(=\)\((\)\(\)\(34\!\cdots\!09\)\( \nu^{19} - \)\(25\!\cdots\!40\)\( \nu^{18} + \)\(98\!\cdots\!87\)\( \nu^{17} - \)\(22\!\cdots\!61\)\( \nu^{16} + \)\(32\!\cdots\!09\)\( \nu^{15} - \)\(36\!\cdots\!66\)\( \nu^{14} + \)\(48\!\cdots\!43\)\( \nu^{13} - \)\(40\!\cdots\!30\)\( \nu^{12} - \)\(55\!\cdots\!55\)\( \nu^{11} + \)\(27\!\cdots\!87\)\( \nu^{10} - \)\(10\!\cdots\!36\)\( \nu^{9} + \)\(31\!\cdots\!07\)\( \nu^{8} - \)\(64\!\cdots\!57\)\( \nu^{7} + \)\(82\!\cdots\!27\)\( \nu^{6} + \)\(57\!\cdots\!25\)\( \nu^{5} + \)\(17\!\cdots\!51\)\( \nu^{4} + \)\(12\!\cdots\!30\)\( \nu^{3} + \)\(11\!\cdots\!89\)\( \nu^{2} + \)\(62\!\cdots\!68\)\( \nu + \)\(11\!\cdots\!14\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(\beta_{4}\)\(=\)\((\)\(\)\(54\!\cdots\!91\)\( \nu^{19} - \)\(72\!\cdots\!29\)\( \nu^{18} + \)\(43\!\cdots\!86\)\( \nu^{17} - \)\(15\!\cdots\!42\)\( \nu^{16} + \)\(38\!\cdots\!71\)\( \nu^{15} - \)\(68\!\cdots\!55\)\( \nu^{14} + \)\(10\!\cdots\!82\)\( \nu^{13} - \)\(14\!\cdots\!30\)\( \nu^{12} + \)\(19\!\cdots\!04\)\( \nu^{11} - \)\(17\!\cdots\!82\)\( \nu^{10} + \)\(67\!\cdots\!58\)\( \nu^{9} - \)\(12\!\cdots\!91\)\( \nu^{8} + \)\(18\!\cdots\!81\)\( \nu^{7} + \)\(85\!\cdots\!45\)\( \nu^{6} - \)\(23\!\cdots\!43\)\( \nu^{5} - \)\(17\!\cdots\!06\)\( \nu^{4} - \)\(36\!\cdots\!17\)\( \nu^{3} - \)\(27\!\cdots\!63\)\( \nu^{2} - \)\(90\!\cdots\!27\)\( \nu - \)\(25\!\cdots\!44\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(\beta_{5}\)\(=\)\((\)\(-\)\(91\!\cdots\!12\)\( \nu^{19} + \)\(92\!\cdots\!59\)\( \nu^{18} - \)\(46\!\cdots\!49\)\( \nu^{17} + \)\(14\!\cdots\!26\)\( \nu^{16} - \)\(34\!\cdots\!14\)\( \nu^{15} + \)\(61\!\cdots\!98\)\( \nu^{14} - \)\(96\!\cdots\!48\)\( \nu^{13} + \)\(14\!\cdots\!61\)\( \nu^{12} - \)\(18\!\cdots\!68\)\( \nu^{11} + \)\(17\!\cdots\!79\)\( \nu^{10} - \)\(15\!\cdots\!28\)\( \nu^{9} + \)\(18\!\cdots\!86\)\( \nu^{8} - \)\(18\!\cdots\!89\)\( \nu^{7} + \)\(32\!\cdots\!98\)\( \nu^{6} - \)\(73\!\cdots\!90\)\( \nu^{5} - \)\(65\!\cdots\!09\)\( \nu^{4} - \)\(71\!\cdots\!71\)\( \nu^{3} + \)\(12\!\cdots\!41\)\( \nu^{2} - \)\(19\!\cdots\!57\)\( \nu + \)\(97\!\cdots\!18\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(\beta_{6}\)\(=\)\((\)\(\)\(11\!\cdots\!53\)\( \nu^{19} - \)\(11\!\cdots\!20\)\( \nu^{18} + \)\(57\!\cdots\!38\)\( \nu^{17} - \)\(18\!\cdots\!04\)\( \nu^{16} + \)\(41\!\cdots\!41\)\( \nu^{15} - \)\(74\!\cdots\!78\)\( \nu^{14} + \)\(12\!\cdots\!48\)\( \nu^{13} - \)\(18\!\cdots\!18\)\( \nu^{12} + \)\(23\!\cdots\!25\)\( \nu^{11} - \)\(21\!\cdots\!03\)\( \nu^{10} + \)\(21\!\cdots\!65\)\( \nu^{9} - \)\(22\!\cdots\!46\)\( \nu^{8} + \)\(19\!\cdots\!66\)\( \nu^{7} - \)\(66\!\cdots\!46\)\( \nu^{6} + \)\(11\!\cdots\!62\)\( \nu^{5} + \)\(18\!\cdots\!44\)\( \nu^{4} + \)\(61\!\cdots\!73\)\( \nu^{3} + \)\(70\!\cdots\!20\)\( \nu^{2} + \)\(44\!\cdots\!39\)\( \nu + \)\(31\!\cdots\!48\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(\beta_{7}\)\(=\)\((\)\(\)\(13\!\cdots\!80\)\( \nu^{19} - \)\(12\!\cdots\!79\)\( \nu^{18} + \)\(63\!\cdots\!95\)\( \nu^{17} - \)\(19\!\cdots\!72\)\( \nu^{16} + \)\(44\!\cdots\!37\)\( \nu^{15} - \)\(77\!\cdots\!65\)\( \nu^{14} + \)\(12\!\cdots\!51\)\( \nu^{13} - \)\(17\!\cdots\!78\)\( \nu^{12} + \)\(22\!\cdots\!17\)\( \nu^{11} - \)\(18\!\cdots\!08\)\( \nu^{10} + \)\(16\!\cdots\!35\)\( \nu^{9} - \)\(19\!\cdots\!86\)\( \nu^{8} + \)\(17\!\cdots\!10\)\( \nu^{7} + \)\(36\!\cdots\!65\)\( \nu^{6} + \)\(65\!\cdots\!24\)\( \nu^{5} + \)\(16\!\cdots\!35\)\( \nu^{4} + \)\(38\!\cdots\!53\)\( \nu^{3} + \)\(99\!\cdots\!05\)\( \nu^{2} + \)\(65\!\cdots\!70\)\( \nu - \)\(17\!\cdots\!59\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(\beta_{8}\)\(=\)\((\)\(\)\(15\!\cdots\!46\)\( \nu^{19} - \)\(14\!\cdots\!69\)\( \nu^{18} + \)\(62\!\cdots\!97\)\( \nu^{17} - \)\(17\!\cdots\!07\)\( \nu^{16} + \)\(36\!\cdots\!49\)\( \nu^{15} - \)\(60\!\cdots\!63\)\( \nu^{14} + \)\(95\!\cdots\!96\)\( \nu^{13} - \)\(13\!\cdots\!54\)\( \nu^{12} + \)\(15\!\cdots\!21\)\( \nu^{11} - \)\(10\!\cdots\!43\)\( \nu^{10} + \)\(15\!\cdots\!37\)\( \nu^{9} - \)\(14\!\cdots\!77\)\( \nu^{8} + \)\(79\!\cdots\!97\)\( \nu^{7} + \)\(99\!\cdots\!72\)\( \nu^{6} + \)\(25\!\cdots\!22\)\( \nu^{5} + \)\(42\!\cdots\!88\)\( \nu^{4} + \)\(32\!\cdots\!45\)\( \nu^{3} + \)\(24\!\cdots\!66\)\( \nu^{2} + \)\(83\!\cdots\!74\)\( \nu + \)\(23\!\cdots\!14\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(\beta_{9}\)\(=\)\((\)\(\)\(17\!\cdots\!05\)\( \nu^{19} - \)\(16\!\cdots\!29\)\( \nu^{18} + \)\(77\!\cdots\!84\)\( \nu^{17} - \)\(23\!\cdots\!78\)\( \nu^{16} + \)\(49\!\cdots\!33\)\( \nu^{15} - \)\(81\!\cdots\!86\)\( \nu^{14} + \)\(12\!\cdots\!44\)\( \nu^{13} - \)\(17\!\cdots\!34\)\( \nu^{12} + \)\(21\!\cdots\!68\)\( \nu^{11} - \)\(14\!\cdots\!17\)\( \nu^{10} + \)\(13\!\cdots\!99\)\( \nu^{9} - \)\(16\!\cdots\!97\)\( \nu^{8} + \)\(12\!\cdots\!63\)\( \nu^{7} + \)\(13\!\cdots\!15\)\( \nu^{6} + \)\(94\!\cdots\!62\)\( \nu^{5} + \)\(32\!\cdots\!98\)\( \nu^{4} + \)\(14\!\cdots\!26\)\( \nu^{3} + \)\(93\!\cdots\!17\)\( \nu^{2} + \)\(60\!\cdots\!56\)\( \nu + \)\(35\!\cdots\!58\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(\beta_{10}\)\(=\)\((\)\(-\)\(18\!\cdots\!01\)\( \nu^{19} + \)\(16\!\cdots\!24\)\( \nu^{18} - \)\(74\!\cdots\!80\)\( \nu^{17} + \)\(21\!\cdots\!93\)\( \nu^{16} - \)\(42\!\cdots\!23\)\( \nu^{15} + \)\(69\!\cdots\!98\)\( \nu^{14} - \)\(10\!\cdots\!43\)\( \nu^{13} + \)\(15\!\cdots\!87\)\( \nu^{12} - \)\(17\!\cdots\!86\)\( \nu^{11} + \)\(10\!\cdots\!43\)\( \nu^{10} - \)\(14\!\cdots\!33\)\( \nu^{9} + \)\(16\!\cdots\!97\)\( \nu^{8} - \)\(10\!\cdots\!69\)\( \nu^{7} - \)\(13\!\cdots\!61\)\( \nu^{6} - \)\(23\!\cdots\!44\)\( \nu^{5} - \)\(39\!\cdots\!14\)\( \nu^{4} - \)\(37\!\cdots\!01\)\( \nu^{3} - \)\(17\!\cdots\!10\)\( \nu^{2} - \)\(82\!\cdots\!95\)\( \nu - \)\(33\!\cdots\!96\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(\beta_{11}\)\(=\)\((\)\(-\)\(97\!\cdots\!18\)\( \nu^{19} + \)\(86\!\cdots\!50\)\( \nu^{18} - \)\(38\!\cdots\!79\)\( \nu^{17} + \)\(11\!\cdots\!93\)\( \nu^{16} - \)\(22\!\cdots\!84\)\( \nu^{15} + \)\(35\!\cdots\!58\)\( \nu^{14} - \)\(54\!\cdots\!16\)\( \nu^{13} + \)\(77\!\cdots\!16\)\( \nu^{12} - \)\(87\!\cdots\!03\)\( \nu^{11} + \)\(48\!\cdots\!06\)\( \nu^{10} - \)\(66\!\cdots\!83\)\( \nu^{9} + \)\(75\!\cdots\!02\)\( \nu^{8} - \)\(41\!\cdots\!74\)\( \nu^{7} - \)\(84\!\cdots\!11\)\( \nu^{6} - \)\(11\!\cdots\!62\)\( \nu^{5} - \)\(22\!\cdots\!28\)\( \nu^{4} - \)\(17\!\cdots\!09\)\( \nu^{3} - \)\(10\!\cdots\!93\)\( \nu^{2} - \)\(50\!\cdots\!71\)\( \nu - \)\(56\!\cdots\!41\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(\beta_{12}\)\(=\)\((\)\(\)\(11\!\cdots\!14\)\( \nu^{19} - \)\(10\!\cdots\!35\)\( \nu^{18} + \)\(48\!\cdots\!14\)\( \nu^{17} - \)\(14\!\cdots\!53\)\( \nu^{16} + \)\(29\!\cdots\!91\)\( \nu^{15} - \)\(47\!\cdots\!65\)\( \nu^{14} + \)\(73\!\cdots\!88\)\( \nu^{13} - \)\(10\!\cdots\!15\)\( \nu^{12} + \)\(12\!\cdots\!02\)\( \nu^{11} - \)\(81\!\cdots\!47\)\( \nu^{10} + \)\(98\!\cdots\!39\)\( \nu^{9} - \)\(10\!\cdots\!54\)\( \nu^{8} + \)\(69\!\cdots\!73\)\( \nu^{7} + \)\(86\!\cdots\!63\)\( \nu^{6} + \)\(13\!\cdots\!53\)\( \nu^{5} + \)\(25\!\cdots\!49\)\( \nu^{4} + \)\(18\!\cdots\!49\)\( \nu^{3} + \)\(11\!\cdots\!76\)\( \nu^{2} + \)\(51\!\cdots\!87\)\( \nu - \)\(17\!\cdots\!36\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(\beta_{13}\)\(=\)\((\)\(\)\(23\!\cdots\!14\)\( \nu^{19} - \)\(20\!\cdots\!72\)\( \nu^{18} + \)\(95\!\cdots\!43\)\( \nu^{17} - \)\(28\!\cdots\!63\)\( \nu^{16} + \)\(58\!\cdots\!37\)\( \nu^{15} - \)\(96\!\cdots\!05\)\( \nu^{14} + \)\(14\!\cdots\!85\)\( \nu^{13} - \)\(21\!\cdots\!68\)\( \nu^{12} + \)\(25\!\cdots\!26\)\( \nu^{11} - \)\(17\!\cdots\!23\)\( \nu^{10} + \)\(20\!\cdots\!69\)\( \nu^{9} - \)\(23\!\cdots\!27\)\( \nu^{8} + \)\(15\!\cdots\!57\)\( \nu^{7} + \)\(14\!\cdots\!09\)\( \nu^{6} + \)\(27\!\cdots\!08\)\( \nu^{5} + \)\(49\!\cdots\!52\)\( \nu^{4} + \)\(36\!\cdots\!12\)\( \nu^{3} + \)\(21\!\cdots\!61\)\( \nu^{2} + \)\(98\!\cdots\!10\)\( \nu + \)\(41\!\cdots\!58\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(\beta_{14}\)\(=\)\((\)\(-\)\(25\!\cdots\!26\)\( \nu^{19} + \)\(23\!\cdots\!63\)\( \nu^{18} - \)\(10\!\cdots\!93\)\( \nu^{17} + \)\(30\!\cdots\!98\)\( \nu^{16} - \)\(62\!\cdots\!19\)\( \nu^{15} + \)\(10\!\cdots\!78\)\( \nu^{14} - \)\(16\!\cdots\!04\)\( \nu^{13} + \)\(23\!\cdots\!50\)\( \nu^{12} - \)\(27\!\cdots\!40\)\( \nu^{11} + \)\(17\!\cdots\!86\)\( \nu^{10} - \)\(22\!\cdots\!30\)\( \nu^{9} + \)\(24\!\cdots\!67\)\( \nu^{8} - \)\(16\!\cdots\!33\)\( \nu^{7} - \)\(17\!\cdots\!75\)\( \nu^{6} - \)\(32\!\cdots\!04\)\( \nu^{5} - \)\(57\!\cdots\!80\)\( \nu^{4} - \)\(45\!\cdots\!52\)\( \nu^{3} - \)\(27\!\cdots\!61\)\( \nu^{2} - \)\(13\!\cdots\!44\)\( \nu - \)\(76\!\cdots\!60\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(\beta_{15}\)\(=\)\((\)\(\)\(30\!\cdots\!29\)\( \nu^{19} - \)\(27\!\cdots\!46\)\( \nu^{18} + \)\(12\!\cdots\!28\)\( \nu^{17} - \)\(37\!\cdots\!57\)\( \nu^{16} + \)\(76\!\cdots\!52\)\( \nu^{15} - \)\(12\!\cdots\!06\)\( \nu^{14} + \)\(19\!\cdots\!97\)\( \nu^{13} - \)\(28\!\cdots\!12\)\( \nu^{12} + \)\(33\!\cdots\!44\)\( \nu^{11} - \)\(23\!\cdots\!33\)\( \nu^{10} + \)\(27\!\cdots\!41\)\( \nu^{9} - \)\(30\!\cdots\!27\)\( \nu^{8} + \)\(21\!\cdots\!79\)\( \nu^{7} + \)\(18\!\cdots\!42\)\( \nu^{6} + \)\(36\!\cdots\!72\)\( \nu^{5} + \)\(64\!\cdots\!85\)\( \nu^{4} + \)\(48\!\cdots\!62\)\( \nu^{3} + \)\(28\!\cdots\!25\)\( \nu^{2} + \)\(13\!\cdots\!90\)\( \nu + \)\(25\!\cdots\!17\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(\beta_{16}\)\(=\)\((\)\(\)\(31\!\cdots\!48\)\( \nu^{19} - \)\(28\!\cdots\!85\)\( \nu^{18} + \)\(13\!\cdots\!88\)\( \nu^{17} - \)\(38\!\cdots\!50\)\( \nu^{16} + \)\(80\!\cdots\!64\)\( \nu^{15} - \)\(13\!\cdots\!33\)\( \nu^{14} + \)\(20\!\cdots\!82\)\( \nu^{13} - \)\(29\!\cdots\!52\)\( \nu^{12} + \)\(35\!\cdots\!22\)\( \nu^{11} - \)\(24\!\cdots\!89\)\( \nu^{10} + \)\(29\!\cdots\!35\)\( \nu^{9} - \)\(31\!\cdots\!45\)\( \nu^{8} + \)\(22\!\cdots\!06\)\( \nu^{7} + \)\(19\!\cdots\!26\)\( \nu^{6} + \)\(39\!\cdots\!06\)\( \nu^{5} + \)\(70\!\cdots\!06\)\( \nu^{4} + \)\(54\!\cdots\!56\)\( \nu^{3} + \)\(33\!\cdots\!19\)\( \nu^{2} + \)\(16\!\cdots\!12\)\( \nu + \)\(77\!\cdots\!85\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(\beta_{17}\)\(=\)\((\)\(-\)\(33\!\cdots\!96\)\( \nu^{19} + \)\(30\!\cdots\!65\)\( \nu^{18} - \)\(13\!\cdots\!60\)\( \nu^{17} + \)\(40\!\cdots\!04\)\( \nu^{16} - \)\(84\!\cdots\!13\)\( \nu^{15} + \)\(14\!\cdots\!07\)\( \nu^{14} - \)\(21\!\cdots\!06\)\( \nu^{13} + \)\(31\!\cdots\!51\)\( \nu^{12} - \)\(36\!\cdots\!95\)\( \nu^{11} + \)\(25\!\cdots\!14\)\( \nu^{10} - \)\(29\!\cdots\!07\)\( \nu^{9} + \)\(32\!\cdots\!93\)\( \nu^{8} - \)\(22\!\cdots\!17\)\( \nu^{7} - \)\(21\!\cdots\!15\)\( \nu^{6} - \)\(39\!\cdots\!59\)\( \nu^{5} - \)\(73\!\cdots\!92\)\( \nu^{4} - \)\(55\!\cdots\!86\)\( \nu^{3} - \)\(32\!\cdots\!83\)\( \nu^{2} - \)\(16\!\cdots\!54\)\( \nu - \)\(44\!\cdots\!53\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(\beta_{18}\)\(=\)\((\)\(-\)\(35\!\cdots\!58\)\( \nu^{19} + \)\(31\!\cdots\!27\)\( \nu^{18} - \)\(14\!\cdots\!07\)\( \nu^{17} + \)\(42\!\cdots\!86\)\( \nu^{16} - \)\(88\!\cdots\!88\)\( \nu^{15} + \)\(14\!\cdots\!65\)\( \nu^{14} - \)\(22\!\cdots\!20\)\( \nu^{13} + \)\(32\!\cdots\!28\)\( \nu^{12} - \)\(38\!\cdots\!18\)\( \nu^{11} + \)\(26\!\cdots\!62\)\( \nu^{10} - \)\(31\!\cdots\!39\)\( \nu^{9} + \)\(34\!\cdots\!29\)\( \nu^{8} - \)\(23\!\cdots\!57\)\( \nu^{7} - \)\(22\!\cdots\!19\)\( \nu^{6} - \)\(41\!\cdots\!45\)\( \nu^{5} - \)\(77\!\cdots\!16\)\( \nu^{4} - \)\(58\!\cdots\!02\)\( \nu^{3} - \)\(36\!\cdots\!56\)\( \nu^{2} - \)\(17\!\cdots\!55\)\( \nu - \)\(72\!\cdots\!48\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(\beta_{19}\)\(=\)\((\)\(\)\(35\!\cdots\!62\)\( \nu^{19} - \)\(31\!\cdots\!60\)\( \nu^{18} + \)\(14\!\cdots\!12\)\( \nu^{17} - \)\(42\!\cdots\!58\)\( \nu^{16} + \)\(87\!\cdots\!51\)\( \nu^{15} - \)\(14\!\cdots\!10\)\( \nu^{14} + \)\(22\!\cdots\!72\)\( \nu^{13} - \)\(32\!\cdots\!03\)\( \nu^{12} + \)\(37\!\cdots\!60\)\( \nu^{11} - \)\(25\!\cdots\!52\)\( \nu^{10} + \)\(30\!\cdots\!40\)\( \nu^{9} - \)\(33\!\cdots\!62\)\( \nu^{8} + \)\(22\!\cdots\!86\)\( \nu^{7} + \)\(23\!\cdots\!27\)\( \nu^{6} + \)\(40\!\cdots\!02\)\( \nu^{5} + \)\(77\!\cdots\!85\)\( \nu^{4} + \)\(58\!\cdots\!09\)\( \nu^{3} + \)\(35\!\cdots\!20\)\( \nu^{2} + \)\(17\!\cdots\!34\)\( \nu + \)\(60\!\cdots\!93\)\(\)\()/ \)\(38\!\cdots\!89\)\( \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{19} + 2 \beta_{17} + \beta_{15} - \beta_{10} + \beta_{1}\)
\(\nu^{3}\)\(=\)\(-\beta_{18} + \beta_{17} + \beta_{14} + \beta_{13} - \beta_{12} - \beta_{11} - 3 \beta_{10} - \beta_{9} - \beta_{8} - \beta_{7} + \beta_{6} - \beta_{5} + \beta_{3} - 1\)
\(\nu^{4}\)\(=\)\(-5 \beta_{19} - 5 \beta_{18} - 4 \beta_{17} - 5 \beta_{15} + 4 \beta_{14} + 5 \beta_{13} - 4 \beta_{12} - 5 \beta_{11} - 5 \beta_{10} - 2 \beta_{9} - 2 \beta_{8} - 2 \beta_{5} + \beta_{3} + 5 \beta_{2} - \beta_{1} - 5\)
\(\nu^{5}\)\(=\)\(-8 \beta_{19} - 8 \beta_{18} - 8 \beta_{17} - 8 \beta_{15} + 7 \beta_{14} + 7 \beta_{12} - 7 \beta_{11} - 6 \beta_{10} - 2 \beta_{9} - \beta_{8} + 7 \beta_{7} - 6 \beta_{6} - 3 \beta_{5} - \beta_{4} - 7 \beta_{3} + 20 \beta_{2}\)
\(\nu^{6}\)\(=\)\(8 \beta_{19} - 3 \beta_{15} + 8 \beta_{14} - 26 \beta_{13} + 49 \beta_{12} - 3 \beta_{11} + 7 \beta_{8} + 18 \beta_{7} - 7 \beta_{6} - 11 \beta_{5} - 10 \beta_{4} - 45 \beta_{3} + 35 \beta_{2} + 8 \beta_{1} + 26\)
\(\nu^{7}\)\(=\)\(95 \beta_{19} + 49 \beta_{18} + 50 \beta_{17} - 3 \beta_{16} + 4 \beta_{15} - 50 \beta_{13} + 95 \beta_{12} - 3 \beta_{11} + 35 \beta_{10} + 21 \beta_{9} - 2 \beta_{8} + 32 \beta_{7} + 46 \beta_{6} - 67 \beta_{5} - 67 \beta_{4} - 143 \beta_{3} - 2 \beta_{1} + 49\)
\(\nu^{8}\)\(=\)\(229 \beta_{19} + 86 \beta_{18} + 86 \beta_{17} - 90 \beta_{16} - 90 \beta_{15} - 56 \beta_{14} + 56 \beta_{13} - 57 \beta_{11} + 158 \beta_{10} + 131 \beta_{9} - 158 \beta_{8} + 95 \beta_{7} + 287 \beta_{6} - 287 \beta_{5} - 301 \beta_{4} - 301 \beta_{3} - 206 \beta_{2} - 170 \beta_{1} - 57\)
\(\nu^{9}\)\(=\)\(-289 \beta_{18} - 299 \beta_{17} - 590 \beta_{16} - 622 \beta_{15} - 289 \beta_{14} + 577 \beta_{13} - 577 \beta_{12} - 299 \beta_{11} + 471 \beta_{10} + 436 \beta_{9} - 649 \beta_{8} + 472 \beta_{7} + 907 \beta_{6} - 743 \beta_{5} - 907 \beta_{4} - 472 \beta_{3} - 649 \beta_{2} - 743 \beta_{1} - 622\)
\(\nu^{10}\)\(=\)\(-1320 \beta_{19} - 1698 \beta_{18} - 1722 \beta_{17} - 1992 \beta_{16} - 1722 \beta_{15} - 907 \beta_{14} + 1320 \beta_{13} - 1698 \beta_{12} - 907 \beta_{11} + 1078 \beta_{10} + 863 \beta_{9} - 1226 \beta_{8} + 1837 \beta_{7} + 1969 \beta_{6} - 1078 \beta_{5} - 1837 \beta_{4} - 611 \beta_{3} - 974 \beta_{2} - 1837 \beta_{1} - 1992\)
\(\nu^{11}\)\(=\)\(-3463 \beta_{19} - 3463 \beta_{18} - 3926 \beta_{17} - 3926 \beta_{16} - 1941 \beta_{15} - 1941 \beta_{14} - 1865 \beta_{12} - 1865 \beta_{11} + 2091 \beta_{10} + 739 \beta_{9} + 4637 \beta_{7} + 3252 \beta_{6} - 413 \beta_{5} - 2091 \beta_{4} - 739 \beta_{3} - 413 \beta_{2} - 3252 \beta_{1} - 3834\)
\(\nu^{12}\)\(=\)\(-2513 \beta_{19} - 4826 \beta_{17} - 2830 \beta_{16} + 1911 \beta_{15} - 2830 \beta_{14} - 7709 \beta_{13} + 1911 \beta_{12} - 2513 \beta_{11} + 4454 \beta_{10} - 370 \beta_{9} + 7361 \beta_{8} + 6991 \beta_{7} + 4454 \beta_{6} + 1185 \beta_{5} + 370 \beta_{4} - 815 \beta_{3} + 370 \beta_{2} - 5523 \beta_{1} - 4826\)
\(\nu^{13}\)\(=\)\(8662 \beta_{19} + 20731 \beta_{18} - 4222 \beta_{17} + 8101 \beta_{16} + 8662 \beta_{15} - 4084 \beta_{14} - 20731 \beta_{13} + 8101 \beta_{12} + 13475 \beta_{10} + 3895 \beta_{9} + 23759 \beta_{8} + 3895 \beta_{7} + 5586 \beta_{6} + 4794 \beta_{4} - 5586 \beta_{2} - 13475 \beta_{1} - 4084\)
\(\nu^{14}\)\(=\)\(24658 \beta_{19} + 61892 \beta_{18} - 17370 \beta_{17} + 24658 \beta_{16} - 17370 \beta_{14} - 16578 \beta_{13} - 3283 \beta_{12} + 16578 \beta_{11} + 44628 \beta_{10} + 39723 \beta_{9} + 39723 \beta_{8} - 4767 \beta_{7} + 6147 \beta_{6} - 4767 \beta_{5} + 6147 \beta_{3} - 36601 \beta_{2} - 36601 \beta_{1} - 3283\)
\(\nu^{15}\)\(=\)\(-4267 \beta_{19} + 78204 \beta_{18} - 79211 \beta_{17} - 45997 \beta_{15} - 84351 \beta_{14} + 45997 \beta_{13} - 79211 \beta_{12} + 78204 \beta_{11} + 117110 \beta_{10} + 146105 \beta_{9} + 33023 \beta_{8} + 33023 \beta_{5} - 23278 \beta_{4} + 41264 \beta_{3} - 117110 \beta_{2} - 64542 \beta_{1} - 4267\)
\(\nu^{16}\)\(=\)\(-166320 \beta_{19} - 27491 \beta_{18} - 166320 \beta_{17} - 136360 \beta_{16} - 27491 \beta_{15} - 263215 \beta_{14} + 136360 \beta_{13} - 263215 \beta_{12} + 239937 \beta_{11} + 192054 \beta_{10} + 270306 \beta_{9} + 32557 \beta_{8} + 12974 \beta_{7} - 45531 \beta_{6} + 302863 \beta_{5} + 32557 \beta_{4} + 224611 \beta_{3} - 249762 \beta_{2}\)
\(\nu^{17}\)\(=\)\(-462360 \beta_{19} - 205192 \beta_{18} - 205192 \beta_{16} + 540448 \beta_{15} - 462360 \beta_{14} - 33354 \beta_{13} - 519271 \beta_{12} + 540448 \beta_{11} + 300102 \beta_{8} - 262398 \beta_{7} - 300102 \beta_{6} + 1204037 \beta_{5} + 666303 \beta_{4} + 1012960 \beta_{3} - 346657 \beta_{2} + 403905 \beta_{1} + 33354\)
\(\nu^{18}\)\(=\)\(-655610 \beta_{19} + 253547 \beta_{18} + 998887 \beta_{17} + 966405 \beta_{16} + 2549581 \beta_{15} - 998887 \beta_{13} - 655610 \beta_{12} + 966405 \beta_{11} - 1212922 \beta_{10} - 1649575 \beta_{9} + 1546378 \beta_{8} - 2006883 \beta_{7} - 1570230 \beta_{6} + 3219805 \beta_{5} + 3219805 \beta_{4} + 3623373 \beta_{3} + 1546378 \beta_{1} + 253547\)
\(\nu^{19}\)\(=\)\(-497532 \beta_{19} + 3125841 \beta_{18} + 3125841 \beta_{17} + 6415758 \beta_{16} + 6415758 \beta_{15} + 2862497 \beta_{14} - 2862497 \beta_{13} + 1927538 \beta_{11} - 4817365 \beta_{10} - 5619036 \beta_{9} + 4817365 \beta_{8} - 7776269 \beta_{7} - 6815618 \beta_{6} + 6815618 \beta_{5} + 10048369 \beta_{4} + 10048369 \beta_{3} + 2272100 \beta_{2} + 4429333 \beta_{1} + 1927538\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/322\mathbb{Z}\right)^\times\).

\(n\) \(185\) \(281\)
\(\chi(n)\) \(1\) \(\beta_{19}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
29.1
0.140215 + 0.975217i
−0.0997080 0.693485i
1.61117 + 1.85938i
−0.753480 0.869562i
−0.637182 0.187094i
2.47844 + 0.727734i
1.61117 1.85938i
−0.753480 + 0.869562i
1.45482 + 0.934959i
−0.0394097 0.0253271i
1.45482 0.934959i
−0.0394097 + 0.0253271i
−0.637182 + 0.187094i
2.47844 0.727734i
0.140215 0.975217i
−0.0997080 + 0.693485i
−0.643071 + 1.40813i
0.988210 2.16388i
−0.643071 1.40813i
0.988210 + 2.16388i
0.415415 0.909632i 0.0141569 + 0.00415683i −0.654861 0.755750i −3.50493 + 2.25248i 0.00966216 0.0111507i −0.142315 + 0.989821i −0.959493 + 0.281733i −2.52358 1.62180i 0.592928 + 4.12391i
29.2 0.415415 0.909632i 1.63173 + 0.479119i −0.654861 0.755750i 2.49238 1.60176i 1.11367 1.28524i −0.142315 + 0.989821i −0.959493 + 0.281733i −0.0907762 0.0583384i −0.421636 2.93254i
71.1 0.841254 + 0.540641i −0.207825 1.44545i 0.415415 + 0.909632i 1.07127 + 0.314552i 0.606638 1.32835i −0.654861 + 0.755750i −0.142315 + 0.989821i 0.832335 0.244396i 0.731146 + 0.843788i
71.2 0.841254 + 0.540641i 0.306062 + 2.12871i 0.415415 + 0.909632i −0.500990 0.147104i −0.893390 + 1.95625i −0.654861 + 0.755750i −0.142315 + 0.989821i −1.55924 + 0.457833i −0.341929 0.394607i
85.1 −0.654861 + 0.755750i −1.39992 + 0.899671i −0.142315 0.989821i −0.109762 0.240346i 0.236824 1.64714i −0.959493 + 0.281733i 0.841254 + 0.540641i −0.0958901 + 0.209970i 0.253520 + 0.0744403i
85.2 −0.654861 + 0.755750i 1.33176 0.855871i −0.142315 0.989821i 0.426940 + 0.934869i −0.225294 + 1.56696i −0.959493 + 0.281733i 0.841254 + 0.540641i −0.205171 + 0.449262i −0.986114 0.289549i
127.1 0.841254 0.540641i −0.207825 + 1.44545i 0.415415 0.909632i 1.07127 0.314552i 0.606638 + 1.32835i −0.654861 0.755750i −0.142315 0.989821i 0.832335 + 0.244396i 0.731146 0.843788i
127.2 0.841254 0.540641i 0.306062 2.12871i 0.415415 0.909632i −0.500990 + 0.147104i −0.893390 1.95625i −0.654861 0.755750i −0.142315 0.989821i −1.55924 0.457833i −0.341929 + 0.394607i
141.1 −0.142315 0.989821i −1.13381 + 2.48271i −0.959493 + 0.281733i −2.36481 + 2.72913i 2.61880 + 0.768948i 0.841254 0.540641i 0.415415 + 0.909632i −2.91372 3.36261i 3.03790 + 1.95234i
141.2 −0.142315 0.989821i −0.395954 + 0.867019i −0.959493 + 0.281733i 0.0640602 0.0739294i 0.914544 + 0.268534i 0.841254 0.540641i 0.415415 + 0.909632i 1.36964 + 1.58065i −0.0822937 0.0528869i
169.1 −0.142315 + 0.989821i −1.13381 2.48271i −0.959493 0.281733i −2.36481 2.72913i 2.61880 0.768948i 0.841254 + 0.540641i 0.415415 0.909632i −2.91372 + 3.36261i 3.03790 1.95234i
169.2 −0.142315 + 0.989821i −0.395954 0.867019i −0.959493 0.281733i 0.0640602 + 0.0739294i 0.914544 0.268534i 0.841254 + 0.540641i 0.415415 0.909632i 1.36964 1.58065i −0.0822937 + 0.0528869i
197.1 −0.654861 0.755750i −1.39992 0.899671i −0.142315 + 0.989821i −0.109762 + 0.240346i 0.236824 + 1.64714i −0.959493 0.281733i 0.841254 0.540641i −0.0958901 0.209970i 0.253520 0.0744403i
197.2 −0.654861 0.755750i 1.33176 + 0.855871i −0.142315 + 0.989821i 0.426940 0.934869i −0.225294 1.56696i −0.959493 0.281733i 0.841254 0.540641i −0.205171 0.449262i −0.986114 + 0.289549i
211.1 0.415415 + 0.909632i 0.0141569 0.00415683i −0.654861 + 0.755750i −3.50493 2.25248i 0.00966216 + 0.0111507i −0.142315 0.989821i −0.959493 0.281733i −2.52358 + 1.62180i 0.592928 4.12391i
211.2 0.415415 + 0.909632i 1.63173 0.479119i −0.654861 + 0.755750i 2.49238 + 1.60176i 1.11367 + 1.28524i −0.142315 0.989821i −0.959493 0.281733i −0.0907762 + 0.0583384i −0.421636 + 2.93254i
225.1 −0.959493 0.281733i −0.358877 + 0.414166i 0.841254 + 0.540641i 0.138179 0.961058i 0.461024 0.296282i 0.415415 + 0.909632i −0.654861 0.755750i 0.384204 + 2.67220i −0.403343 + 0.883198i
225.2 −0.959493 0.281733i 2.21268 2.55356i 0.841254 + 0.540641i −0.212341 + 1.47686i −2.84247 + 1.82674i 0.415415 + 0.909632i −0.654861 0.755750i −1.19781 8.33096i 0.619820 1.35722i
239.1 −0.959493 + 0.281733i −0.358877 0.414166i 0.841254 0.540641i 0.138179 + 0.961058i 0.461024 + 0.296282i 0.415415 0.909632i −0.654861 + 0.755750i 0.384204 2.67220i −0.403343 0.883198i
239.2 −0.959493 + 0.281733i 2.21268 + 2.55356i 0.841254 0.540641i −0.212341 1.47686i −2.84247 1.82674i 0.415415 0.909632i −0.654861 + 0.755750i −1.19781 + 8.33096i 0.619820 + 1.35722i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 239.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.c even 11 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 322.2.i.c 20
23.c even 11 1 inner 322.2.i.c 20
23.c even 11 1 7406.2.a.bp 10
23.d odd 22 1 7406.2.a.bo 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
322.2.i.c 20 1.a even 1 1 trivial
322.2.i.c 20 23.c even 11 1 inner
7406.2.a.bo 10 23.d odd 22 1
7406.2.a.bp 10 23.c even 11 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{3}^{20} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(322, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
$3$ \( 1 - 128 T + 4329 T^{2} + 9015 T^{3} + 15947 T^{4} - 490 T^{5} + 4945 T^{6} - 12368 T^{7} + 8075 T^{8} - 4477 T^{9} + 4643 T^{10} - 1694 T^{11} + 705 T^{12} - 777 T^{13} + 479 T^{14} - 258 T^{15} + 151 T^{16} - 39 T^{17} + 17 T^{18} - 4 T^{19} + T^{20} \)
$5$ \( 1 - 9 T + 63 T^{2} + 244 T^{3} + 1576 T^{4} + 1840 T^{5} - 1071 T^{6} + 2215 T^{7} + 1752 T^{8} - 7810 T^{9} + 9406 T^{10} - 9042 T^{11} + 5460 T^{12} - 1697 T^{13} + 1253 T^{14} + 327 T^{15} + 12 T^{16} - 43 T^{17} + 6 T^{18} + 5 T^{19} + T^{20} \)
$7$ \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
$11$ \( 192721 - 5268 T + 806677 T^{2} - 2175003 T^{3} + 2174777 T^{4} - 2320077 T^{5} + 2201044 T^{6} - 669727 T^{7} - 44423 T^{8} - 200376 T^{9} + 181930 T^{10} - 59323 T^{11} + 31176 T^{12} - 12604 T^{13} + 4791 T^{14} - 1431 T^{15} + 462 T^{16} - 101 T^{17} + 31 T^{18} - 6 T^{19} + T^{20} \)
$13$ \( 1804635361 - 4789647788 T + 10314836968 T^{2} - 9450181266 T^{3} + 5567192461 T^{4} - 1863534052 T^{5} + 174476244 T^{6} + 196554533 T^{7} - 114849060 T^{8} + 26322879 T^{9} + 3359401 T^{10} - 4757181 T^{11} + 1898955 T^{12} - 441722 T^{13} + 62061 T^{14} - 3657 T^{15} + 51 T^{16} - 183 T^{17} + 79 T^{18} - 14 T^{19} + T^{20} \)
$17$ \( 1617407089 - 438123998 T - 1252626270 T^{2} + 1746115717 T^{3} - 365182876 T^{4} - 870530248 T^{5} + 1292361252 T^{6} - 919775930 T^{7} + 474954954 T^{8} - 177654785 T^{9} + 54259052 T^{10} - 14262446 T^{11} + 3724436 T^{12} - 1000960 T^{13} + 223636 T^{14} - 34689 T^{15} + 4243 T^{16} - 533 T^{17} + 61 T^{18} - 7 T^{19} + T^{20} \)
$19$ \( 4829833009 + 24655798175 T + 136493696047 T^{2} + 133708489923 T^{3} + 62019512126 T^{4} + 11353862785 T^{5} + 4026591522 T^{6} - 1344918053 T^{7} + 322391099 T^{8} + 94235108 T^{9} + 42538618 T^{10} + 9656075 T^{11} - 897736 T^{12} - 368983 T^{13} + 10485 T^{14} + 6524 T^{15} + 836 T^{16} - 268 T^{17} + 12 T^{18} + 2 T^{19} + T^{20} \)
$23$ \( 41426511213649 - 16210373953167 T + 3680616308207 T^{2} - 286005337548 T^{3} - 36712900472 T^{4} + 3649406481 T^{5} - 1906556733 T^{6} + 1026627126 T^{7} - 245097338 T^{8} + 19899186 T^{9} + 4764991 T^{10} + 865182 T^{11} - 463322 T^{12} + 84378 T^{13} - 6813 T^{14} + 567 T^{15} - 248 T^{16} - 84 T^{17} + 47 T^{18} - 9 T^{19} + T^{20} \)
$29$ \( 31841190481 + 75142397305 T + 220298629872 T^{2} - 64886270588 T^{3} + 776727201994 T^{4} - 888319799471 T^{5} + 432706766392 T^{6} - 104194058469 T^{7} + 19457629711 T^{8} - 4615024898 T^{9} + 1035622743 T^{10} - 197482362 T^{11} + 31124757 T^{12} - 3065932 T^{13} + 255802 T^{14} - 32456 T^{15} + 3955 T^{16} - 592 T^{17} + 40 T^{18} - 2 T^{19} + T^{20} \)
$31$ \( 1216734745249 - 1665193599169 T + 4241708283559 T^{2} - 5928408703225 T^{3} + 5517087990633 T^{4} - 3505935631742 T^{5} + 1626235173438 T^{6} - 580710880164 T^{7} + 183242536042 T^{8} - 50959139440 T^{9} + 11520968801 T^{10} - 2019613574 T^{11} + 274316887 T^{12} - 29419113 T^{13} + 2452936 T^{14} - 151905 T^{15} + 11684 T^{16} - 2201 T^{17} + 338 T^{18} - 28 T^{19} + T^{20} \)
$37$ \( 66617158609 + 720745916822 T + 2686440155425 T^{2} + 3900555098707 T^{3} + 3511612421651 T^{4} + 2159960397524 T^{5} + 960527379532 T^{6} + 314589647225 T^{7} + 77495543041 T^{8} + 14382406937 T^{9} + 1971488948 T^{10} + 146979598 T^{11} - 8838268 T^{12} - 4438285 T^{13} - 543148 T^{14} - 25019 T^{15} + 7456 T^{16} + 1505 T^{17} + 225 T^{18} + 17 T^{19} + T^{20} \)
$41$ \( 214543778119969 - 336643588872900 T + 139781504818063 T^{2} - 6145655033359 T^{3} + 14414788209999 T^{4} - 6006506068634 T^{5} + 1356398205131 T^{6} - 219340822336 T^{7} + 67208152377 T^{8} - 5460843408 T^{9} + 1432308955 T^{10} - 154733221 T^{11} + 18870483 T^{12} - 4063797 T^{13} + 53094 T^{14} - 36899 T^{15} + 10068 T^{16} + 991 T^{17} + 177 T^{18} + 7 T^{19} + T^{20} \)
$43$ \( 4261696046298889 + 3738384755603487 T + 1773647368000750 T^{2} + 482223225951918 T^{3} + 73991440236164 T^{4} - 453439929415 T^{5} - 3342866167212 T^{6} - 594881231329 T^{7} - 10992244439 T^{8} + 4605906877 T^{9} + 3724188777 T^{10} + 1441889033 T^{11} + 295700343 T^{12} + 37259659 T^{13} + 4575312 T^{14} + 419935 T^{15} + 40940 T^{16} + 3098 T^{17} + 256 T^{18} + 17 T^{19} + T^{20} \)
$47$ \( ( -27697 + 64120 T + 116810 T^{2} - 147366 T^{3} - 228381 T^{4} - 86514 T^{5} - 9349 T^{6} + 1288 T^{7} + 397 T^{8} + 34 T^{9} + T^{10} )^{2} \)
$53$ \( 1359470641 - 1740016232 T + 12615633110 T^{2} - 5611190977 T^{3} + 14835334420 T^{4} + 6653755180 T^{5} + 7295632802 T^{6} - 1244393824 T^{7} + 1275004564 T^{8} + 308301839 T^{9} + 53613296 T^{10} + 22446412 T^{11} + 787048 T^{12} - 2070016 T^{13} - 478526 T^{14} + 8531 T^{15} + 22247 T^{16} + 4855 T^{17} + 553 T^{18} + 35 T^{19} + T^{20} \)
$59$ \( 45473767379215681 + 54735975481725065 T + 26078378587289842 T^{2} + 2854992817261761 T^{3} + 306810303700109 T^{4} - 327561305638721 T^{5} - 32791013479312 T^{6} - 8205443613543 T^{7} + 1205878663363 T^{8} + 638044209506 T^{9} + 153286374891 T^{10} + 24643278746 T^{11} + 3282806234 T^{12} + 395961437 T^{13} + 46546736 T^{14} + 5051586 T^{15} + 467366 T^{16} + 33851 T^{17} + 1774 T^{18} + 60 T^{19} + T^{20} \)
$61$ \( 1267651723185409 + 288931733271222 T + 392421997413310 T^{2} + 170870595103688 T^{3} + 17607214659637 T^{4} + 1827682782885 T^{5} + 7303457082180 T^{6} + 4923523873860 T^{7} + 1763302581958 T^{8} + 430492943573 T^{9} + 80625692016 T^{10} + 12628226600 T^{11} + 1782513709 T^{12} + 236815761 T^{13} + 29302336 T^{14} + 3219037 T^{15} + 298049 T^{16} + 22126 T^{17} + 1242 T^{18} + 48 T^{19} + T^{20} \)
$67$ \( 266368806414481 + 1664829876281602 T + 4167692064903735 T^{2} + 3675639467783764 T^{3} + 1657406841715570 T^{4} + 438459197568866 T^{5} + 74284378558409 T^{6} + 10848159277785 T^{7} + 2525694060766 T^{8} + 611610280556 T^{9} + 155514872074 T^{10} + 30825721355 T^{11} + 5206303417 T^{12} + 714459054 T^{13} + 81609145 T^{14} + 7748489 T^{15} + 605110 T^{16} + 37693 T^{17} + 1772 T^{18} + 57 T^{19} + T^{20} \)
$71$ \( 7137751125649 + 6972153809818 T + 6913377207773 T^{2} + 2795595707768 T^{3} - 92178971544 T^{4} - 832618571256 T^{5} - 389392011262 T^{6} - 35102706196 T^{7} + 54960736232 T^{8} + 33909826907 T^{9} + 11570216516 T^{10} + 2748047863 T^{11} + 523703457 T^{12} + 79004539 T^{13} + 9065029 T^{14} + 856428 T^{15} + 78364 T^{16} + 7570 T^{17} + 702 T^{18} + 39 T^{19} + T^{20} \)
$73$ \( 50793658619089 + 19741270971980 T + 22395905250617 T^{2} - 2670181841711 T^{3} + 3499470665295 T^{4} + 1977284745820 T^{5} + 474259559161 T^{6} - 57035625996 T^{7} - 1654418349 T^{8} - 1573116655 T^{9} + 1099009913 T^{10} - 71650216 T^{11} - 21833307 T^{12} - 146429 T^{13} + 928821 T^{14} + 225752 T^{15} + 43527 T^{16} + 4973 T^{17} + 437 T^{18} + 30 T^{19} + T^{20} \)
$79$ \( 726855781029169 - 993429048037437 T + 1014355846630500 T^{2} - 443031623960640 T^{3} + 234519490950239 T^{4} - 20247889962795 T^{5} + 8021463433214 T^{6} - 3493921217919 T^{7} + 791105876253 T^{8} - 109147390814 T^{9} - 10483288936 T^{10} + 2489419512 T^{11} + 437162603 T^{12} + 39377465 T^{13} + 5300189 T^{14} + 287781 T^{15} - 4287 T^{16} + 46 T^{17} + 159 T^{18} + 18 T^{19} + T^{20} \)
$83$ \( 1528396860228879169 - 2543414689097477818 T + 1747235725078080228 T^{2} - 654777601050519830 T^{3} + 157783958405295497 T^{4} - 27710434691116616 T^{5} + 4015133076961538 T^{6} - 483840982432718 T^{7} + 50410130360663 T^{8} - 4886645001557 T^{9} + 455612770768 T^{10} - 43010657008 T^{11} + 3928089679 T^{12} - 304839767 T^{13} + 23784381 T^{14} - 1540362 T^{15} + 134860 T^{16} - 9342 T^{17} + 703 T^{18} - 28 T^{19} + T^{20} \)
$89$ \( 24726861484468441 + 22111534640690106 T + 15489992122404845 T^{2} + 5240586145655279 T^{3} + 1359029110923399 T^{4} + 245115518900929 T^{5} + 55007864461866 T^{6} + 6268659186085 T^{7} + 729859072343 T^{8} + 61848080993 T^{9} + 34407355642 T^{10} - 4925799734 T^{11} + 272915877 T^{12} + 90340593 T^{13} - 13198227 T^{14} - 24590 T^{15} + 118812 T^{16} - 10555 T^{17} + 636 T^{18} - 34 T^{19} + T^{20} \)
$97$ \( 1962561500851249 - 7905083181439455 T + 12590422095138528 T^{2} - 10240464011652963 T^{3} + 5017539712532246 T^{4} - 1604356195564067 T^{5} + 376624351969442 T^{6} - 64903959322851 T^{7} + 9188952410301 T^{8} - 839707131857 T^{9} + 62914527534 T^{10} + 1527440002 T^{11} - 219657281 T^{12} + 47501795 T^{13} + 2103682 T^{14} - 79244 T^{15} + 17517 T^{16} + 209 T^{17} + 103 T^{18} + T^{20} \)
show more
show less