Properties

Label 322.2.c.c.321.4
Level $322$
Weight $2$
Character 322.321
Analytic conductor $2.571$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [322,2,Mod(321,322)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("322.321"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(322, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 322.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,4,-8,0,-2,4,-8,-8,0,0,0,-2,0,4,12,-8,16,-8,-8,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.57118294509\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.2312.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 321.4
Root \(-0.780776 - 1.17915i\) of defining polynomial
Character \(\chi\) \(=\) 322.321
Dual form 322.2.c.c.321.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +3.02045i q^{3} +1.00000 q^{4} -2.00000 q^{5} +3.02045i q^{6} +(-2.56155 + 0.662153i) q^{7} +1.00000 q^{8} -6.12311 q^{9} -2.00000 q^{10} +3.02045i q^{11} +3.02045i q^{12} -1.69614i q^{13} +(-2.56155 + 0.662153i) q^{14} -6.04090i q^{15} +1.00000 q^{16} +7.12311 q^{17} -6.12311 q^{18} +4.00000 q^{19} -2.00000 q^{20} +(-2.00000 - 7.73704i) q^{21} +3.02045i q^{22} +(2.56155 + 4.05444i) q^{23} +3.02045i q^{24} -1.00000 q^{25} -1.69614i q^{26} -9.43318i q^{27} +(-2.56155 + 0.662153i) q^{28} -2.00000 q^{29} -6.04090i q^{30} +8.10887i q^{31} +1.00000 q^{32} -9.12311 q^{33} +7.12311 q^{34} +(5.12311 - 1.32431i) q^{35} -6.12311 q^{36} +1.69614i q^{37} +4.00000 q^{38} +5.12311 q^{39} -2.00000 q^{40} +3.39228i q^{41} +(-2.00000 - 7.73704i) q^{42} +3.02045i q^{43} +3.02045i q^{44} +12.2462 q^{45} +(2.56155 + 4.05444i) q^{46} -7.36520i q^{47} +3.02045i q^{48} +(6.12311 - 3.39228i) q^{49} -1.00000 q^{50} +21.5150i q^{51} -1.69614i q^{52} -13.7779i q^{53} -9.43318i q^{54} -6.04090i q^{55} +(-2.56155 + 0.662153i) q^{56} +12.0818i q^{57} -2.00000 q^{58} -9.06134i q^{59} -6.04090i q^{60} -4.24621 q^{61} +8.10887i q^{62} +(15.6847 - 4.05444i) q^{63} +1.00000 q^{64} +3.39228i q^{65} -9.12311 q^{66} -0.371834i q^{67} +7.12311 q^{68} +(-12.2462 + 7.73704i) q^{69} +(5.12311 - 1.32431i) q^{70} +15.3693 q^{71} -6.12311 q^{72} +12.0818i q^{73} +1.69614i q^{74} -3.02045i q^{75} +4.00000 q^{76} +(-2.00000 - 7.73704i) q^{77} +5.12311 q^{78} -3.97292i q^{79} -2.00000 q^{80} +10.1231 q^{81} +3.39228i q^{82} +4.00000 q^{83} +(-2.00000 - 7.73704i) q^{84} -14.2462 q^{85} +3.02045i q^{86} -6.04090i q^{87} +3.02045i q^{88} +2.00000 q^{89} +12.2462 q^{90} +(1.12311 + 4.34475i) q^{91} +(2.56155 + 4.05444i) q^{92} -24.4924 q^{93} -7.36520i q^{94} -8.00000 q^{95} +3.02045i q^{96} +4.24621 q^{97} +(6.12311 - 3.39228i) q^{98} -18.4945i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} - 8 q^{5} - 2 q^{7} + 4 q^{8} - 8 q^{9} - 8 q^{10} - 2 q^{14} + 4 q^{16} + 12 q^{17} - 8 q^{18} + 16 q^{19} - 8 q^{20} - 8 q^{21} + 2 q^{23} - 4 q^{25} - 2 q^{28} - 8 q^{29} + 4 q^{32}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/322\mathbb{Z}\right)^\times\).

\(n\) \(185\) \(281\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 3.02045i 1.74386i 0.489634 + 0.871928i \(0.337130\pi\)
−0.489634 + 0.871928i \(0.662870\pi\)
\(4\) 1.00000 0.500000
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 3.02045i 1.23309i
\(7\) −2.56155 + 0.662153i −0.968176 + 0.250270i
\(8\) 1.00000 0.353553
\(9\) −6.12311 −2.04104
\(10\) −2.00000 −0.632456
\(11\) 3.02045i 0.910699i 0.890313 + 0.455350i \(0.150486\pi\)
−0.890313 + 0.455350i \(0.849514\pi\)
\(12\) 3.02045i 0.871928i
\(13\) 1.69614i 0.470425i −0.971944 0.235212i \(-0.924421\pi\)
0.971944 0.235212i \(-0.0755786\pi\)
\(14\) −2.56155 + 0.662153i −0.684604 + 0.176968i
\(15\) 6.04090i 1.55975i
\(16\) 1.00000 0.250000
\(17\) 7.12311 1.72761 0.863803 0.503829i \(-0.168076\pi\)
0.863803 + 0.503829i \(0.168076\pi\)
\(18\) −6.12311 −1.44323
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) −2.00000 −0.447214
\(21\) −2.00000 7.73704i −0.436436 1.68836i
\(22\) 3.02045i 0.643962i
\(23\) 2.56155 + 4.05444i 0.534121 + 0.845408i
\(24\) 3.02045i 0.616546i
\(25\) −1.00000 −0.200000
\(26\) 1.69614i 0.332641i
\(27\) 9.43318i 1.81542i
\(28\) −2.56155 + 0.662153i −0.484088 + 0.125135i
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 6.04090i 1.10291i
\(31\) 8.10887i 1.45640i 0.685367 + 0.728198i \(0.259642\pi\)
−0.685367 + 0.728198i \(0.740358\pi\)
\(32\) 1.00000 0.176777
\(33\) −9.12311 −1.58813
\(34\) 7.12311 1.22160
\(35\) 5.12311 1.32431i 0.865963 0.223849i
\(36\) −6.12311 −1.02052
\(37\) 1.69614i 0.278844i 0.990233 + 0.139422i \(0.0445244\pi\)
−0.990233 + 0.139422i \(0.955476\pi\)
\(38\) 4.00000 0.648886
\(39\) 5.12311 0.820353
\(40\) −2.00000 −0.316228
\(41\) 3.39228i 0.529785i 0.964278 + 0.264893i \(0.0853365\pi\)
−0.964278 + 0.264893i \(0.914663\pi\)
\(42\) −2.00000 7.73704i −0.308607 1.19385i
\(43\) 3.02045i 0.460614i 0.973118 + 0.230307i \(0.0739730\pi\)
−0.973118 + 0.230307i \(0.926027\pi\)
\(44\) 3.02045i 0.455350i
\(45\) 12.2462 1.82556
\(46\) 2.56155 + 4.05444i 0.377680 + 0.597794i
\(47\) 7.36520i 1.07433i −0.843479 0.537163i \(-0.819496\pi\)
0.843479 0.537163i \(-0.180504\pi\)
\(48\) 3.02045i 0.435964i
\(49\) 6.12311 3.39228i 0.874729 0.484612i
\(50\) −1.00000 −0.141421
\(51\) 21.5150i 3.01270i
\(52\) 1.69614i 0.235212i
\(53\) 13.7779i 1.89254i −0.323371 0.946272i \(-0.604816\pi\)
0.323371 0.946272i \(-0.395184\pi\)
\(54\) 9.43318i 1.28369i
\(55\) 6.04090i 0.814554i
\(56\) −2.56155 + 0.662153i −0.342302 + 0.0884840i
\(57\) 12.0818i 1.60027i
\(58\) −2.00000 −0.262613
\(59\) 9.06134i 1.17969i −0.807518 0.589843i \(-0.799190\pi\)
0.807518 0.589843i \(-0.200810\pi\)
\(60\) 6.04090i 0.779876i
\(61\) −4.24621 −0.543672 −0.271836 0.962344i \(-0.587631\pi\)
−0.271836 + 0.962344i \(0.587631\pi\)
\(62\) 8.10887i 1.02983i
\(63\) 15.6847 4.05444i 1.97608 0.510811i
\(64\) 1.00000 0.125000
\(65\) 3.39228i 0.420761i
\(66\) −9.12311 −1.12298
\(67\) 0.371834i 0.0454268i −0.999742 0.0227134i \(-0.992769\pi\)
0.999742 0.0227134i \(-0.00723052\pi\)
\(68\) 7.12311 0.863803
\(69\) −12.2462 + 7.73704i −1.47427 + 0.931430i
\(70\) 5.12311 1.32431i 0.612328 0.158285i
\(71\) 15.3693 1.82400 0.912001 0.410188i \(-0.134537\pi\)
0.912001 + 0.410188i \(0.134537\pi\)
\(72\) −6.12311 −0.721615
\(73\) 12.0818i 1.41407i 0.707180 + 0.707033i \(0.249967\pi\)
−0.707180 + 0.707033i \(0.750033\pi\)
\(74\) 1.69614i 0.197172i
\(75\) 3.02045i 0.348771i
\(76\) 4.00000 0.458831
\(77\) −2.00000 7.73704i −0.227921 0.881717i
\(78\) 5.12311 0.580077
\(79\) 3.97292i 0.446988i −0.974705 0.223494i \(-0.928254\pi\)
0.974705 0.223494i \(-0.0717464\pi\)
\(80\) −2.00000 −0.223607
\(81\) 10.1231 1.12479
\(82\) 3.39228i 0.374615i
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) −2.00000 7.73704i −0.218218 0.844180i
\(85\) −14.2462 −1.54522
\(86\) 3.02045i 0.325703i
\(87\) 6.04090i 0.647652i
\(88\) 3.02045i 0.321981i
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 12.2462 1.29086
\(91\) 1.12311 + 4.34475i 0.117733 + 0.455454i
\(92\) 2.56155 + 4.05444i 0.267060 + 0.422704i
\(93\) −24.4924 −2.53975
\(94\) 7.36520i 0.759663i
\(95\) −8.00000 −0.820783
\(96\) 3.02045i 0.308273i
\(97\) 4.24621 0.431137 0.215569 0.976489i \(-0.430839\pi\)
0.215569 + 0.976489i \(0.430839\pi\)
\(98\) 6.12311 3.39228i 0.618527 0.342672i
\(99\) 18.4945i 1.85877i
\(100\) −1.00000 −0.100000
\(101\) 5.08842i 0.506317i −0.967425 0.253159i \(-0.918531\pi\)
0.967425 0.253159i \(-0.0814694\pi\)
\(102\) 21.5150i 2.13030i
\(103\) −10.8769 −1.07173 −0.535866 0.844303i \(-0.680015\pi\)
−0.535866 + 0.844303i \(0.680015\pi\)
\(104\) 1.69614i 0.166320i
\(105\) 4.00000 + 15.4741i 0.390360 + 1.51011i
\(106\) 13.7779i 1.33823i
\(107\) 14.3586i 1.38810i −0.719929 0.694048i \(-0.755826\pi\)
0.719929 0.694048i \(-0.244174\pi\)
\(108\) 9.43318i 0.907708i
\(109\) 17.1702i 1.64461i −0.569048 0.822304i \(-0.692688\pi\)
0.569048 0.822304i \(-0.307312\pi\)
\(110\) 6.04090i 0.575977i
\(111\) −5.12311 −0.486264
\(112\) −2.56155 + 0.662153i −0.242044 + 0.0625676i
\(113\) 6.78456i 0.638238i −0.947715 0.319119i \(-0.896613\pi\)
0.947715 0.319119i \(-0.103387\pi\)
\(114\) 12.0818i 1.13156i
\(115\) −5.12311 8.10887i −0.477732 0.756156i
\(116\) −2.00000 −0.185695
\(117\) 10.3857i 0.960154i
\(118\) 9.06134i 0.834164i
\(119\) −18.2462 + 4.71659i −1.67263 + 0.432369i
\(120\) 6.04090i 0.551456i
\(121\) 1.87689 0.170627
\(122\) −4.24621 −0.384434
\(123\) −10.2462 −0.923870
\(124\) 8.10887i 0.728198i
\(125\) 12.0000 1.07331
\(126\) 15.6847 4.05444i 1.39730 0.361198i
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 1.00000 0.0883883
\(129\) −9.12311 −0.803245
\(130\) 3.39228i 0.297523i
\(131\) 3.02045i 0.263898i 0.991257 + 0.131949i \(0.0421235\pi\)
−0.991257 + 0.131949i \(0.957877\pi\)
\(132\) −9.12311 −0.794064
\(133\) −10.2462 + 2.64861i −0.888459 + 0.229664i
\(134\) 0.371834i 0.0321216i
\(135\) 18.8664i 1.62376i
\(136\) 7.12311 0.610801
\(137\) 20.7713i 1.77461i 0.461181 + 0.887306i \(0.347426\pi\)
−0.461181 + 0.887306i \(0.652574\pi\)
\(138\) −12.2462 + 7.73704i −1.04247 + 0.658620i
\(139\) 15.1022i 1.28096i 0.767977 + 0.640478i \(0.221264\pi\)
−0.767977 + 0.640478i \(0.778736\pi\)
\(140\) 5.12311 1.32431i 0.432981 0.111924i
\(141\) 22.2462 1.87347
\(142\) 15.3693 1.28976
\(143\) 5.12311 0.428416
\(144\) −6.12311 −0.510259
\(145\) 4.00000 0.332182
\(146\) 12.0818i 0.999896i
\(147\) 10.2462 + 18.4945i 0.845093 + 1.52540i
\(148\) 1.69614i 0.139422i
\(149\) 17.1702i 1.40664i 0.710874 + 0.703319i \(0.248300\pi\)
−0.710874 + 0.703319i \(0.751700\pi\)
\(150\) 3.02045i 0.246619i
\(151\) 5.12311 0.416912 0.208456 0.978032i \(-0.433156\pi\)
0.208456 + 0.978032i \(0.433156\pi\)
\(152\) 4.00000 0.324443
\(153\) −43.6155 −3.52611
\(154\) −2.00000 7.73704i −0.161165 0.623468i
\(155\) 16.2177i 1.30264i
\(156\) 5.12311 0.410177
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 3.97292i 0.316069i
\(159\) 41.6155 3.30033
\(160\) −2.00000 −0.158114
\(161\) −9.24621 8.68951i −0.728704 0.684829i
\(162\) 10.1231 0.795346
\(163\) −16.4924 −1.29179 −0.645893 0.763428i \(-0.723515\pi\)
−0.645893 + 0.763428i \(0.723515\pi\)
\(164\) 3.39228i 0.264893i
\(165\) 18.2462 1.42047
\(166\) 4.00000 0.310460
\(167\) 19.4470i 1.50485i −0.658676 0.752427i \(-0.728883\pi\)
0.658676 0.752427i \(-0.271117\pi\)
\(168\) −2.00000 7.73704i −0.154303 0.596925i
\(169\) 10.1231 0.778700
\(170\) −14.2462 −1.09263
\(171\) −24.4924 −1.87298
\(172\) 3.02045i 0.230307i
\(173\) 6.99337i 0.531696i 0.964015 + 0.265848i \(0.0856519\pi\)
−0.964015 + 0.265848i \(0.914348\pi\)
\(174\) 6.04090i 0.457959i
\(175\) 2.56155 0.662153i 0.193635 0.0500541i
\(176\) 3.02045i 0.227675i
\(177\) 27.3693 2.05720
\(178\) 2.00000 0.149906
\(179\) 14.2462 1.06481 0.532406 0.846489i \(-0.321288\pi\)
0.532406 + 0.846489i \(0.321288\pi\)
\(180\) 12.2462 0.912779
\(181\) 8.24621 0.612936 0.306468 0.951881i \(-0.400853\pi\)
0.306468 + 0.951881i \(0.400853\pi\)
\(182\) 1.12311 + 4.34475i 0.0832501 + 0.322055i
\(183\) 12.8255i 0.948085i
\(184\) 2.56155 + 4.05444i 0.188840 + 0.298897i
\(185\) 3.39228i 0.249406i
\(186\) −24.4924 −1.79587
\(187\) 21.5150i 1.57333i
\(188\) 7.36520i 0.537163i
\(189\) 6.24621 + 24.1636i 0.454345 + 1.75764i
\(190\) −8.00000 −0.580381
\(191\) 20.1907i 1.46095i 0.682942 + 0.730473i \(0.260700\pi\)
−0.682942 + 0.730473i \(0.739300\pi\)
\(192\) 3.02045i 0.217982i
\(193\) −5.36932 −0.386492 −0.193246 0.981150i \(-0.561902\pi\)
−0.193246 + 0.981150i \(0.561902\pi\)
\(194\) 4.24621 0.304860
\(195\) −10.2462 −0.733746
\(196\) 6.12311 3.39228i 0.437365 0.242306i
\(197\) −20.2462 −1.44248 −0.721241 0.692684i \(-0.756428\pi\)
−0.721241 + 0.692684i \(0.756428\pi\)
\(198\) 18.4945i 1.31435i
\(199\) −12.4924 −0.885564 −0.442782 0.896629i \(-0.646009\pi\)
−0.442782 + 0.896629i \(0.646009\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 1.12311 0.0792178
\(202\) 5.08842i 0.358020i
\(203\) 5.12311 1.32431i 0.359572 0.0929481i
\(204\) 21.5150i 1.50635i
\(205\) 6.78456i 0.473855i
\(206\) −10.8769 −0.757829
\(207\) −15.6847 24.8257i −1.09016 1.72551i
\(208\) 1.69614i 0.117606i
\(209\) 12.0818i 0.835715i
\(210\) 4.00000 + 15.4741i 0.276026 + 1.06781i
\(211\) −6.24621 −0.430007 −0.215003 0.976613i \(-0.568976\pi\)
−0.215003 + 0.976613i \(0.568976\pi\)
\(212\) 13.7779i 0.946272i
\(213\) 46.4222i 3.18080i
\(214\) 14.3586i 0.981532i
\(215\) 6.04090i 0.411986i
\(216\) 9.43318i 0.641846i
\(217\) −5.36932 20.7713i −0.364493 1.41005i
\(218\) 17.1702i 1.16291i
\(219\) −36.4924 −2.46593
\(220\) 6.04090i 0.407277i
\(221\) 12.0818i 0.812709i
\(222\) −5.12311 −0.343840
\(223\) 3.22925i 0.216247i 0.994137 + 0.108123i \(0.0344842\pi\)
−0.994137 + 0.108123i \(0.965516\pi\)
\(224\) −2.56155 + 0.662153i −0.171151 + 0.0442420i
\(225\) 6.12311 0.408207
\(226\) 6.78456i 0.451302i
\(227\) −6.24621 −0.414576 −0.207288 0.978280i \(-0.566464\pi\)
−0.207288 + 0.978280i \(0.566464\pi\)
\(228\) 12.0818i 0.800136i
\(229\) −7.75379 −0.512385 −0.256192 0.966626i \(-0.582468\pi\)
−0.256192 + 0.966626i \(0.582468\pi\)
\(230\) −5.12311 8.10887i −0.337808 0.534683i
\(231\) 23.3693 6.04090i 1.53759 0.397462i
\(232\) −2.00000 −0.131306
\(233\) −16.2462 −1.06432 −0.532162 0.846642i \(-0.678620\pi\)
−0.532162 + 0.846642i \(0.678620\pi\)
\(234\) 10.3857i 0.678931i
\(235\) 14.7304i 0.960906i
\(236\) 9.06134i 0.589843i
\(237\) 12.0000 0.779484
\(238\) −18.2462 + 4.71659i −1.18273 + 0.305731i
\(239\) 17.6155 1.13945 0.569727 0.821834i \(-0.307049\pi\)
0.569727 + 0.821834i \(0.307049\pi\)
\(240\) 6.04090i 0.389938i
\(241\) 20.2462 1.30417 0.652087 0.758145i \(-0.273894\pi\)
0.652087 + 0.758145i \(0.273894\pi\)
\(242\) 1.87689 0.120651
\(243\) 2.27678i 0.146055i
\(244\) −4.24621 −0.271836
\(245\) −12.2462 + 6.78456i −0.782382 + 0.433450i
\(246\) −10.2462 −0.653275
\(247\) 6.78456i 0.431691i
\(248\) 8.10887i 0.514914i
\(249\) 12.0818i 0.765652i
\(250\) 12.0000 0.758947
\(251\) 26.7386 1.68773 0.843864 0.536557i \(-0.180276\pi\)
0.843864 + 0.536557i \(0.180276\pi\)
\(252\) 15.6847 4.05444i 0.988041 0.255405i
\(253\) −12.2462 + 7.73704i −0.769913 + 0.486423i
\(254\) 0 0
\(255\) 43.0299i 2.69464i
\(256\) 1.00000 0.0625000
\(257\) 17.3790i 1.08407i −0.840355 0.542037i \(-0.817653\pi\)
0.840355 0.542037i \(-0.182347\pi\)
\(258\) −9.12311 −0.567980
\(259\) −1.12311 4.34475i −0.0697864 0.269970i
\(260\) 3.39228i 0.210380i
\(261\) 12.2462 0.758021
\(262\) 3.02045i 0.186604i
\(263\) 7.36520i 0.454158i −0.973876 0.227079i \(-0.927082\pi\)
0.973876 0.227079i \(-0.0729175\pi\)
\(264\) −9.12311 −0.561488
\(265\) 27.5559i 1.69274i
\(266\) −10.2462 + 2.64861i −0.628236 + 0.162397i
\(267\) 6.04090i 0.369697i
\(268\) 0.371834i 0.0227134i
\(269\) 19.0752i 1.16303i −0.813535 0.581517i \(-0.802460\pi\)
0.813535 0.581517i \(-0.197540\pi\)
\(270\) 18.8664i 1.14817i
\(271\) 1.32431i 0.0804459i 0.999191 + 0.0402230i \(0.0128068\pi\)
−0.999191 + 0.0402230i \(0.987193\pi\)
\(272\) 7.12311 0.431902
\(273\) −13.1231 + 3.39228i −0.794246 + 0.205310i
\(274\) 20.7713i 1.25484i
\(275\) 3.02045i 0.182140i
\(276\) −12.2462 + 7.73704i −0.737135 + 0.465715i
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 15.1022i 0.905772i
\(279\) 49.6515i 2.97256i
\(280\) 5.12311 1.32431i 0.306164 0.0791425i
\(281\) 5.29723i 0.316006i 0.987439 + 0.158003i \(0.0505056\pi\)
−0.987439 + 0.158003i \(0.949494\pi\)
\(282\) 22.2462 1.32474
\(283\) −20.0000 −1.18888 −0.594438 0.804141i \(-0.702626\pi\)
−0.594438 + 0.804141i \(0.702626\pi\)
\(284\) 15.3693 0.912001
\(285\) 24.1636i 1.43133i
\(286\) 5.12311 0.302936
\(287\) −2.24621 8.68951i −0.132590 0.512926i
\(288\) −6.12311 −0.360807
\(289\) 33.7386 1.98463
\(290\) 4.00000 0.234888
\(291\) 12.8255i 0.751842i
\(292\) 12.0818i 0.707033i
\(293\) 18.4924 1.08034 0.540169 0.841556i \(-0.318360\pi\)
0.540169 + 0.841556i \(0.318360\pi\)
\(294\) 10.2462 + 18.4945i 0.597571 + 1.07862i
\(295\) 18.1227i 1.05514i
\(296\) 1.69614i 0.0985862i
\(297\) 28.4924 1.65330
\(298\) 17.1702i 0.994644i
\(299\) 6.87689 4.34475i 0.397701 0.251264i
\(300\) 3.02045i 0.174386i
\(301\) −2.00000 7.73704i −0.115278 0.445955i
\(302\) 5.12311 0.294802
\(303\) 15.3693 0.882944
\(304\) 4.00000 0.229416
\(305\) 8.49242 0.486275
\(306\) −43.6155 −2.49333
\(307\) 18.4945i 1.05554i 0.849388 + 0.527769i \(0.176971\pi\)
−0.849388 + 0.527769i \(0.823029\pi\)
\(308\) −2.00000 7.73704i −0.113961 0.440859i
\(309\) 32.8531i 1.86895i
\(310\) 16.2177i 0.921106i
\(311\) 12.6624i 0.718021i −0.933334 0.359010i \(-0.883114\pi\)
0.933334 0.359010i \(-0.116886\pi\)
\(312\) 5.12311 0.290039
\(313\) −18.4924 −1.04525 −0.522627 0.852562i \(-0.675048\pi\)
−0.522627 + 0.852562i \(0.675048\pi\)
\(314\) −10.0000 −0.564333
\(315\) −31.3693 + 8.10887i −1.76746 + 0.456883i
\(316\) 3.97292i 0.223494i
\(317\) −7.75379 −0.435496 −0.217748 0.976005i \(-0.569871\pi\)
−0.217748 + 0.976005i \(0.569871\pi\)
\(318\) 41.6155 2.33368
\(319\) 6.04090i 0.338225i
\(320\) −2.00000 −0.111803
\(321\) 43.3693 2.42064
\(322\) −9.24621 8.68951i −0.515271 0.484247i
\(323\) 28.4924 1.58536
\(324\) 10.1231 0.562395
\(325\) 1.69614i 0.0940850i
\(326\) −16.4924 −0.913431
\(327\) 51.8617 2.86796
\(328\) 3.39228i 0.187307i
\(329\) 4.87689 + 18.8664i 0.268872 + 1.04014i
\(330\) 18.2462 1.00442
\(331\) −14.2462 −0.783043 −0.391521 0.920169i \(-0.628051\pi\)
−0.391521 + 0.920169i \(0.628051\pi\)
\(332\) 4.00000 0.219529
\(333\) 10.3857i 0.569130i
\(334\) 19.4470i 1.06409i
\(335\) 0.743668i 0.0406309i
\(336\) −2.00000 7.73704i −0.109109 0.422090i
\(337\) 10.5945i 0.577117i −0.957462 0.288558i \(-0.906824\pi\)
0.957462 0.288558i \(-0.0931759\pi\)
\(338\) 10.1231 0.550624
\(339\) 20.4924 1.11300
\(340\) −14.2462 −0.772609
\(341\) −24.4924 −1.32634
\(342\) −24.4924 −1.32440
\(343\) −13.4384 + 12.7439i −0.725608 + 0.688108i
\(344\) 3.02045i 0.162852i
\(345\) 24.4924 15.4741i 1.31863 0.833096i
\(346\) 6.99337i 0.375966i
\(347\) 16.4924 0.885360 0.442680 0.896680i \(-0.354028\pi\)
0.442680 + 0.896680i \(0.354028\pi\)
\(348\) 6.04090i 0.323826i
\(349\) 12.2906i 0.657901i −0.944347 0.328950i \(-0.893305\pi\)
0.944347 0.328950i \(-0.106695\pi\)
\(350\) 2.56155 0.662153i 0.136921 0.0353936i
\(351\) −16.0000 −0.854017
\(352\) 3.02045i 0.160990i
\(353\) 13.5691i 0.722212i −0.932525 0.361106i \(-0.882399\pi\)
0.932525 0.361106i \(-0.117601\pi\)
\(354\) 27.3693 1.45466
\(355\) −30.7386 −1.63144
\(356\) 2.00000 0.106000
\(357\) −14.2462 55.1117i −0.753989 2.91682i
\(358\) 14.2462 0.752936
\(359\) 23.5829i 1.24466i 0.782755 + 0.622330i \(0.213814\pi\)
−0.782755 + 0.622330i \(0.786186\pi\)
\(360\) 12.2462 0.645432
\(361\) −3.00000 −0.157895
\(362\) 8.24621 0.433411
\(363\) 5.66906i 0.297549i
\(364\) 1.12311 + 4.34475i 0.0588667 + 0.227727i
\(365\) 24.1636i 1.26478i
\(366\) 12.8255i 0.670398i
\(367\) 2.87689 0.150173 0.0750863 0.997177i \(-0.476077\pi\)
0.0750863 + 0.997177i \(0.476077\pi\)
\(368\) 2.56155 + 4.05444i 0.133530 + 0.211352i
\(369\) 20.7713i 1.08131i
\(370\) 3.39228i 0.176356i
\(371\) 9.12311 + 35.2929i 0.473648 + 1.83232i
\(372\) −24.4924 −1.26987
\(373\) 18.6576i 0.966051i −0.875606 0.483026i \(-0.839538\pi\)
0.875606 0.483026i \(-0.160462\pi\)
\(374\) 21.5150i 1.11251i
\(375\) 36.2454i 1.87170i
\(376\) 7.36520i 0.379831i
\(377\) 3.39228i 0.174711i
\(378\) 6.24621 + 24.1636i 0.321270 + 1.24284i
\(379\) 18.4945i 0.950000i 0.879986 + 0.475000i \(0.157552\pi\)
−0.879986 + 0.475000i \(0.842448\pi\)
\(380\) −8.00000 −0.410391
\(381\) 0 0
\(382\) 20.1907i 1.03304i
\(383\) 18.8769 0.964564 0.482282 0.876016i \(-0.339808\pi\)
0.482282 + 0.876016i \(0.339808\pi\)
\(384\) 3.02045i 0.154137i
\(385\) 4.00000 + 15.4741i 0.203859 + 0.788632i
\(386\) −5.36932 −0.273291
\(387\) 18.4945i 0.940129i
\(388\) 4.24621 0.215569
\(389\) 11.8730i 0.601984i −0.953627 0.300992i \(-0.902682\pi\)
0.953627 0.300992i \(-0.0973178\pi\)
\(390\) −10.2462 −0.518837
\(391\) 18.2462 + 28.8802i 0.922751 + 1.46053i
\(392\) 6.12311 3.39228i 0.309264 0.171336i
\(393\) −9.12311 −0.460200
\(394\) −20.2462 −1.01999
\(395\) 7.94584i 0.399799i
\(396\) 18.4945i 0.929385i
\(397\) 23.9548i 1.20226i −0.799153 0.601128i \(-0.794718\pi\)
0.799153 0.601128i \(-0.205282\pi\)
\(398\) −12.4924 −0.626189
\(399\) −8.00000 30.9481i −0.400501 1.54935i
\(400\) −1.00000 −0.0500000
\(401\) 15.4741i 0.772738i −0.922344 0.386369i \(-0.873729\pi\)
0.922344 0.386369i \(-0.126271\pi\)
\(402\) 1.12311 0.0560154
\(403\) 13.7538 0.685125
\(404\) 5.08842i 0.253159i
\(405\) −20.2462 −1.00604
\(406\) 5.12311 1.32431i 0.254255 0.0657242i
\(407\) −5.12311 −0.253943
\(408\) 21.5150i 1.06515i
\(409\) 3.39228i 0.167738i −0.996477 0.0838688i \(-0.973272\pi\)
0.996477 0.0838688i \(-0.0267277\pi\)
\(410\) 6.78456i 0.335066i
\(411\) −62.7386 −3.09467
\(412\) −10.8769 −0.535866
\(413\) 6.00000 + 23.2111i 0.295241 + 1.14214i
\(414\) −15.6847 24.8257i −0.770859 1.22012i
\(415\) −8.00000 −0.392705
\(416\) 1.69614i 0.0831602i
\(417\) −45.6155 −2.23380
\(418\) 12.0818i 0.590940i
\(419\) 8.49242 0.414882 0.207441 0.978248i \(-0.433487\pi\)
0.207441 + 0.978248i \(0.433487\pi\)
\(420\) 4.00000 + 15.4741i 0.195180 + 0.755057i
\(421\) 23.9548i 1.16748i 0.811939 + 0.583742i \(0.198412\pi\)
−0.811939 + 0.583742i \(0.801588\pi\)
\(422\) −6.24621 −0.304061
\(423\) 45.0979i 2.19274i
\(424\) 13.7779i 0.669116i
\(425\) −7.12311 −0.345521
\(426\) 46.4222i 2.24916i
\(427\) 10.8769 2.81164i 0.526370 0.136065i
\(428\) 14.3586i 0.694048i
\(429\) 15.4741i 0.747095i
\(430\) 6.04090i 0.291318i
\(431\) 8.85254i 0.426412i −0.977007 0.213206i \(-0.931609\pi\)
0.977007 0.213206i \(-0.0683905\pi\)
\(432\) 9.43318i 0.453854i
\(433\) 27.6155 1.32712 0.663559 0.748124i \(-0.269045\pi\)
0.663559 + 0.748124i \(0.269045\pi\)
\(434\) −5.36932 20.7713i −0.257735 0.997054i
\(435\) 12.0818i 0.579278i
\(436\) 17.1702i 0.822304i
\(437\) 10.2462 + 16.2177i 0.490143 + 0.775800i
\(438\) −36.4924 −1.74368
\(439\) 26.9752i 1.28746i 0.765254 + 0.643729i \(0.222613\pi\)
−0.765254 + 0.643729i \(0.777387\pi\)
\(440\) 6.04090i 0.287988i
\(441\) −37.4924 + 20.7713i −1.78535 + 0.989110i
\(442\) 12.0818i 0.574672i
\(443\) 7.50758 0.356696 0.178348 0.983967i \(-0.442925\pi\)
0.178348 + 0.983967i \(0.442925\pi\)
\(444\) −5.12311 −0.243132
\(445\) −4.00000 −0.189618
\(446\) 3.22925i 0.152910i
\(447\) −51.8617 −2.45298
\(448\) −2.56155 + 0.662153i −0.121022 + 0.0312838i
\(449\) 15.1231 0.713703 0.356852 0.934161i \(-0.383850\pi\)
0.356852 + 0.934161i \(0.383850\pi\)
\(450\) 6.12311 0.288646
\(451\) −10.2462 −0.482475
\(452\) 6.78456i 0.319119i
\(453\) 15.4741i 0.727035i
\(454\) −6.24621 −0.293149
\(455\) −2.24621 8.68951i −0.105304 0.407370i
\(456\) 12.0818i 0.565782i
\(457\) 41.1250i 1.92375i −0.273496 0.961873i \(-0.588180\pi\)
0.273496 0.961873i \(-0.411820\pi\)
\(458\) −7.75379 −0.362311
\(459\) 67.1935i 3.13633i
\(460\) −5.12311 8.10887i −0.238866 0.378078i
\(461\) 15.6829i 0.730424i 0.930924 + 0.365212i \(0.119004\pi\)
−0.930924 + 0.365212i \(0.880996\pi\)
\(462\) 23.3693 6.04090i 1.08724 0.281048i
\(463\) 8.63068 0.401102 0.200551 0.979683i \(-0.435727\pi\)
0.200551 + 0.979683i \(0.435727\pi\)
\(464\) −2.00000 −0.0928477
\(465\) 48.9848 2.27162
\(466\) −16.2462 −0.752591
\(467\) −7.50758 −0.347409 −0.173705 0.984798i \(-0.555574\pi\)
−0.173705 + 0.984798i \(0.555574\pi\)
\(468\) 10.3857i 0.480077i
\(469\) 0.246211 + 0.952473i 0.0113690 + 0.0439811i
\(470\) 14.7304i 0.679463i
\(471\) 30.2045i 1.39175i
\(472\) 9.06134i 0.417082i
\(473\) −9.12311 −0.419481
\(474\) 12.0000 0.551178
\(475\) −4.00000 −0.183533
\(476\) −18.2462 + 4.71659i −0.836314 + 0.216184i
\(477\) 84.3637i 3.86275i
\(478\) 17.6155 0.805716
\(479\) −13.1231 −0.599610 −0.299805 0.954001i \(-0.596922\pi\)
−0.299805 + 0.954001i \(0.596922\pi\)
\(480\) 6.04090i 0.275728i
\(481\) 2.87689 0.131175
\(482\) 20.2462 0.922190
\(483\) 26.2462 27.9277i 1.19424 1.27075i
\(484\) 1.87689 0.0853134
\(485\) −8.49242 −0.385621
\(486\) 2.27678i 0.103277i
\(487\) 28.4924 1.29111 0.645557 0.763712i \(-0.276625\pi\)
0.645557 + 0.763712i \(0.276625\pi\)
\(488\) −4.24621 −0.192217
\(489\) 49.8145i 2.25269i
\(490\) −12.2462 + 6.78456i −0.553227 + 0.306495i
\(491\) −34.7386 −1.56773 −0.783866 0.620930i \(-0.786755\pi\)
−0.783866 + 0.620930i \(0.786755\pi\)
\(492\) −10.2462 −0.461935
\(493\) −14.2462 −0.641617
\(494\) 6.78456i 0.305252i
\(495\) 36.9890i 1.66253i
\(496\) 8.10887i 0.364099i
\(497\) −39.3693 + 10.1768i −1.76596 + 0.456494i
\(498\) 12.0818i 0.541398i
\(499\) 40.4924 1.81269 0.906345 0.422539i \(-0.138861\pi\)
0.906345 + 0.422539i \(0.138861\pi\)
\(500\) 12.0000 0.536656
\(501\) 58.7386 2.62425
\(502\) 26.7386 1.19340
\(503\) −9.61553 −0.428735 −0.214368 0.976753i \(-0.568769\pi\)
−0.214368 + 0.976753i \(0.568769\pi\)
\(504\) 15.6847 4.05444i 0.698650 0.180599i
\(505\) 10.1768i 0.452864i
\(506\) −12.2462 + 7.73704i −0.544410 + 0.343953i
\(507\) 30.5763i 1.35794i
\(508\) 0 0
\(509\) 8.48071i 0.375901i −0.982179 0.187950i \(-0.939816\pi\)
0.982179 0.187950i \(-0.0601844\pi\)
\(510\) 43.0299i 1.90540i
\(511\) −8.00000 30.9481i −0.353899 1.36907i
\(512\) 1.00000 0.0441942
\(513\) 37.7327i 1.66594i
\(514\) 17.3790i 0.766556i
\(515\) 21.7538 0.958586
\(516\) −9.12311 −0.401622
\(517\) 22.2462 0.978387
\(518\) −1.12311 4.34475i −0.0493464 0.190898i
\(519\) −21.1231 −0.927201
\(520\) 3.39228i 0.148761i
\(521\) −21.3693 −0.936207 −0.468103 0.883674i \(-0.655063\pi\)
−0.468103 + 0.883674i \(0.655063\pi\)
\(522\) 12.2462 0.536002
\(523\) 16.4924 0.721163 0.360582 0.932728i \(-0.382578\pi\)
0.360582 + 0.932728i \(0.382578\pi\)
\(524\) 3.02045i 0.131949i
\(525\) 2.00000 + 7.73704i 0.0872872 + 0.337672i
\(526\) 7.36520i 0.321138i
\(527\) 57.7603i 2.51608i
\(528\) −9.12311 −0.397032
\(529\) −9.87689 + 20.7713i −0.429430 + 0.903100i
\(530\) 27.5559i 1.19695i
\(531\) 55.4836i 2.40778i
\(532\) −10.2462 + 2.64861i −0.444230 + 0.114832i
\(533\) 5.75379 0.249224
\(534\) 6.04090i 0.261415i
\(535\) 28.7171i 1.24155i
\(536\) 0.371834i 0.0160608i
\(537\) 43.0299i 1.85688i
\(538\) 19.0752i 0.822389i
\(539\) 10.2462 + 18.4945i 0.441336 + 0.796615i
\(540\) 18.8664i 0.811879i
\(541\) 12.7386 0.547677 0.273838 0.961776i \(-0.411707\pi\)
0.273838 + 0.961776i \(0.411707\pi\)
\(542\) 1.32431i 0.0568839i
\(543\) 24.9073i 1.06887i
\(544\) 7.12311 0.305401
\(545\) 34.3404i 1.47098i
\(546\) −13.1231 + 3.39228i −0.561617 + 0.145176i
\(547\) −16.4924 −0.705165 −0.352583 0.935781i \(-0.614696\pi\)
−0.352583 + 0.935781i \(0.614696\pi\)
\(548\) 20.7713i 0.887306i
\(549\) 26.0000 1.10965
\(550\) 3.02045i 0.128792i
\(551\) −8.00000 −0.340811
\(552\) −12.2462 + 7.73704i −0.521233 + 0.329310i
\(553\) 2.63068 + 10.1768i 0.111868 + 0.432764i
\(554\) −10.0000 −0.424859
\(555\) 10.2462 0.434927
\(556\) 15.1022i 0.640478i
\(557\) 22.0498i 0.934281i −0.884183 0.467141i \(-0.845284\pi\)
0.884183 0.467141i \(-0.154716\pi\)
\(558\) 49.6515i 2.10191i
\(559\) 5.12311 0.216684
\(560\) 5.12311 1.32431i 0.216491 0.0559622i
\(561\) −64.9848 −2.74366
\(562\) 5.29723i 0.223450i
\(563\) −42.7386 −1.80122 −0.900609 0.434630i \(-0.856879\pi\)
−0.900609 + 0.434630i \(0.856879\pi\)
\(564\) 22.2462 0.936734
\(565\) 13.5691i 0.570858i
\(566\) −20.0000 −0.840663
\(567\) −25.9309 + 6.70305i −1.08899 + 0.281502i
\(568\) 15.3693 0.644882
\(569\) 3.39228i 0.142212i −0.997469 0.0711059i \(-0.977347\pi\)
0.997469 0.0711059i \(-0.0226528\pi\)
\(570\) 24.1636i 1.01210i
\(571\) 12.4536i 0.521168i −0.965451 0.260584i \(-0.916085\pi\)
0.965451 0.260584i \(-0.0839151\pi\)
\(572\) 5.12311 0.214208
\(573\) −60.9848 −2.54768
\(574\) −2.24621 8.68951i −0.0937550 0.362693i
\(575\) −2.56155 4.05444i −0.106824 0.169082i
\(576\) −6.12311 −0.255129
\(577\) 34.7580i 1.44700i −0.690326 0.723498i \(-0.742533\pi\)
0.690326 0.723498i \(-0.257467\pi\)
\(578\) 33.7386 1.40334
\(579\) 16.2177i 0.673986i
\(580\) 4.00000 0.166091
\(581\) −10.2462 + 2.64861i −0.425084 + 0.109883i
\(582\) 12.8255i 0.531632i
\(583\) 41.6155 1.72354
\(584\) 12.0818i 0.499948i
\(585\) 20.7713i 0.858788i
\(586\) 18.4924 0.763915
\(587\) 10.2226i 0.421933i 0.977493 + 0.210966i \(0.0676611\pi\)
−0.977493 + 0.210966i \(0.932339\pi\)
\(588\) 10.2462 + 18.4945i 0.422547 + 0.762701i
\(589\) 32.4355i 1.33648i
\(590\) 18.1227i 0.746099i
\(591\) 61.1526i 2.51548i
\(592\) 1.69614i 0.0697110i
\(593\) 24.1636i 0.992279i 0.868243 + 0.496140i \(0.165250\pi\)
−0.868243 + 0.496140i \(0.834750\pi\)
\(594\) 28.4924 1.16906
\(595\) 36.4924 9.43318i 1.49604 0.386723i
\(596\) 17.1702i 0.703319i
\(597\) 37.7327i 1.54430i
\(598\) 6.87689 4.34475i 0.281217 0.177670i
\(599\) 12.4924 0.510427 0.255213 0.966885i \(-0.417854\pi\)
0.255213 + 0.966885i \(0.417854\pi\)
\(600\) 3.02045i 0.123309i
\(601\) 43.0299i 1.75523i −0.479368 0.877614i \(-0.659134\pi\)
0.479368 0.877614i \(-0.340866\pi\)
\(602\) −2.00000 7.73704i −0.0815139 0.315338i
\(603\) 2.27678i 0.0927176i
\(604\) 5.12311 0.208456
\(605\) −3.75379 −0.152613
\(606\) 15.3693 0.624336
\(607\) 14.1498i 0.574321i −0.957882 0.287161i \(-0.907289\pi\)
0.957882 0.287161i \(-0.0927114\pi\)
\(608\) 4.00000 0.162221
\(609\) 4.00000 + 15.4741i 0.162088 + 0.627041i
\(610\) 8.49242 0.343848
\(611\) −12.4924 −0.505389
\(612\) −43.6155 −1.76305
\(613\) 15.6829i 0.633425i −0.948522 0.316713i \(-0.897421\pi\)
0.948522 0.316713i \(-0.102579\pi\)
\(614\) 18.4945i 0.746378i
\(615\) 20.4924 0.826334
\(616\) −2.00000 7.73704i −0.0805823 0.311734i
\(617\) 5.29723i 0.213258i −0.994299 0.106629i \(-0.965994\pi\)
0.994299 0.106629i \(-0.0340058\pi\)
\(618\) 32.8531i 1.32155i
\(619\) 22.2462 0.894151 0.447075 0.894496i \(-0.352466\pi\)
0.447075 + 0.894496i \(0.352466\pi\)
\(620\) 16.2177i 0.651320i
\(621\) 38.2462 24.1636i 1.53477 0.969651i
\(622\) 12.6624i 0.507717i
\(623\) −5.12311 + 1.32431i −0.205253 + 0.0530572i
\(624\) 5.12311 0.205088
\(625\) −19.0000 −0.760000
\(626\) −18.4924 −0.739106
\(627\) −36.4924 −1.45737
\(628\) −10.0000 −0.399043
\(629\) 12.0818i 0.481733i
\(630\) −31.3693 + 8.10887i −1.24978 + 0.323065i
\(631\) 30.3675i 1.20891i 0.796639 + 0.604456i \(0.206609\pi\)
−0.796639 + 0.604456i \(0.793391\pi\)
\(632\) 3.97292i 0.158034i
\(633\) 18.8664i 0.749870i
\(634\) −7.75379 −0.307942
\(635\) 0 0
\(636\) 41.6155 1.65016
\(637\) −5.75379 10.3857i −0.227973 0.411494i
\(638\) 6.04090i 0.239161i
\(639\) −94.1080 −3.72285
\(640\) −2.00000 −0.0790569
\(641\) 22.2586i 0.879163i −0.898203 0.439582i \(-0.855127\pi\)
0.898203 0.439582i \(-0.144873\pi\)
\(642\) 43.3693 1.71165
\(643\) −26.7386 −1.05447 −0.527234 0.849720i \(-0.676771\pi\)
−0.527234 + 0.849720i \(0.676771\pi\)
\(644\) −9.24621 8.68951i −0.364352 0.342415i
\(645\) 18.2462 0.718444
\(646\) 28.4924 1.12102
\(647\) 6.62153i 0.260319i 0.991493 + 0.130160i \(0.0415490\pi\)
−0.991493 + 0.130160i \(0.958451\pi\)
\(648\) 10.1231 0.397673
\(649\) 27.3693 1.07434
\(650\) 1.69614i 0.0665281i
\(651\) 62.7386 16.2177i 2.45892 0.635623i
\(652\) −16.4924 −0.645893
\(653\) 28.7386 1.12463 0.562315 0.826923i \(-0.309911\pi\)
0.562315 + 0.826923i \(0.309911\pi\)
\(654\) 51.8617 2.02795
\(655\) 6.04090i 0.236037i
\(656\) 3.39228i 0.132446i
\(657\) 73.9781i 2.88616i
\(658\) 4.87689 + 18.8664i 0.190121 + 0.735487i
\(659\) 24.5354i 0.955764i −0.878424 0.477882i \(-0.841405\pi\)
0.878424 0.477882i \(-0.158595\pi\)
\(660\) 18.2462 0.710233
\(661\) −38.4924 −1.49718 −0.748591 0.663032i \(-0.769269\pi\)
−0.748591 + 0.663032i \(0.769269\pi\)
\(662\) −14.2462 −0.553695
\(663\) 36.4924 1.41725
\(664\) 4.00000 0.155230
\(665\) 20.4924 5.29723i 0.794662 0.205418i
\(666\) 10.3857i 0.402436i
\(667\) −5.12311 8.10887i −0.198367 0.313977i
\(668\) 19.4470i 0.752427i
\(669\) −9.75379 −0.377103
\(670\) 0.743668i 0.0287304i
\(671\) 12.8255i 0.495121i
\(672\) −2.00000 7.73704i −0.0771517 0.298463i
\(673\) −16.8769 −0.650556 −0.325278 0.945618i \(-0.605458\pi\)
−0.325278 + 0.945618i \(0.605458\pi\)
\(674\) 10.5945i 0.408083i
\(675\) 9.43318i 0.363083i
\(676\) 10.1231 0.389350
\(677\) 18.4924 0.710722 0.355361 0.934729i \(-0.384358\pi\)
0.355361 + 0.934729i \(0.384358\pi\)
\(678\) 20.4924 0.787007
\(679\) −10.8769 + 2.81164i −0.417417 + 0.107901i
\(680\) −14.2462 −0.546317
\(681\) 18.8664i 0.722960i
\(682\) −24.4924 −0.937863
\(683\) −8.49242 −0.324954 −0.162477 0.986712i \(-0.551948\pi\)
−0.162477 + 0.986712i \(0.551948\pi\)
\(684\) −24.4924 −0.936491
\(685\) 41.5426i 1.58726i
\(686\) −13.4384 + 12.7439i −0.513082 + 0.486566i
\(687\) 23.4199i 0.893525i
\(688\) 3.02045i 0.115153i
\(689\) −23.3693 −0.890300
\(690\) 24.4924 15.4741i 0.932411 0.589088i
\(691\) 43.4018i 1.65108i −0.564343 0.825541i \(-0.690870\pi\)
0.564343 0.825541i \(-0.309130\pi\)
\(692\) 6.99337i 0.265848i
\(693\) 12.2462 + 47.3747i 0.465195 + 1.79962i
\(694\) 16.4924 0.626044
\(695\) 30.2045i 1.14572i
\(696\) 6.04090i 0.228980i
\(697\) 24.1636i 0.915261i
\(698\) 12.2906i 0.465206i
\(699\) 49.0708i 1.85603i
\(700\) 2.56155 0.662153i 0.0968176 0.0250270i
\(701\) 27.7647i 1.04866i −0.851516 0.524329i \(-0.824316\pi\)
0.851516 0.524329i \(-0.175684\pi\)
\(702\) −16.0000 −0.603881
\(703\) 6.78456i 0.255885i
\(704\) 3.02045i 0.113837i
\(705\) −44.4924 −1.67568
\(706\) 13.5691i 0.510681i
\(707\) 3.36932 + 13.0343i 0.126716 + 0.490204i
\(708\) 27.3693 1.02860
\(709\) 27.7647i 1.04272i 0.853336 + 0.521362i \(0.174576\pi\)
−0.853336 + 0.521362i \(0.825424\pi\)
\(710\) −30.7386 −1.15360
\(711\) 24.3266i 0.912319i
\(712\) 2.00000 0.0749532
\(713\) −32.8769 + 20.7713i −1.23125 + 0.777891i
\(714\) −14.2462 55.1117i −0.533151 2.06250i
\(715\) −10.2462 −0.383187
\(716\) 14.2462 0.532406
\(717\) 53.2068i 1.98704i
\(718\) 23.5829i 0.880108i
\(719\) 45.8416i 1.70960i 0.518955 + 0.854801i \(0.326321\pi\)
−0.518955 + 0.854801i \(0.673679\pi\)
\(720\) 12.2462 0.456389
\(721\) 27.8617 7.20217i 1.03763 0.268223i
\(722\) −3.00000 −0.111648
\(723\) 61.1526i 2.27429i
\(724\) 8.24621 0.306468
\(725\) 2.00000 0.0742781
\(726\) 5.66906i 0.210399i
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 1.12311 + 4.34475i 0.0416251 + 0.161027i
\(729\) 23.4924 0.870090
\(730\) 24.1636i 0.894334i
\(731\) 21.5150i 0.795760i
\(732\) 12.8255i 0.474043i
\(733\) 42.4924 1.56949 0.784747 0.619817i \(-0.212793\pi\)
0.784747 + 0.619817i \(0.212793\pi\)
\(734\) 2.87689 0.106188
\(735\) −20.4924 36.9890i −0.755874 1.36436i
\(736\) 2.56155 + 4.05444i 0.0944201 + 0.149448i
\(737\) 1.12311 0.0413701
\(738\) 20.7713i 0.764602i
\(739\) −28.0000 −1.03000 −0.514998 0.857191i \(-0.672207\pi\)
−0.514998 + 0.857191i \(0.672207\pi\)
\(740\) 3.39228i 0.124703i
\(741\) 20.4924 0.752808
\(742\) 9.12311 + 35.2929i 0.334920 + 1.29564i
\(743\) 36.0823i 1.32373i 0.749622 + 0.661866i \(0.230235\pi\)
−0.749622 + 0.661866i \(0.769765\pi\)
\(744\) −24.4924 −0.897936
\(745\) 34.3404i 1.25814i
\(746\) 18.6576i 0.683101i
\(747\) −24.4924 −0.896131
\(748\) 21.5150i 0.786665i
\(749\) 9.50758 + 36.7802i 0.347399 + 1.34392i
\(750\) 36.2454i 1.32349i
\(751\) 34.9211i 1.27429i −0.770745 0.637144i \(-0.780116\pi\)
0.770745 0.637144i \(-0.219884\pi\)
\(752\) 7.36520i 0.268581i
\(753\) 80.7627i 2.94315i
\(754\) 3.39228i 0.123540i
\(755\) −10.2462 −0.372898
\(756\) 6.24621 + 24.1636i 0.227173 + 0.878821i
\(757\) 8.89831i 0.323415i −0.986839 0.161707i \(-0.948300\pi\)
0.986839 0.161707i \(-0.0517001\pi\)
\(758\) 18.4945i 0.671751i
\(759\) −23.3693 36.9890i −0.848252 1.34262i
\(760\) −8.00000 −0.290191
\(761\) 16.9614i 0.614851i −0.951572 0.307425i \(-0.900533\pi\)
0.951572 0.307425i \(-0.0994674\pi\)
\(762\) 0 0
\(763\) 11.3693 + 43.9824i 0.411597 + 1.59227i
\(764\) 20.1907i 0.730473i
\(765\) 87.2311 3.15385
\(766\) 18.8769 0.682050
\(767\) −15.3693 −0.554954
\(768\) 3.02045i 0.108991i
\(769\) 2.63068 0.0948649 0.0474324 0.998874i \(-0.484896\pi\)
0.0474324 + 0.998874i \(0.484896\pi\)
\(770\) 4.00000 + 15.4741i 0.144150 + 0.557647i
\(771\) 52.4924 1.89047
\(772\) −5.36932 −0.193246
\(773\) 35.7538 1.28597 0.642987 0.765877i \(-0.277695\pi\)
0.642987 + 0.765877i \(0.277695\pi\)
\(774\) 18.4945i 0.664772i
\(775\) 8.10887i 0.291279i
\(776\) 4.24621 0.152430
\(777\) 13.1231 3.39228i 0.470789 0.121697i
\(778\) 11.8730i 0.425667i
\(779\) 13.5691i 0.486164i
\(780\) −10.2462 −0.366873
\(781\) 46.4222i 1.66112i
\(782\) 18.2462 + 28.8802i 0.652483 + 1.03275i
\(783\) 18.8664i 0.674229i
\(784\) 6.12311 3.39228i 0.218682 0.121153i
\(785\) 20.0000 0.713831
\(786\) −9.12311 −0.325410
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) −20.2462 −0.721241
\(789\) 22.2462 0.791986
\(790\) 7.94584i 0.282700i
\(791\) 4.49242 + 17.3790i 0.159732 + 0.617927i
\(792\) 18.4945i 0.657174i
\(793\) 7.20217i 0.255757i
\(794\) 23.9548i 0.850123i
\(795\) −83.2311 −2.95190
\(796\) −12.4924 −0.442782
\(797\) 1.50758 0.0534011 0.0267006 0.999643i \(-0.491500\pi\)
0.0267006 + 0.999643i \(0.491500\pi\)
\(798\) −8.00000 30.9481i −0.283197 1.09555i
\(799\) 52.4631i 1.85601i
\(800\) −1.00000 −0.0353553
\(801\) −12.2462 −0.432699
\(802\) 15.4741i 0.546409i
\(803\) −36.4924 −1.28779
\(804\) 1.12311 0.0396089
\(805\) 18.4924 + 17.3790i 0.651772 + 0.612530i
\(806\) 13.7538 0.484457
\(807\) 57.6155 2.02816
\(808\) 5.08842i 0.179010i
\(809\) 23.1231 0.812965 0.406483 0.913659i \(-0.366755\pi\)
0.406483 + 0.913659i \(0.366755\pi\)
\(810\) −20.2462 −0.711379
\(811\) 28.3453i 0.995338i −0.867367 0.497669i \(-0.834189\pi\)
0.867367 0.497669i \(-0.165811\pi\)
\(812\) 5.12311 1.32431i 0.179786 0.0464741i
\(813\) −4.00000 −0.140286
\(814\) −5.12311 −0.179565
\(815\) 32.9848 1.15541
\(816\) 21.5150i 0.753175i
\(817\) 12.0818i 0.422688i
\(818\) 3.39228i 0.118608i
\(819\) −6.87689 26.6034i −0.240298 0.929598i
\(820\) 6.78456i 0.236927i
\(821\) −45.2311 −1.57857 −0.789287 0.614024i \(-0.789550\pi\)
−0.789287 + 0.614024i \(0.789550\pi\)
\(822\) −62.7386 −2.18826
\(823\) 3.50758 0.122266 0.0611332 0.998130i \(-0.480529\pi\)
0.0611332 + 0.998130i \(0.480529\pi\)
\(824\) −10.8769 −0.378915
\(825\) 9.12311 0.317626
\(826\) 6.00000 + 23.2111i 0.208767 + 0.807618i
\(827\) 12.4536i 0.433055i −0.976277 0.216528i \(-0.930527\pi\)
0.976277 0.216528i \(-0.0694731\pi\)
\(828\) −15.6847 24.8257i −0.545080 0.862754i
\(829\) 20.9801i 0.728669i −0.931268 0.364335i \(-0.881296\pi\)
0.931268 0.364335i \(-0.118704\pi\)
\(830\) −8.00000 −0.277684
\(831\) 30.2045i 1.04778i
\(832\) 1.69614i 0.0588031i
\(833\) 43.6155 24.1636i 1.51119 0.837219i
\(834\) −45.6155 −1.57954
\(835\) 38.8940i 1.34598i
\(836\) 12.0818i 0.417858i
\(837\) 76.4924 2.64396
\(838\) 8.49242 0.293366
\(839\) −19.8617 −0.685703 −0.342852 0.939390i \(-0.611393\pi\)
−0.342852 + 0.939390i \(0.611393\pi\)
\(840\) 4.00000 + 15.4741i 0.138013 + 0.533906i
\(841\) −25.0000 −0.862069
\(842\) 23.9548i 0.825536i
\(843\) −16.0000 −0.551069
\(844\) −6.24621 −0.215003
\(845\) −20.2462 −0.696491
\(846\) 45.0979i 1.55050i
\(847\) −4.80776 + 1.24279i −0.165197 + 0.0427028i
\(848\) 13.7779i 0.473136i
\(849\) 60.4090i 2.07323i
\(850\) −7.12311 −0.244321
\(851\) −6.87689 + 4.34475i −0.235737 + 0.148936i
\(852\) 46.4222i 1.59040i
\(853\) 27.7647i 0.950644i 0.879812 + 0.475322i \(0.157668\pi\)
−0.879812 + 0.475322i \(0.842332\pi\)
\(854\) 10.8769 2.81164i 0.372200 0.0962125i
\(855\) 48.9848 1.67525
\(856\) 14.3586i 0.490766i
\(857\) 13.9867i 0.477778i 0.971047 + 0.238889i \(0.0767832\pi\)
−0.971047 + 0.238889i \(0.923217\pi\)
\(858\) 15.4741i 0.528276i
\(859\) 5.25145i 0.179177i −0.995979 0.0895886i \(-0.971445\pi\)
0.995979 0.0895886i \(-0.0285552\pi\)
\(860\) 6.04090i 0.205993i
\(861\) 26.2462 6.78456i 0.894468 0.231217i
\(862\) 8.85254i 0.301519i
\(863\) −32.0000 −1.08929 −0.544646 0.838666i \(-0.683336\pi\)
−0.544646 + 0.838666i \(0.683336\pi\)
\(864\) 9.43318i 0.320923i
\(865\) 13.9867i 0.475563i
\(866\) 27.6155 0.938414
\(867\) 101.906i 3.46090i
\(868\) −5.36932 20.7713i −0.182246 0.705024i
\(869\) 12.0000 0.407072
\(870\) 12.0818i 0.409611i
\(871\) −0.630683 −0.0213699
\(872\) 17.1702i 0.581457i
\(873\) −26.0000 −0.879967
\(874\) 10.2462 + 16.2177i 0.346583 + 0.548573i
\(875\) −30.7386 + 7.94584i −1.03916 + 0.268618i
\(876\) −36.4924 −1.23296
\(877\) 2.49242 0.0841631 0.0420816 0.999114i \(-0.486601\pi\)
0.0420816 + 0.999114i \(0.486601\pi\)
\(878\) 26.9752i 0.910370i
\(879\) 55.8554i 1.88396i
\(880\) 6.04090i 0.203639i
\(881\) 1.36932 0.0461335 0.0230667 0.999734i \(-0.492657\pi\)
0.0230667 + 0.999734i \(0.492657\pi\)
\(882\) −37.4924 + 20.7713i −1.26244 + 0.699406i
\(883\) −12.0000 −0.403832 −0.201916 0.979403i \(-0.564717\pi\)
−0.201916 + 0.979403i \(0.564717\pi\)
\(884\) 12.0818i 0.406355i
\(885\) −54.7386 −1.84002
\(886\) 7.50758 0.252222
\(887\) 4.71659i 0.158368i 0.996860 + 0.0791838i \(0.0252314\pi\)
−0.996860 + 0.0791838i \(0.974769\pi\)
\(888\) −5.12311 −0.171920
\(889\) 0 0
\(890\) −4.00000 −0.134080
\(891\) 30.5763i 1.02435i
\(892\) 3.22925i 0.108123i
\(893\) 29.4608i 0.985868i
\(894\) −51.8617 −1.73452
\(895\) −28.4924 −0.952397
\(896\) −2.56155 + 0.662153i −0.0855755 + 0.0221210i
\(897\) 13.1231 + 20.7713i 0.438168 + 0.693534i
\(898\) 15.1231 0.504665
\(899\) 16.2177i 0.540892i
\(900\) 6.12311 0.204104
\(901\) 98.1417i 3.26957i
\(902\) −10.2462 −0.341162
\(903\) 23.3693 6.04090i 0.777682 0.201028i
\(904\) 6.78456i 0.225651i
\(905\) −16.4924 −0.548227
\(906\) 15.4741i 0.514092i
\(907\) 0.789443i 0.0262130i −0.999914 0.0131065i \(-0.995828\pi\)
0.999914 0.0131065i \(-0.00417205\pi\)
\(908\) −6.24621 −0.207288
\(909\) 31.1570i 1.03341i
\(910\) −2.24621 8.68951i −0.0744612 0.288054i
\(911\) 8.85254i 0.293298i −0.989189 0.146649i \(-0.953151\pi\)
0.989189 0.146649i \(-0.0468487\pi\)
\(912\) 12.0818i 0.400068i
\(913\) 12.0818i 0.399849i
\(914\) 41.1250i 1.36029i
\(915\) 25.6509i 0.847993i
\(916\) −7.75379 −0.256192
\(917\) −2.00000 7.73704i −0.0660458 0.255499i
\(918\) 67.1935i 2.21772i
\(919\) 21.6780i 0.715091i 0.933896 + 0.357546i \(0.116386\pi\)
−0.933896 + 0.357546i \(0.883614\pi\)
\(920\) −5.12311 8.10887i −0.168904 0.267342i
\(921\) −55.8617 −1.84071
\(922\) 15.6829i 0.516488i
\(923\) 26.0685i 0.858056i
\(924\) 23.3693 6.04090i 0.768794 0.198731i
\(925\) 1.69614i 0.0557688i
\(926\) 8.63068 0.283622
\(927\) 66.6004 2.18744
\(928\) −2.00000 −0.0656532
\(929\) 35.8278i 1.17547i 0.809053 + 0.587735i \(0.199980\pi\)
−0.809053 + 0.587735i \(0.800020\pi\)
\(930\) 48.9848 1.60628
\(931\) 24.4924 13.5691i 0.802707 0.444710i
\(932\) −16.2462 −0.532162
\(933\) 38.2462 1.25212
\(934\) −7.50758 −0.245655
\(935\) 43.0299i 1.40723i
\(936\) 10.3857i 0.339466i
\(937\) 18.0000 0.588034 0.294017 0.955800i \(-0.405008\pi\)
0.294017 + 0.955800i \(0.405008\pi\)
\(938\) 0.246211 + 0.952473i 0.00803908 + 0.0310993i
\(939\) 55.8554i 1.82277i
\(940\) 14.7304i 0.480453i
\(941\) −8.73863 −0.284871 −0.142436 0.989804i \(-0.545493\pi\)
−0.142436 + 0.989804i \(0.545493\pi\)
\(942\) 30.2045i 0.984115i
\(943\) −13.7538 + 8.68951i −0.447885 + 0.282969i
\(944\) 9.06134i 0.294922i
\(945\) −12.4924 48.3272i −0.406379 1.57208i
\(946\) −9.12311 −0.296618
\(947\) −52.9848 −1.72178 −0.860888 0.508794i \(-0.830091\pi\)
−0.860888 + 0.508794i \(0.830091\pi\)
\(948\) 12.0000 0.389742
\(949\) 20.4924 0.665212
\(950\) −4.00000 −0.129777
\(951\) 23.4199i 0.759443i
\(952\) −18.2462 + 4.71659i −0.591363 + 0.152866i
\(953\) 31.3658i 1.01604i 0.861346 + 0.508018i \(0.169622\pi\)
−0.861346 + 0.508018i \(0.830378\pi\)
\(954\) 84.3637i 2.73138i
\(955\) 40.3813i 1.30671i
\(956\) 17.6155 0.569727
\(957\) 18.2462 0.589816
\(958\) −13.1231 −0.423988
\(959\) −13.7538 53.2068i −0.444133 1.71814i
\(960\) 6.04090i 0.194969i
\(961\) −34.7538 −1.12109
\(962\) 2.87689 0.0927548
\(963\) 87.9190i 2.83315i
\(964\) 20.2462 0.652087
\(965\) 10.7386 0.345689
\(966\) 26.2462 27.9277i 0.844458 0.898559i
\(967\) −51.8617 −1.66776 −0.833881 0.551945i \(-0.813886\pi\)
−0.833881 + 0.551945i \(0.813886\pi\)
\(968\) 1.87689 0.0603257
\(969\) 86.0599i 2.76464i
\(970\) −8.49242 −0.272675
\(971\) −39.2311 −1.25898 −0.629492 0.777007i \(-0.716737\pi\)
−0.629492 + 0.777007i \(0.716737\pi\)
\(972\) 2.27678i 0.0730277i
\(973\) −10.0000 38.6852i −0.320585 1.24019i
\(974\) 28.4924 0.912956
\(975\) −5.12311 −0.164071
\(976\) −4.24621 −0.135918
\(977\) 32.8531i 1.05106i −0.850774 0.525532i \(-0.823866\pi\)
0.850774 0.525532i \(-0.176134\pi\)
\(978\) 49.8145i 1.59289i
\(979\) 6.04090i 0.193068i
\(980\) −12.2462 + 6.78456i −0.391191 + 0.216725i
\(981\) 105.135i 3.35670i
\(982\) −34.7386 −1.10855
\(983\) 44.4924 1.41909 0.709544 0.704661i \(-0.248901\pi\)
0.709544 + 0.704661i \(0.248901\pi\)
\(984\) −10.2462 −0.326637
\(985\) 40.4924 1.29020
\(986\) −14.2462 −0.453692
\(987\) −56.9848 + 14.7304i −1.81385 + 0.468874i
\(988\) 6.78456i 0.215846i
\(989\) −12.2462 + 7.73704i −0.389407 + 0.246023i
\(990\) 36.9890i 1.17559i
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 8.10887i 0.257457i
\(993\) 43.0299i 1.36551i
\(994\) −39.3693 + 10.1768i −1.24872 + 0.322790i
\(995\) 24.9848 0.792073
\(996\) 12.0818i 0.382826i
\(997\) 5.08842i 0.161152i −0.996748 0.0805760i \(-0.974324\pi\)
0.996748 0.0805760i \(-0.0256760\pi\)
\(998\) 40.4924 1.28177
\(999\) 16.0000 0.506218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 322.2.c.c.321.4 yes 4
3.2 odd 2 2898.2.g.b.2575.2 4
4.3 odd 2 2576.2.f.b.321.1 4
7.6 odd 2 322.2.c.d.321.1 yes 4
21.20 even 2 2898.2.g.a.2575.4 4
23.22 odd 2 322.2.c.d.321.4 yes 4
28.27 even 2 2576.2.f.e.321.4 4
69.68 even 2 2898.2.g.a.2575.3 4
92.91 even 2 2576.2.f.e.321.1 4
161.160 even 2 inner 322.2.c.c.321.1 4
483.482 odd 2 2898.2.g.b.2575.1 4
644.643 odd 2 2576.2.f.b.321.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.2.c.c.321.1 4 161.160 even 2 inner
322.2.c.c.321.4 yes 4 1.1 even 1 trivial
322.2.c.d.321.1 yes 4 7.6 odd 2
322.2.c.d.321.4 yes 4 23.22 odd 2
2576.2.f.b.321.1 4 4.3 odd 2
2576.2.f.b.321.4 4 644.643 odd 2
2576.2.f.e.321.1 4 92.91 even 2
2576.2.f.e.321.4 4 28.27 even 2
2898.2.g.a.2575.3 4 69.68 even 2
2898.2.g.a.2575.4 4 21.20 even 2
2898.2.g.b.2575.1 4 483.482 odd 2
2898.2.g.b.2575.2 4 3.2 odd 2