Properties

Label 320.9.h.g.319.10
Level $320$
Weight $9$
Character 320.319
Analytic conductor $130.361$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,9,Mod(319,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.319"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 320.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,1420] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(130.361155220\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 94 x^{18} + 5343 x^{16} + 172772 x^{14} + 36131456 x^{12} + 3044563968 x^{10} + \cdots + 11\!\cdots\!76 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{140}\cdot 3^{4}\cdot 5^{12} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 319.10
Root \(7.15078 - 3.58697i\) of defining polynomial
Character \(\chi\) \(=\) 320.319
Dual form 320.9.h.g.319.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-42.6663 q^{3} +(560.298 + 276.932i) q^{5} +869.685 q^{7} -4740.59 q^{9} -24735.0i q^{11} -41128.5i q^{13} +(-23905.8 - 11815.7i) q^{15} -40900.7i q^{17} -79502.2i q^{19} -37106.2 q^{21} -428560. q^{23} +(237242. + 310329. i) q^{25} +482197. q^{27} -184740. q^{29} +154752. i q^{31} +1.05535e6i q^{33} +(487283. + 240844. i) q^{35} +1.72203e6i q^{37} +1.75480e6i q^{39} -2.00720e6 q^{41} -1.43073e6 q^{43} +(-2.65614e6 - 1.31282e6i) q^{45} +4.98494e6 q^{47} -5.00845e6 q^{49} +1.74508e6i q^{51} +6.97640e6i q^{53} +(6.84992e6 - 1.38590e7i) q^{55} +3.39206e6i q^{57} -5.65200e6i q^{59} -6.73713e6 q^{61} -4.12282e6 q^{63} +(1.13898e7 - 2.30442e7i) q^{65} +4.99529e6 q^{67} +1.82850e7 q^{69} -2.07710e7i q^{71} +3.31772e7i q^{73} +(-1.01222e7 - 1.32406e7i) q^{75} -2.15117e7i q^{77} +7.49445e7i q^{79} +1.05295e7 q^{81} +8.75346e7 q^{83} +(1.13267e7 - 2.29165e7i) q^{85} +7.88215e6 q^{87} -1.14653e7 q^{89} -3.57688e7i q^{91} -6.60268e6i q^{93} +(2.20167e7 - 4.45449e7i) q^{95} -8.74640e7i q^{97} +1.17258e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 1420 q^{5} + 2556 q^{9} - 410256 q^{21} - 657260 q^{25} - 660136 q^{29} + 7068520 q^{41} + 18729060 q^{45} + 11719036 q^{49} + 17660440 q^{61} - 44202240 q^{65} - 111747216 q^{69} - 154212444 q^{81}+ \cdots + 105006376 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −42.6663 −0.526744 −0.263372 0.964694i \(-0.584835\pi\)
−0.263372 + 0.964694i \(0.584835\pi\)
\(4\) 0 0
\(5\) 560.298 + 276.932i 0.896476 + 0.443091i
\(6\) 0 0
\(7\) 869.685 0.362218 0.181109 0.983463i \(-0.442031\pi\)
0.181109 + 0.983463i \(0.442031\pi\)
\(8\) 0 0
\(9\) −4740.59 −0.722541
\(10\) 0 0
\(11\) 24735.0i 1.68943i −0.535214 0.844717i \(-0.679769\pi\)
0.535214 0.844717i \(-0.320231\pi\)
\(12\) 0 0
\(13\) 41128.5i 1.44002i −0.693962 0.720011i \(-0.744137\pi\)
0.693962 0.720011i \(-0.255863\pi\)
\(14\) 0 0
\(15\) −23905.8 11815.7i −0.472214 0.233396i
\(16\) 0 0
\(17\) 40900.7i 0.489705i −0.969560 0.244853i \(-0.921260\pi\)
0.969560 0.244853i \(-0.0787395\pi\)
\(18\) 0 0
\(19\) 79502.2i 0.610049i −0.952345 0.305024i \(-0.901335\pi\)
0.952345 0.305024i \(-0.0986646\pi\)
\(20\) 0 0
\(21\) −37106.2 −0.190796
\(22\) 0 0
\(23\) −428560. −1.53144 −0.765720 0.643174i \(-0.777617\pi\)
−0.765720 + 0.643174i \(0.777617\pi\)
\(24\) 0 0
\(25\) 237242. + 310329.i 0.607340 + 0.794442i
\(26\) 0 0
\(27\) 482197. 0.907338
\(28\) 0 0
\(29\) −184740. −0.261197 −0.130598 0.991435i \(-0.541690\pi\)
−0.130598 + 0.991435i \(0.541690\pi\)
\(30\) 0 0
\(31\) 154752.i 0.167567i 0.996484 + 0.0837835i \(0.0267004\pi\)
−0.996484 + 0.0837835i \(0.973300\pi\)
\(32\) 0 0
\(33\) 1.05535e6i 0.889899i
\(34\) 0 0
\(35\) 487283. + 240844.i 0.324720 + 0.160496i
\(36\) 0 0
\(37\) 1.72203e6i 0.918825i 0.888223 + 0.459413i \(0.151940\pi\)
−0.888223 + 0.459413i \(0.848060\pi\)
\(38\) 0 0
\(39\) 1.75480e6i 0.758523i
\(40\) 0 0
\(41\) −2.00720e6 −0.710323 −0.355162 0.934805i \(-0.615574\pi\)
−0.355162 + 0.934805i \(0.615574\pi\)
\(42\) 0 0
\(43\) −1.43073e6 −0.418488 −0.209244 0.977863i \(-0.567100\pi\)
−0.209244 + 0.977863i \(0.567100\pi\)
\(44\) 0 0
\(45\) −2.65614e6 1.31282e6i −0.647741 0.320152i
\(46\) 0 0
\(47\) 4.98494e6 1.02157 0.510786 0.859708i \(-0.329354\pi\)
0.510786 + 0.859708i \(0.329354\pi\)
\(48\) 0 0
\(49\) −5.00845e6 −0.868798
\(50\) 0 0
\(51\) 1.74508e6i 0.257949i
\(52\) 0 0
\(53\) 6.97640e6i 0.884154i 0.896977 + 0.442077i \(0.145758\pi\)
−0.896977 + 0.442077i \(0.854242\pi\)
\(54\) 0 0
\(55\) 6.84992e6 1.38590e7i 0.748574 1.51454i
\(56\) 0 0
\(57\) 3.39206e6i 0.321340i
\(58\) 0 0
\(59\) 5.65200e6i 0.466438i −0.972424 0.233219i \(-0.925074\pi\)
0.972424 0.233219i \(-0.0749259\pi\)
\(60\) 0 0
\(61\) −6.73713e6 −0.486582 −0.243291 0.969953i \(-0.578227\pi\)
−0.243291 + 0.969953i \(0.578227\pi\)
\(62\) 0 0
\(63\) −4.12282e6 −0.261717
\(64\) 0 0
\(65\) 1.13898e7 2.30442e7i 0.638062 1.29095i
\(66\) 0 0
\(67\) 4.99529e6 0.247891 0.123946 0.992289i \(-0.460445\pi\)
0.123946 + 0.992289i \(0.460445\pi\)
\(68\) 0 0
\(69\) 1.82850e7 0.806677
\(70\) 0 0
\(71\) 2.07710e7i 0.817378i −0.912674 0.408689i \(-0.865986\pi\)
0.912674 0.408689i \(-0.134014\pi\)
\(72\) 0 0
\(73\) 3.31772e7i 1.16828i 0.811652 + 0.584141i \(0.198569\pi\)
−0.811652 + 0.584141i \(0.801431\pi\)
\(74\) 0 0
\(75\) −1.01222e7 1.32406e7i −0.319913 0.418468i
\(76\) 0 0
\(77\) 2.15117e7i 0.611943i
\(78\) 0 0
\(79\) 7.49445e7i 1.92412i 0.272844 + 0.962058i \(0.412036\pi\)
−0.272844 + 0.962058i \(0.587964\pi\)
\(80\) 0 0
\(81\) 1.05295e7 0.244606
\(82\) 0 0
\(83\) 8.75346e7 1.84445 0.922226 0.386651i \(-0.126368\pi\)
0.922226 + 0.386651i \(0.126368\pi\)
\(84\) 0 0
\(85\) 1.13267e7 2.29165e7i 0.216984 0.439009i
\(86\) 0 0
\(87\) 7.88215e6 0.137584
\(88\) 0 0
\(89\) −1.14653e7 −0.182737 −0.0913685 0.995817i \(-0.529124\pi\)
−0.0913685 + 0.995817i \(0.529124\pi\)
\(90\) 0 0
\(91\) 3.57688e7i 0.521602i
\(92\) 0 0
\(93\) 6.60268e6i 0.0882649i
\(94\) 0 0
\(95\) 2.20167e7 4.45449e7i 0.270307 0.546894i
\(96\) 0 0
\(97\) 8.74640e7i 0.987967i −0.869471 0.493983i \(-0.835540\pi\)
0.869471 0.493983i \(-0.164460\pi\)
\(98\) 0 0
\(99\) 1.17258e8i 1.22068i
\(100\) 0 0
\(101\) −1.07960e8 −1.03747 −0.518736 0.854934i \(-0.673597\pi\)
−0.518736 + 0.854934i \(0.673597\pi\)
\(102\) 0 0
\(103\) −9.62475e7 −0.855147 −0.427573 0.903981i \(-0.640631\pi\)
−0.427573 + 0.903981i \(0.640631\pi\)
\(104\) 0 0
\(105\) −2.07905e7 1.02759e7i −0.171044 0.0845401i
\(106\) 0 0
\(107\) −8.83513e7 −0.674028 −0.337014 0.941500i \(-0.609417\pi\)
−0.337014 + 0.941500i \(0.609417\pi\)
\(108\) 0 0
\(109\) −4.82155e7 −0.341571 −0.170785 0.985308i \(-0.554630\pi\)
−0.170785 + 0.985308i \(0.554630\pi\)
\(110\) 0 0
\(111\) 7.34724e7i 0.483986i
\(112\) 0 0
\(113\) 1.83862e8i 1.12766i 0.825891 + 0.563830i \(0.190672\pi\)
−0.825891 + 0.563830i \(0.809328\pi\)
\(114\) 0 0
\(115\) −2.40121e8 1.18682e8i −1.37290 0.678568i
\(116\) 0 0
\(117\) 1.94973e8i 1.04048i
\(118\) 0 0
\(119\) 3.55707e7i 0.177380i
\(120\) 0 0
\(121\) −3.97461e8 −1.85419
\(122\) 0 0
\(123\) 8.56399e7 0.374158
\(124\) 0 0
\(125\) 4.69862e7 + 2.39577e8i 0.192455 + 0.981306i
\(126\) 0 0
\(127\) 3.52941e8 1.35671 0.678355 0.734734i \(-0.262693\pi\)
0.678355 + 0.734734i \(0.262693\pi\)
\(128\) 0 0
\(129\) 6.10437e7 0.220436
\(130\) 0 0
\(131\) 1.20638e8i 0.409638i −0.978800 0.204819i \(-0.934339\pi\)
0.978800 0.204819i \(-0.0656606\pi\)
\(132\) 0 0
\(133\) 6.91419e7i 0.220971i
\(134\) 0 0
\(135\) 2.70174e8 + 1.33536e8i 0.813407 + 0.402034i
\(136\) 0 0
\(137\) 2.98009e8i 0.845955i 0.906140 + 0.422978i \(0.139015\pi\)
−0.906140 + 0.422978i \(0.860985\pi\)
\(138\) 0 0
\(139\) 4.00098e8i 1.07178i 0.844287 + 0.535891i \(0.180024\pi\)
−0.844287 + 0.535891i \(0.819976\pi\)
\(140\) 0 0
\(141\) −2.12689e8 −0.538107
\(142\) 0 0
\(143\) −1.01731e9 −2.43282
\(144\) 0 0
\(145\) −1.03509e8 5.11603e7i −0.234157 0.115734i
\(146\) 0 0
\(147\) 2.13692e8 0.457634
\(148\) 0 0
\(149\) −7.70799e8 −1.56385 −0.781927 0.623370i \(-0.785763\pi\)
−0.781927 + 0.623370i \(0.785763\pi\)
\(150\) 0 0
\(151\) 5.11492e8i 0.983856i 0.870636 + 0.491928i \(0.163708\pi\)
−0.870636 + 0.491928i \(0.836292\pi\)
\(152\) 0 0
\(153\) 1.93893e8i 0.353832i
\(154\) 0 0
\(155\) −4.28557e7 + 8.67070e7i −0.0742475 + 0.150220i
\(156\) 0 0
\(157\) 8.51365e7i 0.140126i −0.997543 0.0700628i \(-0.977680\pi\)
0.997543 0.0700628i \(-0.0223200\pi\)
\(158\) 0 0
\(159\) 2.97657e8i 0.465723i
\(160\) 0 0
\(161\) −3.72712e8 −0.554715
\(162\) 0 0
\(163\) 2.79284e8 0.395636 0.197818 0.980239i \(-0.436614\pi\)
0.197818 + 0.980239i \(0.436614\pi\)
\(164\) 0 0
\(165\) −2.92260e8 + 5.91310e8i −0.394307 + 0.797773i
\(166\) 0 0
\(167\) −4.30699e8 −0.553743 −0.276871 0.960907i \(-0.589298\pi\)
−0.276871 + 0.960907i \(0.589298\pi\)
\(168\) 0 0
\(169\) −8.75822e8 −1.07367
\(170\) 0 0
\(171\) 3.76887e8i 0.440785i
\(172\) 0 0
\(173\) 6.81243e8i 0.760533i −0.924877 0.380266i \(-0.875832\pi\)
0.924877 0.380266i \(-0.124168\pi\)
\(174\) 0 0
\(175\) 2.06326e8 + 2.69888e8i 0.219989 + 0.287761i
\(176\) 0 0
\(177\) 2.41150e8i 0.245693i
\(178\) 0 0
\(179\) 1.86210e9i 1.81381i −0.421336 0.906905i \(-0.638439\pi\)
0.421336 0.906905i \(-0.361561\pi\)
\(180\) 0 0
\(181\) −9.45023e8 −0.880498 −0.440249 0.897876i \(-0.645110\pi\)
−0.440249 + 0.897876i \(0.645110\pi\)
\(182\) 0 0
\(183\) 2.87448e8 0.256304
\(184\) 0 0
\(185\) −4.76885e8 + 9.64848e8i −0.407124 + 0.823705i
\(186\) 0 0
\(187\) −1.01168e9 −0.827324
\(188\) 0 0
\(189\) 4.19359e8 0.328654
\(190\) 0 0
\(191\) 6.13867e8i 0.461255i −0.973042 0.230627i \(-0.925922\pi\)
0.973042 0.230627i \(-0.0740778\pi\)
\(192\) 0 0
\(193\) 7.45004e8i 0.536945i −0.963287 0.268472i \(-0.913481\pi\)
0.963287 0.268472i \(-0.0865188\pi\)
\(194\) 0 0
\(195\) −4.85960e8 + 9.83210e8i −0.336095 + 0.679998i
\(196\) 0 0
\(197\) 2.47398e9i 1.64260i 0.570498 + 0.821299i \(0.306750\pi\)
−0.570498 + 0.821299i \(0.693250\pi\)
\(198\) 0 0
\(199\) 8.62436e8i 0.549939i −0.961453 0.274969i \(-0.911332\pi\)
0.961453 0.274969i \(-0.0886677\pi\)
\(200\) 0 0
\(201\) −2.13130e8 −0.130575
\(202\) 0 0
\(203\) −1.60665e8 −0.0946102
\(204\) 0 0
\(205\) −1.12463e9 5.55859e8i −0.636788 0.314738i
\(206\) 0 0
\(207\) 2.03163e9 1.10653
\(208\) 0 0
\(209\) −1.96649e9 −1.03064
\(210\) 0 0
\(211\) 2.06407e9i 1.04135i 0.853756 + 0.520673i \(0.174319\pi\)
−0.853756 + 0.520673i \(0.825681\pi\)
\(212\) 0 0
\(213\) 8.86219e8i 0.430549i
\(214\) 0 0
\(215\) −8.01633e8 3.96214e8i −0.375164 0.185428i
\(216\) 0 0
\(217\) 1.34585e8i 0.0606958i
\(218\) 0 0
\(219\) 1.41555e9i 0.615386i
\(220\) 0 0
\(221\) −1.68218e9 −0.705186
\(222\) 0 0
\(223\) 2.49560e9 1.00915 0.504574 0.863368i \(-0.331649\pi\)
0.504574 + 0.863368i \(0.331649\pi\)
\(224\) 0 0
\(225\) −1.12467e9 1.47114e9i −0.438828 0.574017i
\(226\) 0 0
\(227\) 4.05348e9 1.52660 0.763300 0.646045i \(-0.223578\pi\)
0.763300 + 0.646045i \(0.223578\pi\)
\(228\) 0 0
\(229\) −2.28775e9 −0.831890 −0.415945 0.909390i \(-0.636549\pi\)
−0.415945 + 0.909390i \(0.636549\pi\)
\(230\) 0 0
\(231\) 9.17822e8i 0.322337i
\(232\) 0 0
\(233\) 3.13148e9i 1.06249i 0.847217 + 0.531247i \(0.178276\pi\)
−0.847217 + 0.531247i \(0.821724\pi\)
\(234\) 0 0
\(235\) 2.79305e9 + 1.38049e9i 0.915815 + 0.452650i
\(236\) 0 0
\(237\) 3.19760e9i 1.01352i
\(238\) 0 0
\(239\) 1.66159e9i 0.509251i 0.967040 + 0.254626i \(0.0819523\pi\)
−0.967040 + 0.254626i \(0.918048\pi\)
\(240\) 0 0
\(241\) −1.60357e9 −0.475358 −0.237679 0.971344i \(-0.576387\pi\)
−0.237679 + 0.971344i \(0.576387\pi\)
\(242\) 0 0
\(243\) −3.61295e9 −1.03618
\(244\) 0 0
\(245\) −2.80622e9 1.38700e9i −0.778857 0.384957i
\(246\) 0 0
\(247\) −3.26980e9 −0.878484
\(248\) 0 0
\(249\) −3.73477e9 −0.971554
\(250\) 0 0
\(251\) 6.18770e9i 1.55896i −0.626429 0.779478i \(-0.715484\pi\)
0.626429 0.779478i \(-0.284516\pi\)
\(252\) 0 0
\(253\) 1.06004e10i 2.58727i
\(254\) 0 0
\(255\) −4.83268e8 + 9.77763e8i −0.114295 + 0.231245i
\(256\) 0 0
\(257\) 6.20387e9i 1.42210i 0.703142 + 0.711050i \(0.251780\pi\)
−0.703142 + 0.711050i \(0.748220\pi\)
\(258\) 0 0
\(259\) 1.49762e9i 0.332815i
\(260\) 0 0
\(261\) 8.75775e8 0.188725
\(262\) 0 0
\(263\) −1.96327e9 −0.410353 −0.205177 0.978725i \(-0.565777\pi\)
−0.205177 + 0.978725i \(0.565777\pi\)
\(264\) 0 0
\(265\) −1.93199e9 + 3.90886e9i −0.391761 + 0.792623i
\(266\) 0 0
\(267\) 4.89183e8 0.0962557
\(268\) 0 0
\(269\) −6.31601e9 −1.20624 −0.603120 0.797651i \(-0.706076\pi\)
−0.603120 + 0.797651i \(0.706076\pi\)
\(270\) 0 0
\(271\) 4.71258e9i 0.873739i −0.899525 0.436869i \(-0.856087\pi\)
0.899525 0.436869i \(-0.143913\pi\)
\(272\) 0 0
\(273\) 1.52612e9i 0.274751i
\(274\) 0 0
\(275\) 7.67599e9 5.86818e9i 1.34216 1.02606i
\(276\) 0 0
\(277\) 1.00765e8i 0.0171156i 0.999963 + 0.00855780i \(0.00272406\pi\)
−0.999963 + 0.00855780i \(0.997276\pi\)
\(278\) 0 0
\(279\) 7.33614e8i 0.121074i
\(280\) 0 0
\(281\) −4.26355e9 −0.683827 −0.341914 0.939731i \(-0.611075\pi\)
−0.341914 + 0.939731i \(0.611075\pi\)
\(282\) 0 0
\(283\) −1.16260e10 −1.81253 −0.906265 0.422710i \(-0.861079\pi\)
−0.906265 + 0.422710i \(0.861079\pi\)
\(284\) 0 0
\(285\) −9.39371e8 + 1.90056e9i −0.142383 + 0.288073i
\(286\) 0 0
\(287\) −1.74563e9 −0.257292
\(288\) 0 0
\(289\) 5.30289e9 0.760189
\(290\) 0 0
\(291\) 3.73176e9i 0.520405i
\(292\) 0 0
\(293\) 3.75705e9i 0.509772i −0.966971 0.254886i \(-0.917962\pi\)
0.966971 0.254886i \(-0.0820380\pi\)
\(294\) 0 0
\(295\) 1.56522e9 3.16680e9i 0.206675 0.418151i
\(296\) 0 0
\(297\) 1.19271e10i 1.53289i
\(298\) 0 0
\(299\) 1.76260e10i 2.20531i
\(300\) 0 0
\(301\) −1.24428e9 −0.151584
\(302\) 0 0
\(303\) 4.60624e9 0.546483
\(304\) 0 0
\(305\) −3.77480e9 1.86573e9i −0.436209 0.215600i
\(306\) 0 0
\(307\) −5.80347e9 −0.653333 −0.326666 0.945140i \(-0.605925\pi\)
−0.326666 + 0.945140i \(0.605925\pi\)
\(308\) 0 0
\(309\) 4.10652e9 0.450443
\(310\) 0 0
\(311\) 1.22144e10i 1.30566i 0.757503 + 0.652832i \(0.226419\pi\)
−0.757503 + 0.652832i \(0.773581\pi\)
\(312\) 0 0
\(313\) 8.99814e9i 0.937509i −0.883328 0.468755i \(-0.844703\pi\)
0.883328 0.468755i \(-0.155297\pi\)
\(314\) 0 0
\(315\) −2.31001e9 1.14174e9i −0.234623 0.115965i
\(316\) 0 0
\(317\) 2.25206e9i 0.223019i 0.993763 + 0.111510i \(0.0355686\pi\)
−0.993763 + 0.111510i \(0.964431\pi\)
\(318\) 0 0
\(319\) 4.56953e9i 0.441275i
\(320\) 0 0
\(321\) 3.76962e9 0.355040
\(322\) 0 0
\(323\) −3.25169e9 −0.298744
\(324\) 0 0
\(325\) 1.27634e10 9.75741e9i 1.14401 0.874583i
\(326\) 0 0
\(327\) 2.05718e9 0.179920
\(328\) 0 0
\(329\) 4.33533e9 0.370032
\(330\) 0 0
\(331\) 1.68572e9i 0.140434i −0.997532 0.0702172i \(-0.977631\pi\)
0.997532 0.0702172i \(-0.0223692\pi\)
\(332\) 0 0
\(333\) 8.16342e9i 0.663889i
\(334\) 0 0
\(335\) 2.79885e9 + 1.38336e9i 0.222229 + 0.109839i
\(336\) 0 0
\(337\) 7.73250e9i 0.599515i 0.954015 + 0.299758i \(0.0969058\pi\)
−0.954015 + 0.299758i \(0.903094\pi\)
\(338\) 0 0
\(339\) 7.84470e9i 0.593988i
\(340\) 0 0
\(341\) 3.82778e9 0.283093
\(342\) 0 0
\(343\) −9.36933e9 −0.676912
\(344\) 0 0
\(345\) 1.02451e10 + 5.06372e9i 0.723167 + 0.357432i
\(346\) 0 0
\(347\) 3.07433e9 0.212047 0.106023 0.994364i \(-0.466188\pi\)
0.106023 + 0.994364i \(0.466188\pi\)
\(348\) 0 0
\(349\) 1.30882e10 0.882224 0.441112 0.897452i \(-0.354584\pi\)
0.441112 + 0.897452i \(0.354584\pi\)
\(350\) 0 0
\(351\) 1.98320e10i 1.30659i
\(352\) 0 0
\(353\) 6.61462e9i 0.425996i −0.977053 0.212998i \(-0.931677\pi\)
0.977053 0.212998i \(-0.0683229\pi\)
\(354\) 0 0
\(355\) 5.75215e9 1.16379e10i 0.362173 0.732760i
\(356\) 0 0
\(357\) 1.51767e9i 0.0934338i
\(358\) 0 0
\(359\) 3.34086e9i 0.201132i 0.994930 + 0.100566i \(0.0320653\pi\)
−0.994930 + 0.100566i \(0.967935\pi\)
\(360\) 0 0
\(361\) 1.06630e10 0.627840
\(362\) 0 0
\(363\) 1.69582e10 0.976681
\(364\) 0 0
\(365\) −9.18783e9 + 1.85891e10i −0.517656 + 1.04734i
\(366\) 0 0
\(367\) −9.60705e9 −0.529573 −0.264787 0.964307i \(-0.585302\pi\)
−0.264787 + 0.964307i \(0.585302\pi\)
\(368\) 0 0
\(369\) 9.51533e9 0.513237
\(370\) 0 0
\(371\) 6.06727e9i 0.320256i
\(372\) 0 0
\(373\) 1.82578e10i 0.943222i −0.881807 0.471611i \(-0.843673\pi\)
0.881807 0.471611i \(-0.156327\pi\)
\(374\) 0 0
\(375\) −2.00472e9 1.02218e10i −0.101375 0.516897i
\(376\) 0 0
\(377\) 7.59806e9i 0.376129i
\(378\) 0 0
\(379\) 2.08206e10i 1.00910i −0.863382 0.504551i \(-0.831658\pi\)
0.863382 0.504551i \(-0.168342\pi\)
\(380\) 0 0
\(381\) −1.50587e10 −0.714639
\(382\) 0 0
\(383\) −2.29859e10 −1.06824 −0.534118 0.845410i \(-0.679356\pi\)
−0.534118 + 0.845410i \(0.679356\pi\)
\(384\) 0 0
\(385\) 5.95727e9 1.20529e10i 0.271147 0.548592i
\(386\) 0 0
\(387\) 6.78249e9 0.302374
\(388\) 0 0
\(389\) 1.60076e10 0.699083 0.349541 0.936921i \(-0.386337\pi\)
0.349541 + 0.936921i \(0.386337\pi\)
\(390\) 0 0
\(391\) 1.75284e10i 0.749954i
\(392\) 0 0
\(393\) 5.14719e9i 0.215774i
\(394\) 0 0
\(395\) −2.07545e10 + 4.19912e10i −0.852560 + 1.72492i
\(396\) 0 0
\(397\) 1.72716e10i 0.695299i −0.937625 0.347650i \(-0.886980\pi\)
0.937625 0.347650i \(-0.113020\pi\)
\(398\) 0 0
\(399\) 2.95002e9i 0.116395i
\(400\) 0 0
\(401\) −1.56829e10 −0.606524 −0.303262 0.952907i \(-0.598076\pi\)
−0.303262 + 0.952907i \(0.598076\pi\)
\(402\) 0 0
\(403\) 6.36470e9 0.241300
\(404\) 0 0
\(405\) 5.89965e9 + 2.91595e9i 0.219284 + 0.108383i
\(406\) 0 0
\(407\) 4.25943e10 1.55229
\(408\) 0 0
\(409\) −1.05519e8 −0.00377082 −0.00188541 0.999998i \(-0.500600\pi\)
−0.00188541 + 0.999998i \(0.500600\pi\)
\(410\) 0 0
\(411\) 1.27149e10i 0.445602i
\(412\) 0 0
\(413\) 4.91546e9i 0.168952i
\(414\) 0 0
\(415\) 4.90454e10 + 2.42412e10i 1.65351 + 0.817261i
\(416\) 0 0
\(417\) 1.70707e10i 0.564555i
\(418\) 0 0
\(419\) 1.28448e10i 0.416746i −0.978049 0.208373i \(-0.933183\pi\)
0.978049 0.208373i \(-0.0668168\pi\)
\(420\) 0 0
\(421\) 3.08274e10 0.981315 0.490658 0.871353i \(-0.336757\pi\)
0.490658 + 0.871353i \(0.336757\pi\)
\(422\) 0 0
\(423\) −2.36316e10 −0.738127
\(424\) 0 0
\(425\) 1.26927e10 9.70336e9i 0.389042 0.297417i
\(426\) 0 0
\(427\) −5.85918e9 −0.176249
\(428\) 0 0
\(429\) 4.34049e10 1.28147
\(430\) 0 0
\(431\) 9.59665e9i 0.278106i −0.990285 0.139053i \(-0.955594\pi\)
0.990285 0.139053i \(-0.0444058\pi\)
\(432\) 0 0
\(433\) 6.69168e8i 0.0190363i 0.999955 + 0.00951817i \(0.00302977\pi\)
−0.999955 + 0.00951817i \(0.996970\pi\)
\(434\) 0 0
\(435\) 4.41635e9 + 2.18282e9i 0.123341 + 0.0609622i
\(436\) 0 0
\(437\) 3.40714e10i 0.934254i
\(438\) 0 0
\(439\) 3.75455e10i 1.01088i −0.862862 0.505440i \(-0.831330\pi\)
0.862862 0.505440i \(-0.168670\pi\)
\(440\) 0 0
\(441\) 2.37430e10 0.627742
\(442\) 0 0
\(443\) −1.19986e10 −0.311542 −0.155771 0.987793i \(-0.549786\pi\)
−0.155771 + 0.987793i \(0.549786\pi\)
\(444\) 0 0
\(445\) −6.42400e9 3.17512e9i −0.163819 0.0809693i
\(446\) 0 0
\(447\) 3.28871e10 0.823751
\(448\) 0 0
\(449\) 6.86153e10 1.68825 0.844123 0.536150i \(-0.180122\pi\)
0.844123 + 0.536150i \(0.180122\pi\)
\(450\) 0 0
\(451\) 4.96482e10i 1.20004i
\(452\) 0 0
\(453\) 2.18235e10i 0.518240i
\(454\) 0 0
\(455\) 9.90554e9 2.00412e10i 0.231117 0.467604i
\(456\) 0 0
\(457\) 5.08092e10i 1.16487i −0.812877 0.582435i \(-0.802100\pi\)
0.812877 0.582435i \(-0.197900\pi\)
\(458\) 0 0
\(459\) 1.97222e10i 0.444328i
\(460\) 0 0
\(461\) 3.46473e10 0.767124 0.383562 0.923515i \(-0.374697\pi\)
0.383562 + 0.923515i \(0.374697\pi\)
\(462\) 0 0
\(463\) −4.92524e10 −1.07178 −0.535888 0.844289i \(-0.680023\pi\)
−0.535888 + 0.844289i \(0.680023\pi\)
\(464\) 0 0
\(465\) 1.82849e9 3.69946e9i 0.0391094 0.0791274i
\(466\) 0 0
\(467\) −7.83687e9 −0.164769 −0.0823844 0.996601i \(-0.526254\pi\)
−0.0823844 + 0.996601i \(0.526254\pi\)
\(468\) 0 0
\(469\) 4.34433e9 0.0897907
\(470\) 0 0
\(471\) 3.63246e9i 0.0738103i
\(472\) 0 0
\(473\) 3.53890e10i 0.707007i
\(474\) 0 0
\(475\) 2.46718e10 1.88613e10i 0.484649 0.370507i
\(476\) 0 0
\(477\) 3.30723e10i 0.638838i
\(478\) 0 0
\(479\) 2.94112e10i 0.558689i −0.960191 0.279345i \(-0.909883\pi\)
0.960191 0.279345i \(-0.0901172\pi\)
\(480\) 0 0
\(481\) 7.08244e10 1.32313
\(482\) 0 0
\(483\) 1.59022e10 0.292193
\(484\) 0 0
\(485\) 2.42216e10 4.90059e10i 0.437760 0.885689i
\(486\) 0 0
\(487\) −5.85444e10 −1.04080 −0.520402 0.853921i \(-0.674218\pi\)
−0.520402 + 0.853921i \(0.674218\pi\)
\(488\) 0 0
\(489\) −1.19160e10 −0.208399
\(490\) 0 0
\(491\) 8.05466e10i 1.38587i −0.721002 0.692933i \(-0.756318\pi\)
0.721002 0.692933i \(-0.243682\pi\)
\(492\) 0 0
\(493\) 7.55597e9i 0.127909i
\(494\) 0 0
\(495\) −3.24726e10 + 6.56997e10i −0.540875 + 1.09431i
\(496\) 0 0
\(497\) 1.80642e10i 0.296069i
\(498\) 0 0
\(499\) 2.25270e10i 0.363330i 0.983360 + 0.181665i \(0.0581487\pi\)
−0.983360 + 0.181665i \(0.941851\pi\)
\(500\) 0 0
\(501\) 1.83763e10 0.291681
\(502\) 0 0
\(503\) 4.17996e10 0.652981 0.326491 0.945200i \(-0.394134\pi\)
0.326491 + 0.945200i \(0.394134\pi\)
\(504\) 0 0
\(505\) −6.04897e10 2.98976e10i −0.930070 0.459695i
\(506\) 0 0
\(507\) 3.73680e10 0.565547
\(508\) 0 0
\(509\) −1.06239e10 −0.158276 −0.0791378 0.996864i \(-0.525217\pi\)
−0.0791378 + 0.996864i \(0.525217\pi\)
\(510\) 0 0
\(511\) 2.88537e10i 0.423173i
\(512\) 0 0
\(513\) 3.83357e10i 0.553521i
\(514\) 0 0
\(515\) −5.39273e10 2.66540e10i −0.766619 0.378908i
\(516\) 0 0
\(517\) 1.23303e11i 1.72588i
\(518\) 0 0
\(519\) 2.90661e10i 0.400606i
\(520\) 0 0
\(521\) −6.29819e10 −0.854800 −0.427400 0.904063i \(-0.640570\pi\)
−0.427400 + 0.904063i \(0.640570\pi\)
\(522\) 0 0
\(523\) 2.56642e10 0.343021 0.171511 0.985182i \(-0.445135\pi\)
0.171511 + 0.985182i \(0.445135\pi\)
\(524\) 0 0
\(525\) −8.80316e9 1.15151e10i −0.115878 0.151576i
\(526\) 0 0
\(527\) 6.32945e9 0.0820584
\(528\) 0 0
\(529\) 1.05353e11 1.34531
\(530\) 0 0
\(531\) 2.67938e10i 0.337021i
\(532\) 0 0
\(533\) 8.25532e10i 1.02288i
\(534\) 0 0
\(535\) −4.95031e10 2.44673e10i −0.604250 0.298656i
\(536\) 0 0
\(537\) 7.94490e10i 0.955413i
\(538\) 0 0
\(539\) 1.23884e11i 1.46778i
\(540\) 0 0
\(541\) −7.25189e10 −0.846569 −0.423285 0.905997i \(-0.639123\pi\)
−0.423285 + 0.905997i \(0.639123\pi\)
\(542\) 0 0
\(543\) 4.03206e10 0.463797
\(544\) 0 0
\(545\) −2.70150e10 1.33524e10i −0.306210 0.151347i
\(546\) 0 0
\(547\) 2.29110e10 0.255914 0.127957 0.991780i \(-0.459158\pi\)
0.127957 + 0.991780i \(0.459158\pi\)
\(548\) 0 0
\(549\) 3.19380e10 0.351575
\(550\) 0 0
\(551\) 1.46872e10i 0.159343i
\(552\) 0 0
\(553\) 6.51781e10i 0.696949i
\(554\) 0 0
\(555\) 2.03469e10 4.11664e10i 0.214450 0.433882i
\(556\) 0 0
\(557\) 1.28630e11i 1.33636i 0.744001 + 0.668178i \(0.232926\pi\)
−0.744001 + 0.668178i \(0.767074\pi\)
\(558\) 0 0
\(559\) 5.88436e10i 0.602632i
\(560\) 0 0
\(561\) 4.31645e10 0.435788
\(562\) 0 0
\(563\) −1.71738e11 −1.70936 −0.854678 0.519159i \(-0.826245\pi\)
−0.854678 + 0.519159i \(0.826245\pi\)
\(564\) 0 0
\(565\) −5.09173e10 + 1.03017e11i −0.499656 + 1.01092i
\(566\) 0 0
\(567\) 9.15734e9 0.0886007
\(568\) 0 0
\(569\) −8.20809e10 −0.783056 −0.391528 0.920166i \(-0.628053\pi\)
−0.391528 + 0.920166i \(0.628053\pi\)
\(570\) 0 0
\(571\) 1.07462e11i 1.01090i 0.862855 + 0.505452i \(0.168674\pi\)
−0.862855 + 0.505452i \(0.831326\pi\)
\(572\) 0 0
\(573\) 2.61914e10i 0.242963i
\(574\) 0 0
\(575\) −1.01672e11 1.32995e11i −0.930105 1.21664i
\(576\) 0 0
\(577\) 3.37727e10i 0.304693i −0.988327 0.152346i \(-0.951317\pi\)
0.988327 0.152346i \(-0.0486830\pi\)
\(578\) 0 0
\(579\) 3.17866e10i 0.282832i
\(580\) 0 0
\(581\) 7.61276e10 0.668094
\(582\) 0 0
\(583\) 1.72561e11 1.49372
\(584\) 0 0
\(585\) −5.39944e10 + 1.09243e11i −0.461026 + 0.932761i
\(586\) 0 0
\(587\) −1.01250e11 −0.852793 −0.426396 0.904536i \(-0.640217\pi\)
−0.426396 + 0.904536i \(0.640217\pi\)
\(588\) 0 0
\(589\) 1.23031e10 0.102224
\(590\) 0 0
\(591\) 1.05555e11i 0.865229i
\(592\) 0 0
\(593\) 1.86134e11i 1.50525i −0.658451 0.752624i \(-0.728788\pi\)
0.658451 0.752624i \(-0.271212\pi\)
\(594\) 0 0
\(595\) 9.85067e9 1.99302e10i 0.0785955 0.159017i
\(596\) 0 0
\(597\) 3.67969e10i 0.289677i
\(598\) 0 0
\(599\) 7.77748e10i 0.604131i 0.953287 + 0.302066i \(0.0976762\pi\)
−0.953287 + 0.302066i \(0.902324\pi\)
\(600\) 0 0
\(601\) −1.76175e11 −1.35035 −0.675176 0.737657i \(-0.735932\pi\)
−0.675176 + 0.737657i \(0.735932\pi\)
\(602\) 0 0
\(603\) −2.36806e10 −0.179112
\(604\) 0 0
\(605\) −2.22697e11 1.10070e11i −1.66223 0.821574i
\(606\) 0 0
\(607\) −1.04822e11 −0.772143 −0.386071 0.922469i \(-0.626168\pi\)
−0.386071 + 0.922469i \(0.626168\pi\)
\(608\) 0 0
\(609\) 6.85499e9 0.0498353
\(610\) 0 0
\(611\) 2.05023e11i 1.47109i
\(612\) 0 0
\(613\) 1.64383e10i 0.116417i −0.998304 0.0582085i \(-0.981461\pi\)
0.998304 0.0582085i \(-0.0185388\pi\)
\(614\) 0 0
\(615\) 4.79838e10 + 2.37164e10i 0.335424 + 0.165786i
\(616\) 0 0
\(617\) 2.58887e11i 1.78636i 0.449698 + 0.893181i \(0.351532\pi\)
−0.449698 + 0.893181i \(0.648468\pi\)
\(618\) 0 0
\(619\) 1.40280e11i 0.955508i −0.878494 0.477754i \(-0.841451\pi\)
0.878494 0.477754i \(-0.158549\pi\)
\(620\) 0 0
\(621\) −2.06650e11 −1.38953
\(622\) 0 0
\(623\) −9.97123e9 −0.0661906
\(624\) 0 0
\(625\) −4.00202e10 + 1.47246e11i −0.262277 + 0.964993i
\(626\) 0 0
\(627\) 8.39026e10 0.542882
\(628\) 0 0
\(629\) 7.04320e10 0.449953
\(630\) 0 0
\(631\) 3.75788e10i 0.237042i −0.992952 0.118521i \(-0.962185\pi\)
0.992952 0.118521i \(-0.0378153\pi\)
\(632\) 0 0
\(633\) 8.80662e10i 0.548523i
\(634\) 0 0
\(635\) 1.97752e11 + 9.77406e10i 1.21626 + 0.601146i
\(636\) 0 0
\(637\) 2.05990e11i 1.25109i
\(638\) 0 0
\(639\) 9.84666e10i 0.590589i
\(640\) 0 0
\(641\) −9.09734e10 −0.538868 −0.269434 0.963019i \(-0.586837\pi\)
−0.269434 + 0.963019i \(0.586837\pi\)
\(642\) 0 0
\(643\) −3.82679e10 −0.223868 −0.111934 0.993716i \(-0.535704\pi\)
−0.111934 + 0.993716i \(0.535704\pi\)
\(644\) 0 0
\(645\) 3.42027e10 + 1.69050e10i 0.197616 + 0.0976733i
\(646\) 0 0
\(647\) −1.00170e11 −0.571635 −0.285818 0.958284i \(-0.592265\pi\)
−0.285818 + 0.958284i \(0.592265\pi\)
\(648\) 0 0
\(649\) −1.39802e11 −0.788016
\(650\) 0 0
\(651\) 5.74225e9i 0.0319711i
\(652\) 0 0
\(653\) 1.26162e11i 0.693869i −0.937889 0.346934i \(-0.887223\pi\)
0.937889 0.346934i \(-0.112777\pi\)
\(654\) 0 0
\(655\) 3.34087e10 6.75934e10i 0.181507 0.367231i
\(656\) 0 0
\(657\) 1.57279e11i 0.844132i
\(658\) 0 0
\(659\) 1.89374e9i 0.0100410i 0.999987 + 0.00502051i \(0.00159809\pi\)
−0.999987 + 0.00502051i \(0.998402\pi\)
\(660\) 0 0
\(661\) −2.06198e11 −1.08014 −0.540068 0.841622i \(-0.681601\pi\)
−0.540068 + 0.841622i \(0.681601\pi\)
\(662\) 0 0
\(663\) 7.17724e10 0.371453
\(664\) 0 0
\(665\) 1.91476e10 3.87400e10i 0.0979102 0.198095i
\(666\) 0 0
\(667\) 7.91720e10 0.400008
\(668\) 0 0
\(669\) −1.06478e11 −0.531563
\(670\) 0 0
\(671\) 1.66643e11i 0.822047i
\(672\) 0 0
\(673\) 2.75305e11i 1.34200i 0.741455 + 0.671002i \(0.234136\pi\)
−0.741455 + 0.671002i \(0.765864\pi\)
\(674\) 0 0
\(675\) 1.14397e11 + 1.49640e11i 0.551063 + 0.720827i
\(676\) 0 0
\(677\) 2.05068e11i 0.976208i −0.872785 0.488104i \(-0.837689\pi\)
0.872785 0.488104i \(-0.162311\pi\)
\(678\) 0 0
\(679\) 7.60661e10i 0.357859i
\(680\) 0 0
\(681\) −1.72947e11 −0.804127
\(682\) 0 0
\(683\) 3.92855e11 1.80530 0.902649 0.430377i \(-0.141620\pi\)
0.902649 + 0.430377i \(0.141620\pi\)
\(684\) 0 0
\(685\) −8.25284e10 + 1.66974e11i −0.374836 + 0.758379i
\(686\) 0 0
\(687\) 9.76096e10 0.438193
\(688\) 0 0
\(689\) 2.86929e11 1.27320
\(690\) 0 0
\(691\) 1.92324e11i 0.843570i 0.906696 + 0.421785i \(0.138596\pi\)
−0.906696 + 0.421785i \(0.861404\pi\)
\(692\) 0 0
\(693\) 1.01978e11i 0.442154i
\(694\) 0 0
\(695\) −1.10800e11 + 2.24174e11i −0.474898 + 0.960828i
\(696\) 0 0
\(697\) 8.20959e10i 0.347849i
\(698\) 0 0
\(699\) 1.33609e11i 0.559662i
\(700\) 0 0
\(701\) −2.51795e11 −1.04274 −0.521369 0.853331i \(-0.674579\pi\)
−0.521369 + 0.853331i \(0.674579\pi\)
\(702\) 0 0
\(703\) 1.36905e11 0.560528
\(704\) 0 0
\(705\) −1.19169e11 5.89004e10i −0.482400 0.238431i
\(706\) 0 0
\(707\) −9.38911e10 −0.375791
\(708\) 0 0
\(709\) 4.10364e11 1.62400 0.811998 0.583661i \(-0.198380\pi\)
0.811998 + 0.583661i \(0.198380\pi\)
\(710\) 0 0
\(711\) 3.55281e11i 1.39025i
\(712\) 0 0
\(713\) 6.63204e10i 0.256619i
\(714\) 0 0
\(715\) −5.69998e11 2.81727e11i −2.18097 1.07796i
\(716\) 0 0
\(717\) 7.08938e10i 0.268245i
\(718\) 0 0
\(719\) 2.36375e11i 0.884474i −0.896898 0.442237i \(-0.854185\pi\)
0.896898 0.442237i \(-0.145815\pi\)
\(720\) 0 0
\(721\) −8.37050e10 −0.309749
\(722\) 0 0
\(723\) 6.84185e10 0.250392
\(724\) 0 0
\(725\) −4.38280e10 5.73300e10i −0.158635 0.207506i
\(726\) 0 0
\(727\) 1.16942e11 0.418631 0.209316 0.977848i \(-0.432876\pi\)
0.209316 + 0.977848i \(0.432876\pi\)
\(728\) 0 0
\(729\) 8.50669e10 0.301197
\(730\) 0 0
\(731\) 5.85176e10i 0.204936i
\(732\) 0 0
\(733\) 4.81267e11i 1.66713i 0.552420 + 0.833566i \(0.313704\pi\)
−0.552420 + 0.833566i \(0.686296\pi\)
\(734\) 0 0
\(735\) 1.19731e11 + 5.91781e10i 0.410258 + 0.202774i
\(736\) 0 0
\(737\) 1.23558e11i 0.418796i
\(738\) 0 0
\(739\) 9.92996e10i 0.332943i −0.986046 0.166471i \(-0.946763\pi\)
0.986046 0.166471i \(-0.0532374\pi\)
\(740\) 0 0
\(741\) 1.39510e11 0.462736
\(742\) 0 0
\(743\) −6.32997e10 −0.207705 −0.103852 0.994593i \(-0.533117\pi\)
−0.103852 + 0.994593i \(0.533117\pi\)
\(744\) 0 0
\(745\) −4.31877e11 2.13459e11i −1.40196 0.692931i
\(746\) 0 0
\(747\) −4.14966e11 −1.33269
\(748\) 0 0
\(749\) −7.68378e10 −0.244145
\(750\) 0 0
\(751\) 4.98905e11i 1.56840i 0.620505 + 0.784202i \(0.286928\pi\)
−0.620505 + 0.784202i \(0.713072\pi\)
\(752\) 0 0
\(753\) 2.64006e11i 0.821171i
\(754\) 0 0
\(755\) −1.41649e11 + 2.86588e11i −0.435938 + 0.882003i
\(756\) 0 0
\(757\) 1.79684e11i 0.547174i −0.961847 0.273587i \(-0.911790\pi\)
0.961847 0.273587i \(-0.0882101\pi\)
\(758\) 0 0
\(759\) 4.52281e11i 1.36283i
\(760\) 0 0
\(761\) −3.04576e11 −0.908148 −0.454074 0.890964i \(-0.650030\pi\)
−0.454074 + 0.890964i \(0.650030\pi\)
\(762\) 0 0
\(763\) −4.19323e10 −0.123723
\(764\) 0 0
\(765\) −5.36953e10 + 1.08638e11i −0.156780 + 0.317202i
\(766\) 0 0
\(767\) −2.32458e11 −0.671682
\(768\) 0 0
\(769\) 2.22920e11 0.637446 0.318723 0.947848i \(-0.396746\pi\)
0.318723 + 0.947848i \(0.396746\pi\)
\(770\) 0 0
\(771\) 2.64696e11i 0.749082i
\(772\) 0 0
\(773\) 5.59182e11i 1.56616i −0.621924 0.783078i \(-0.713649\pi\)
0.621924 0.783078i \(-0.286351\pi\)
\(774\) 0 0
\(775\) −4.80239e10 + 3.67136e10i −0.133122 + 0.101770i
\(776\) 0 0
\(777\) 6.38979e10i 0.175308i
\(778\) 0 0
\(779\) 1.59577e11i 0.433332i
\(780\) 0 0
\(781\) −5.13770e11 −1.38091
\(782\) 0 0
\(783\) −8.90808e10 −0.236994
\(784\) 0 0
\(785\) 2.35770e10 4.77018e10i 0.0620884 0.125619i
\(786\) 0 0
\(787\) 1.13289e11 0.295318 0.147659 0.989038i \(-0.452826\pi\)
0.147659 + 0.989038i \(0.452826\pi\)
\(788\) 0 0
\(789\) 8.37655e10 0.216151
\(790\) 0 0
\(791\) 1.59902e11i 0.408458i
\(792\) 0 0
\(793\) 2.77088e11i 0.700689i
\(794\) 0 0
\(795\) 8.24308e10 1.66777e11i 0.206358 0.417510i
\(796\) 0 0
\(797\) 7.63543e11i 1.89234i 0.323663 + 0.946172i \(0.395086\pi\)
−0.323663 + 0.946172i \(0.604914\pi\)
\(798\) 0 0
\(799\) 2.03888e11i 0.500269i
\(800\) 0 0
\(801\) 5.43525e10 0.132035
\(802\) 0 0
\(803\) 8.20637e11 1.97374
\(804\) 0 0
\(805\) −2.08830e11 1.03216e11i −0.497289 0.245790i
\(806\) 0 0
\(807\) 2.69480e11 0.635379
\(808\) 0 0
\(809\) 4.67881e11 1.09230 0.546149 0.837688i \(-0.316093\pi\)
0.546149 + 0.837688i \(0.316093\pi\)
\(810\) 0 0
\(811\) 6.66951e11i 1.54174i 0.636994 + 0.770869i \(0.280178\pi\)
−0.636994 + 0.770869i \(0.719822\pi\)
\(812\) 0 0
\(813\) 2.01068e11i 0.460237i
\(814\) 0 0
\(815\) 1.56482e11 + 7.73428e10i 0.354678 + 0.175303i
\(816\) 0 0
\(817\) 1.13746e11i 0.255298i
\(818\) 0 0
\(819\) 1.69565e11i 0.376879i
\(820\) 0 0
\(821\) 4.34647e11 0.956674 0.478337 0.878176i \(-0.341240\pi\)
0.478337 + 0.878176i \(0.341240\pi\)
\(822\) 0 0
\(823\) −6.53323e11 −1.42406 −0.712030 0.702149i \(-0.752224\pi\)
−0.712030 + 0.702149i \(0.752224\pi\)
\(824\) 0 0
\(825\) −3.27506e11 + 2.50373e11i −0.706973 + 0.540471i
\(826\) 0 0
\(827\) −8.42913e10 −0.180203 −0.0901013 0.995933i \(-0.528719\pi\)
−0.0901013 + 0.995933i \(0.528719\pi\)
\(828\) 0 0
\(829\) −1.67984e11 −0.355672 −0.177836 0.984060i \(-0.556910\pi\)
−0.177836 + 0.984060i \(0.556910\pi\)
\(830\) 0 0
\(831\) 4.29928e9i 0.00901553i
\(832\) 0 0
\(833\) 2.04849e11i 0.425455i
\(834\) 0 0
\(835\) −2.41320e11 1.19274e11i −0.496417 0.245359i
\(836\) 0 0
\(837\) 7.46207e10i 0.152040i
\(838\) 0 0
\(839\) 8.94664e11i 1.80556i 0.430102 + 0.902780i \(0.358477\pi\)
−0.430102 + 0.902780i \(0.641523\pi\)
\(840\) 0 0
\(841\) −4.66118e11 −0.931776
\(842\) 0 0
\(843\) 1.81910e11 0.360202
\(844\) 0 0
\(845\) −4.90721e11 2.42543e11i −0.962516 0.475732i
\(846\) 0 0
\(847\) −3.45666e11 −0.671619
\(848\) 0 0
\(849\) 4.96039e11 0.954739
\(850\) 0 0
\(851\) 7.37991e11i 1.40713i
\(852\) 0 0
\(853\) 1.57864e11i 0.298186i −0.988823 0.149093i \(-0.952365\pi\)
0.988823 0.149093i \(-0.0476353\pi\)
\(854\) 0 0
\(855\) −1.04372e11 + 2.11169e11i −0.195308 + 0.395154i
\(856\) 0 0
\(857\) 1.15753e10i 0.0214590i −0.999942 0.0107295i \(-0.996585\pi\)
0.999942 0.0107295i \(-0.00341538\pi\)
\(858\) 0 0
\(859\) 5.96689e10i 0.109591i −0.998498 0.0547956i \(-0.982549\pi\)
0.998498 0.0547956i \(-0.0174507\pi\)
\(860\) 0 0
\(861\) 7.44797e10 0.135527
\(862\) 0 0
\(863\) −1.49504e11 −0.269532 −0.134766 0.990877i \(-0.543028\pi\)
−0.134766 + 0.990877i \(0.543028\pi\)
\(864\) 0 0
\(865\) 1.88658e11 3.81699e11i 0.336986 0.681800i
\(866\) 0 0
\(867\) −2.26255e11 −0.400425
\(868\) 0 0
\(869\) 1.85375e12 3.25067
\(870\) 0 0
\(871\) 2.05449e11i 0.356969i
\(872\) 0 0
\(873\) 4.14631e11i 0.713846i
\(874\) 0 0
\(875\) 4.08632e10 + 2.08356e11i 0.0697108 + 0.355446i
\(876\) 0 0
\(877\) 8.95446e11i 1.51370i −0.653587 0.756852i \(-0.726736\pi\)
0.653587 0.756852i \(-0.273264\pi\)
\(878\) 0 0
\(879\) 1.60299e11i 0.268519i
\(880\) 0 0
\(881\) 9.41351e11 1.56260 0.781300 0.624155i \(-0.214557\pi\)
0.781300 + 0.624155i \(0.214557\pi\)
\(882\) 0 0
\(883\) −8.12182e11 −1.33601 −0.668006 0.744156i \(-0.732852\pi\)
−0.668006 + 0.744156i \(0.732852\pi\)
\(884\) 0 0
\(885\) −6.67821e10 + 1.35116e11i −0.108865 + 0.220258i
\(886\) 0 0
\(887\) 4.35414e11 0.703409 0.351704 0.936111i \(-0.385602\pi\)
0.351704 + 0.936111i \(0.385602\pi\)
\(888\) 0 0
\(889\) 3.06947e11 0.491424
\(890\) 0 0
\(891\) 2.60447e11i 0.413246i
\(892\) 0 0
\(893\) 3.96314e11i 0.623209i
\(894\) 0 0
\(895\) 5.15676e11 1.04333e12i 0.803683 1.62604i
\(896\) 0 0
\(897\) 7.52036e11i 1.16163i
\(898\) 0 0
\(899\) 2.85888e10i 0.0437680i
\(900\) 0 0
\(901\) 2.85339e11 0.432975
\(902\) 0 0
\(903\) 5.30888e10 0.0798458
\(904\) 0 0
\(905\) −5.29494e11 2.61707e11i −0.789345 0.390141i
\(906\) 0 0
\(907\) 8.59055e11 1.26938 0.634690 0.772766i \(-0.281128\pi\)
0.634690 + 0.772766i \(0.281128\pi\)
\(908\) 0 0
\(909\) 5.11793e11 0.749617
\(910\) 0 0
\(911\) 9.78674e11i 1.42090i −0.703746 0.710452i \(-0.748491\pi\)
0.703746 0.710452i \(-0.251509\pi\)
\(912\) 0 0
\(913\) 2.16517e12i 3.11608i
\(914\) 0 0
\(915\) 1.61057e11 + 7.96037e10i 0.229770 + 0.113566i
\(916\) 0 0
\(917\) 1.04917e11i 0.148378i
\(918\) 0 0
\(919\) 3.76307e11i 0.527571i 0.964581 + 0.263785i \(0.0849711\pi\)
−0.964581 + 0.263785i \(0.915029\pi\)
\(920\) 0 0
\(921\) 2.47613e11 0.344139
\(922\) 0 0
\(923\) −8.54278e11 −1.17704
\(924\) 0 0
\(925\) −5.34395e11 + 4.08537e11i −0.729954 + 0.558039i
\(926\) 0 0
\(927\) 4.56270e11 0.617878
\(928\) 0 0
\(929\) 1.22156e12 1.64003 0.820013 0.572345i \(-0.193966\pi\)
0.820013 + 0.572345i \(0.193966\pi\)
\(930\) 0 0
\(931\) 3.98183e11i 0.530009i
\(932\) 0 0
\(933\) 5.21144e11i 0.687751i
\(934\) 0 0
\(935\) −5.66841e11 2.80166e11i −0.741677 0.366580i
\(936\) 0 0
\(937\) 5.06116e11i 0.656586i 0.944576 + 0.328293i \(0.106473\pi\)
−0.944576 + 0.328293i \(0.893527\pi\)
\(938\) 0 0
\(939\) 3.83917e11i 0.493827i
\(940\) 0 0
\(941\) 6.00360e9 0.00765690 0.00382845 0.999993i \(-0.498781\pi\)
0.00382845 + 0.999993i \(0.498781\pi\)
\(942\) 0 0
\(943\) 8.60207e11 1.08782
\(944\) 0 0
\(945\) 2.34966e11 + 1.16134e11i 0.294631 + 0.145624i
\(946\) 0 0
\(947\) −3.08522e11 −0.383606 −0.191803 0.981433i \(-0.561433\pi\)
−0.191803 + 0.981433i \(0.561433\pi\)
\(948\) 0 0
\(949\) 1.36453e12 1.68235
\(950\) 0 0
\(951\) 9.60868e10i 0.117474i
\(952\) 0 0
\(953\) 6.14491e11i 0.744979i −0.928036 0.372489i \(-0.878504\pi\)
0.928036 0.372489i \(-0.121496\pi\)
\(954\) 0 0
\(955\) 1.69999e11 3.43948e11i 0.204378 0.413504i
\(956\) 0 0
\(957\) 1.94965e11i 0.232439i
\(958\) 0 0
\(959\) 2.59174e11i 0.306420i
\(960\) 0 0
\(961\) 8.28943e11 0.971921
\(962\) 0 0
\(963\) 4.18838e11 0.487013
\(964\) 0 0
\(965\) 2.06316e11 4.17424e11i 0.237916 0.481358i
\(966\) 0 0
\(967\) −7.29374e11 −0.834150 −0.417075 0.908872i \(-0.636945\pi\)
−0.417075 + 0.908872i \(0.636945\pi\)
\(968\) 0 0
\(969\) 1.38738e11 0.157362
\(970\) 0 0
\(971\) 4.05501e11i 0.456158i 0.973643 + 0.228079i \(0.0732444\pi\)
−0.973643 + 0.228079i \(0.926756\pi\)
\(972\) 0 0
\(973\) 3.47959e11i 0.388219i
\(974\) 0 0
\(975\) −5.44565e11 + 4.16312e11i −0.602603 + 0.460681i
\(976\) 0 0
\(977\) 5.72274e11i 0.628096i 0.949407 + 0.314048i \(0.101685\pi\)
−0.949407 + 0.314048i \(0.898315\pi\)
\(978\) 0 0
\(979\) 2.83595e11i 0.308722i
\(980\) 0 0
\(981\) 2.28570e11 0.246799
\(982\) 0 0
\(983\) 8.31746e11 0.890792 0.445396 0.895334i \(-0.353063\pi\)
0.445396 + 0.895334i \(0.353063\pi\)
\(984\) 0 0
\(985\) −6.85125e11 + 1.38617e12i −0.727821 + 1.47255i
\(986\) 0 0
\(987\) −1.84972e11 −0.194912
\(988\) 0 0
\(989\) 6.13152e11 0.640889
\(990\) 0 0
\(991\) 1.13988e12i 1.18186i 0.806724 + 0.590928i \(0.201238\pi\)
−0.806724 + 0.590928i \(0.798762\pi\)
\(992\) 0 0
\(993\) 7.19234e10i 0.0739729i
\(994\) 0 0
\(995\) 2.38836e11 4.83221e11i 0.243673 0.493007i
\(996\) 0 0
\(997\) 1.49273e11i 0.151078i 0.997143 + 0.0755390i \(0.0240677\pi\)
−0.997143 + 0.0755390i \(0.975932\pi\)
\(998\) 0 0
\(999\) 8.30355e11i 0.833685i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.9.h.g.319.10 20
4.3 odd 2 inner 320.9.h.g.319.12 20
5.4 even 2 inner 320.9.h.g.319.11 20
8.3 odd 2 20.9.d.c.19.17 yes 20
8.5 even 2 20.9.d.c.19.3 20
20.19 odd 2 inner 320.9.h.g.319.9 20
40.3 even 4 100.9.b.g.51.7 20
40.13 odd 4 100.9.b.g.51.8 20
40.19 odd 2 20.9.d.c.19.4 yes 20
40.27 even 4 100.9.b.g.51.14 20
40.29 even 2 20.9.d.c.19.18 yes 20
40.37 odd 4 100.9.b.g.51.13 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.d.c.19.3 20 8.5 even 2
20.9.d.c.19.4 yes 20 40.19 odd 2
20.9.d.c.19.17 yes 20 8.3 odd 2
20.9.d.c.19.18 yes 20 40.29 even 2
100.9.b.g.51.7 20 40.3 even 4
100.9.b.g.51.8 20 40.13 odd 4
100.9.b.g.51.13 20 40.37 odd 4
100.9.b.g.51.14 20 40.27 even 4
320.9.h.g.319.9 20 20.19 odd 2 inner
320.9.h.g.319.10 20 1.1 even 1 trivial
320.9.h.g.319.11 20 5.4 even 2 inner
320.9.h.g.319.12 20 4.3 odd 2 inner