Properties

Label 100.9.b.g.51.7
Level $100$
Weight $9$
Character 100.51
Analytic conductor $40.738$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [100,9,Mod(51,100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("100.51"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 100.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7378610061\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 94 x^{18} + 5343 x^{16} - 172772 x^{14} + 36131456 x^{12} - 3044563968 x^{10} + \cdots + 11\!\cdots\!76 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{75}\cdot 3^{4}\cdot 5^{14} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.7
Root \(-3.58697 - 7.15078i\) of defining polynomial
Character \(\chi\) \(=\) 100.51
Dual form 100.9.b.g.51.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-7.17394 - 14.3016i) q^{2} -42.6663i q^{3} +(-153.069 + 205.197i) q^{4} +(-610.194 + 306.085i) q^{6} +869.685i q^{7} +(4032.75 + 717.054i) q^{8} +4740.59 q^{9} -24735.0i q^{11} +(8754.99 + 6530.89i) q^{12} -41128.5 q^{13} +(12437.9 - 6239.07i) q^{14} +(-18675.7 - 62818.7i) q^{16} -40900.7 q^{17} +(-34008.7 - 67797.8i) q^{18} +79502.2i q^{19} +37106.2 q^{21} +(-353749. + 177447. i) q^{22} +428560. i q^{23} +(30594.0 - 172062. i) q^{24} +(295053. + 588201. i) q^{26} -482197. i q^{27} +(-178457. - 133122. i) q^{28} -184740. q^{29} -154752. i q^{31} +(-764426. + 717749. i) q^{32} -1.05535e6 q^{33} +(293419. + 584943. i) q^{34} +(-725638. + 972755. i) q^{36} -1.72203e6 q^{37} +(1.13701e6 - 570344. i) q^{38} +1.75480e6i q^{39} -2.00720e6 q^{41} +(-266198. - 530677. i) q^{42} -1.43073e6i q^{43} +(5.07555e6 + 3.78616e6i) q^{44} +(6.12907e6 - 3.07446e6i) q^{46} +4.98494e6i q^{47} +(-2.68024e6 + 796823. i) q^{48} +5.00845e6 q^{49} +1.74508e6i q^{51} +(6.29550e6 - 8.43945e6i) q^{52} +6.97640e6 q^{53} +(-6.89616e6 + 3.45925e6i) q^{54} +(-623611. + 3.50722e6i) q^{56} +3.39206e6 q^{57} +(1.32531e6 + 2.64206e6i) q^{58} +5.65200e6i q^{59} +6.73713e6 q^{61} +(-2.21319e6 + 1.11018e6i) q^{62} +4.12282e6i q^{63} +(1.57489e7 + 5.78340e6i) q^{64} +(7.57102e6 + 1.50931e7i) q^{66} -4.99529e6i q^{67} +(6.26063e6 - 8.39270e6i) q^{68} +1.82850e7 q^{69} +2.07710e7i q^{71} +(1.91176e7 + 3.39926e6i) q^{72} -3.31772e7 q^{73} +(1.23537e7 + 2.46277e7i) q^{74} +(-1.63136e7 - 1.21693e7i) q^{76} +2.15117e7 q^{77} +(2.50964e7 - 1.25888e7i) q^{78} +7.49445e7i q^{79} +1.05295e7 q^{81} +(1.43996e7 + 2.87061e7i) q^{82} +8.75346e7i q^{83} +(-5.67981e6 + 7.61409e6i) q^{84} +(-2.04616e7 + 1.02639e7i) q^{86} +7.88215e6i q^{87} +(1.77363e7 - 9.97500e7i) q^{88} +1.14653e7 q^{89} -3.57688e7i q^{91} +(-8.79392e7 - 6.55993e7i) q^{92} -6.60268e6 q^{93} +(7.12925e7 - 3.57617e7i) q^{94} +(3.06237e7 + 3.26152e7i) q^{96} -8.74640e7 q^{97} +(-3.59303e7 - 7.16286e7i) q^{98} -1.17258e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 752 q^{4} + 3408 q^{6} - 2556 q^{9} - 8848 q^{14} - 59200 q^{16} + 410256 q^{21} + 156672 q^{24} - 440448 q^{26} - 660136 q^{29} - 4342528 q^{34} - 7191312 q^{36} + 7068520 q^{41} - 2666880 q^{44}+ \cdots + 28850688 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −7.17394 14.3016i −0.448371 0.893847i
\(3\) 42.6663i 0.526744i −0.964694 0.263372i \(-0.915165\pi\)
0.964694 0.263372i \(-0.0848347\pi\)
\(4\) −153.069 + 205.197i −0.597926 + 0.801551i
\(5\) 0 0
\(6\) −610.194 + 306.085i −0.470829 + 0.236177i
\(7\) 869.685i 0.362218i 0.983463 + 0.181109i \(0.0579687\pi\)
−0.983463 + 0.181109i \(0.942031\pi\)
\(8\) 4032.75 + 717.054i 0.984557 + 0.175062i
\(9\) 4740.59 0.722541
\(10\) 0 0
\(11\) 24735.0i 1.68943i −0.535214 0.844717i \(-0.679769\pi\)
0.535214 0.844717i \(-0.320231\pi\)
\(12\) 8754.99 + 6530.89i 0.422212 + 0.314954i
\(13\) −41128.5 −1.44002 −0.720011 0.693962i \(-0.755863\pi\)
−0.720011 + 0.693962i \(0.755863\pi\)
\(14\) 12437.9 6239.07i 0.323767 0.162408i
\(15\) 0 0
\(16\) −18675.7 62818.7i −0.284969 0.958537i
\(17\) −40900.7 −0.489705 −0.244853 0.969560i \(-0.578740\pi\)
−0.244853 + 0.969560i \(0.578740\pi\)
\(18\) −34008.7 67797.8i −0.323967 0.645841i
\(19\) 79502.2i 0.610049i 0.952345 + 0.305024i \(0.0986646\pi\)
−0.952345 + 0.305024i \(0.901335\pi\)
\(20\) 0 0
\(21\) 37106.2 0.190796
\(22\) −353749. + 177447.i −1.51010 + 0.757494i
\(23\) 428560.i 1.53144i 0.643174 + 0.765720i \(0.277617\pi\)
−0.643174 + 0.765720i \(0.722383\pi\)
\(24\) 30594.0 172062.i 0.0922129 0.518610i
\(25\) 0 0
\(26\) 295053. + 588201.i 0.645665 + 1.28716i
\(27\) 482197.i 0.907338i
\(28\) −178457. 133122.i −0.290336 0.216580i
\(29\) −184740. −0.261197 −0.130598 0.991435i \(-0.541690\pi\)
−0.130598 + 0.991435i \(0.541690\pi\)
\(30\) 0 0
\(31\) 154752.i 0.167567i −0.996484 0.0837835i \(-0.973300\pi\)
0.996484 0.0837835i \(-0.0267004\pi\)
\(32\) −764426. + 717749.i −0.729014 + 0.684499i
\(33\) −1.05535e6 −0.889899
\(34\) 293419. + 584943.i 0.219570 + 0.437722i
\(35\) 0 0
\(36\) −725638. + 972755.i −0.432026 + 0.579153i
\(37\) −1.72203e6 −0.918825 −0.459413 0.888223i \(-0.651940\pi\)
−0.459413 + 0.888223i \(0.651940\pi\)
\(38\) 1.13701e6 570344.i 0.545291 0.273529i
\(39\) 1.75480e6i 0.758523i
\(40\) 0 0
\(41\) −2.00720e6 −0.710323 −0.355162 0.934805i \(-0.615574\pi\)
−0.355162 + 0.934805i \(0.615574\pi\)
\(42\) −266198. 530677.i −0.0855475 0.170543i
\(43\) 1.43073e6i 0.418488i −0.977863 0.209244i \(-0.932900\pi\)
0.977863 0.209244i \(-0.0671002\pi\)
\(44\) 5.07555e6 + 3.78616e6i 1.35417 + 1.01016i
\(45\) 0 0
\(46\) 6.12907e6 3.07446e6i 1.36887 0.686654i
\(47\) 4.98494e6i 1.02157i 0.859708 + 0.510786i \(0.170646\pi\)
−0.859708 + 0.510786i \(0.829354\pi\)
\(48\) −2.68024e6 + 796823.i −0.504903 + 0.150106i
\(49\) 5.00845e6 0.868798
\(50\) 0 0
\(51\) 1.74508e6i 0.257949i
\(52\) 6.29550e6 8.43945e6i 0.861027 1.15425i
\(53\) 6.97640e6 0.884154 0.442077 0.896977i \(-0.354242\pi\)
0.442077 + 0.896977i \(0.354242\pi\)
\(54\) −6.89616e6 + 3.45925e6i −0.811022 + 0.406824i
\(55\) 0 0
\(56\) −623611. + 3.50722e6i −0.0634106 + 0.356624i
\(57\) 3.39206e6 0.321340
\(58\) 1.32531e6 + 2.64206e6i 0.117113 + 0.233470i
\(59\) 5.65200e6i 0.466438i 0.972424 + 0.233219i \(0.0749259\pi\)
−0.972424 + 0.233219i \(0.925074\pi\)
\(60\) 0 0
\(61\) 6.73713e6 0.486582 0.243291 0.969953i \(-0.421773\pi\)
0.243291 + 0.969953i \(0.421773\pi\)
\(62\) −2.21319e6 + 1.11018e6i −0.149779 + 0.0751323i
\(63\) 4.12282e6i 0.261717i
\(64\) 1.57489e7 + 5.78340e6i 0.938707 + 0.344717i
\(65\) 0 0
\(66\) 7.57102e6 + 1.50931e7i 0.399005 + 0.795434i
\(67\) 4.99529e6i 0.247891i −0.992289 0.123946i \(-0.960445\pi\)
0.992289 0.123946i \(-0.0395549\pi\)
\(68\) 6.26063e6 8.39270e6i 0.292807 0.392524i
\(69\) 1.82850e7 0.806677
\(70\) 0 0
\(71\) 2.07710e7i 0.817378i 0.912674 + 0.408689i \(0.134014\pi\)
−0.912674 + 0.408689i \(0.865986\pi\)
\(72\) 1.91176e7 + 3.39926e6i 0.711383 + 0.126489i
\(73\) −3.31772e7 −1.16828 −0.584141 0.811652i \(-0.698569\pi\)
−0.584141 + 0.811652i \(0.698569\pi\)
\(74\) 1.23537e7 + 2.46277e7i 0.411975 + 0.821290i
\(75\) 0 0
\(76\) −1.63136e7 1.21693e7i −0.488985 0.364764i
\(77\) 2.15117e7 0.611943
\(78\) 2.50964e7 1.25888e7i 0.678004 0.340100i
\(79\) 7.49445e7i 1.92412i 0.272844 + 0.962058i \(0.412036\pi\)
−0.272844 + 0.962058i \(0.587964\pi\)
\(80\) 0 0
\(81\) 1.05295e7 0.244606
\(82\) 1.43996e7 + 2.87061e7i 0.318489 + 0.634920i
\(83\) 8.75346e7i 1.84445i 0.386651 + 0.922226i \(0.373632\pi\)
−0.386651 + 0.922226i \(0.626368\pi\)
\(84\) −5.67981e6 + 7.61409e6i −0.114082 + 0.152933i
\(85\) 0 0
\(86\) −2.04616e7 + 1.02639e7i −0.374064 + 0.187638i
\(87\) 7.88215e6i 0.137584i
\(88\) 1.77363e7 9.97500e7i 0.295756 1.66334i
\(89\) 1.14653e7 0.182737 0.0913685 0.995817i \(-0.470876\pi\)
0.0913685 + 0.995817i \(0.470876\pi\)
\(90\) 0 0
\(91\) 3.57688e7i 0.521602i
\(92\) −8.79392e7 6.55993e7i −1.22753 0.915688i
\(93\) −6.60268e6 −0.0882649
\(94\) 7.12925e7 3.57617e7i 0.913129 0.458044i
\(95\) 0 0
\(96\) 3.06237e7 + 3.26152e7i 0.360556 + 0.384004i
\(97\) −8.74640e7 −0.987967 −0.493983 0.869471i \(-0.664460\pi\)
−0.493983 + 0.869471i \(0.664460\pi\)
\(98\) −3.59303e7 7.16286e7i −0.389544 0.776573i
\(99\) 1.17258e8i 1.22068i
\(100\) 0 0
\(101\) 1.07960e8 1.03747 0.518736 0.854934i \(-0.326403\pi\)
0.518736 + 0.854934i \(0.326403\pi\)
\(102\) 2.49573e7 1.25191e7i 0.230567 0.115657i
\(103\) 9.62475e7i 0.855147i 0.903981 + 0.427573i \(0.140631\pi\)
−0.903981 + 0.427573i \(0.859369\pi\)
\(104\) −1.65861e8 2.94913e7i −1.41779 0.252093i
\(105\) 0 0
\(106\) −5.00483e7 9.97734e7i −0.396430 0.790299i
\(107\) 8.83513e7i 0.674028i 0.941500 + 0.337014i \(0.109417\pi\)
−0.941500 + 0.337014i \(0.890583\pi\)
\(108\) 9.89453e7 + 7.38094e7i 0.727278 + 0.542521i
\(109\) −4.82155e7 −0.341571 −0.170785 0.985308i \(-0.554630\pi\)
−0.170785 + 0.985308i \(0.554630\pi\)
\(110\) 0 0
\(111\) 7.34724e7i 0.483986i
\(112\) 5.46325e7 1.62420e7i 0.347199 0.103221i
\(113\) −1.83862e8 −1.12766 −0.563830 0.825891i \(-0.690672\pi\)
−0.563830 + 0.825891i \(0.690672\pi\)
\(114\) −2.43345e7 4.85118e7i −0.144079 0.287229i
\(115\) 0 0
\(116\) 2.82779e7 3.79080e7i 0.156176 0.209363i
\(117\) −1.94973e8 −1.04048
\(118\) 8.08324e7 4.05471e7i 0.416924 0.209138i
\(119\) 3.55707e7i 0.177380i
\(120\) 0 0
\(121\) −3.97461e8 −1.85419
\(122\) −4.83318e7 9.63515e7i −0.218169 0.434930i
\(123\) 8.56399e7i 0.374158i
\(124\) 3.17546e7 + 2.36877e7i 0.134314 + 0.100193i
\(125\) 0 0
\(126\) 5.89628e7 2.95769e7i 0.233935 0.117347i
\(127\) 3.52941e8i 1.35671i 0.734734 + 0.678355i \(0.237307\pi\)
−0.734734 + 0.678355i \(0.762693\pi\)
\(128\) −3.02700e7 2.66723e8i −0.112765 0.993622i
\(129\) −6.10437e7 −0.220436
\(130\) 0 0
\(131\) 1.20638e8i 0.409638i −0.978800 0.204819i \(-0.934339\pi\)
0.978800 0.204819i \(-0.0656606\pi\)
\(132\) 1.61541e8 2.16555e8i 0.532094 0.713299i
\(133\) −6.91419e7 −0.220971
\(134\) −7.14404e7 + 3.58359e7i −0.221577 + 0.111147i
\(135\) 0 0
\(136\) −1.64942e8 2.93280e7i −0.482143 0.0857288i
\(137\) 2.98009e8 0.845955 0.422978 0.906140i \(-0.360985\pi\)
0.422978 + 0.906140i \(0.360985\pi\)
\(138\) −1.31176e8 2.61505e8i −0.361691 0.721046i
\(139\) 4.00098e8i 1.07178i −0.844287 0.535891i \(-0.819976\pi\)
0.844287 0.535891i \(-0.180024\pi\)
\(140\) 0 0
\(141\) 2.12689e8 0.538107
\(142\) 2.97057e8 1.49010e8i 0.730611 0.366489i
\(143\) 1.01731e9i 2.43282i
\(144\) −8.85339e7 2.97798e8i −0.205902 0.692582i
\(145\) 0 0
\(146\) 2.38011e8 + 4.74485e8i 0.523825 + 1.04427i
\(147\) 2.13692e8i 0.457634i
\(148\) 2.63589e8 3.53355e8i 0.549390 0.736486i
\(149\) −7.70799e8 −1.56385 −0.781927 0.623370i \(-0.785763\pi\)
−0.781927 + 0.623370i \(0.785763\pi\)
\(150\) 0 0
\(151\) 5.11492e8i 0.983856i −0.870636 0.491928i \(-0.836292\pi\)
0.870636 0.491928i \(-0.163708\pi\)
\(152\) −5.70074e7 + 3.20612e8i −0.106796 + 0.600628i
\(153\) −1.93893e8 −0.353832
\(154\) −1.54323e8 3.07650e8i −0.274378 0.546984i
\(155\) 0 0
\(156\) −3.60080e8 2.68605e8i −0.607995 0.453541i
\(157\) 8.51365e7 0.140126 0.0700628 0.997543i \(-0.477680\pi\)
0.0700628 + 0.997543i \(0.477680\pi\)
\(158\) 1.07182e9 5.37647e8i 1.71987 0.862719i
\(159\) 2.97657e8i 0.465723i
\(160\) 0 0
\(161\) −3.72712e8 −0.554715
\(162\) −7.55380e7 1.50588e8i −0.109674 0.218640i
\(163\) 2.79284e8i 0.395636i 0.980239 + 0.197818i \(0.0633855\pi\)
−0.980239 + 0.197818i \(0.936614\pi\)
\(164\) 3.07241e8 4.11872e8i 0.424721 0.569360i
\(165\) 0 0
\(166\) 1.25188e9 6.27968e8i 1.64866 0.827000i
\(167\) 4.30699e8i 0.553743i −0.960907 0.276871i \(-0.910702\pi\)
0.960907 0.276871i \(-0.0892976\pi\)
\(168\) 1.49640e8 + 2.66072e7i 0.187850 + 0.0334011i
\(169\) 8.75822e8 1.07367
\(170\) 0 0
\(171\) 3.76887e8i 0.440785i
\(172\) 2.93581e8 + 2.19000e8i 0.335439 + 0.250225i
\(173\) −6.81243e8 −0.760533 −0.380266 0.924877i \(-0.624168\pi\)
−0.380266 + 0.924877i \(0.624168\pi\)
\(174\) 1.12727e8 5.65461e7i 0.122979 0.0616887i
\(175\) 0 0
\(176\) −1.55382e9 + 4.61944e8i −1.61938 + 0.481436i
\(177\) 2.41150e8 0.245693
\(178\) −8.22517e7 1.63972e8i −0.0819341 0.163339i
\(179\) 1.86210e9i 1.81381i 0.421336 + 0.906905i \(0.361561\pi\)
−0.421336 + 0.906905i \(0.638439\pi\)
\(180\) 0 0
\(181\) 9.45023e8 0.880498 0.440249 0.897876i \(-0.354890\pi\)
0.440249 + 0.897876i \(0.354890\pi\)
\(182\) −5.11550e8 + 2.56604e8i −0.466233 + 0.233871i
\(183\) 2.87448e8i 0.256304i
\(184\) −3.07301e8 + 1.72827e9i −0.268097 + 1.50779i
\(185\) 0 0
\(186\) 4.73672e7 + 9.44285e7i 0.0395755 + 0.0788954i
\(187\) 1.01168e9i 0.827324i
\(188\) −1.02290e9 7.63041e8i −0.818842 0.610825i
\(189\) 4.19359e8 0.328654
\(190\) 0 0
\(191\) 6.13867e8i 0.461255i 0.973042 + 0.230627i \(0.0740778\pi\)
−0.973042 + 0.230627i \(0.925922\pi\)
\(192\) 2.46756e8 6.71946e8i 0.181578 0.494458i
\(193\) 7.45004e8 0.536945 0.268472 0.963287i \(-0.413481\pi\)
0.268472 + 0.963287i \(0.413481\pi\)
\(194\) 6.27462e8 + 1.25087e9i 0.442976 + 0.883091i
\(195\) 0 0
\(196\) −7.66639e8 + 1.02772e9i −0.519477 + 0.696386i
\(197\) −2.47398e9 −1.64260 −0.821299 0.570498i \(-0.806750\pi\)
−0.821299 + 0.570498i \(0.806750\pi\)
\(198\) −1.67698e9 + 8.41206e8i −1.09111 + 0.547320i
\(199\) 8.62436e8i 0.549939i −0.961453 0.274969i \(-0.911332\pi\)
0.961453 0.274969i \(-0.0886677\pi\)
\(200\) 0 0
\(201\) −2.13130e8 −0.130575
\(202\) −7.74498e8 1.54399e9i −0.465173 0.927342i
\(203\) 1.60665e8i 0.0946102i
\(204\) −3.58085e8 2.67118e8i −0.206759 0.154235i
\(205\) 0 0
\(206\) 1.37649e9 6.90474e8i 0.764371 0.383423i
\(207\) 2.03163e9i 1.10653i
\(208\) 7.68104e8 + 2.58364e9i 0.410361 + 1.38031i
\(209\) 1.96649e9 1.03064
\(210\) 0 0
\(211\) 2.06407e9i 1.04135i 0.853756 + 0.520673i \(0.174319\pi\)
−0.853756 + 0.520673i \(0.825681\pi\)
\(212\) −1.06787e9 + 1.43154e9i −0.528659 + 0.708695i
\(213\) 8.86219e8 0.430549
\(214\) 1.26356e9 6.33827e8i 0.602478 0.302215i
\(215\) 0 0
\(216\) 3.45761e8 1.94458e9i 0.158840 0.893326i
\(217\) 1.34585e8 0.0606958
\(218\) 3.45895e8 + 6.89557e8i 0.153151 + 0.305312i
\(219\) 1.41555e9i 0.615386i
\(220\) 0 0
\(221\) 1.68218e9 0.705186
\(222\) 1.05077e9 5.27087e8i 0.432609 0.217005i
\(223\) 2.49560e9i 1.00915i −0.863368 0.504574i \(-0.831649\pi\)
0.863368 0.504574i \(-0.168351\pi\)
\(224\) −6.24216e8 6.64810e8i −0.247938 0.264062i
\(225\) 0 0
\(226\) 1.31901e9 + 2.62951e9i 0.505610 + 1.00796i
\(227\) 4.05348e9i 1.52660i −0.646045 0.763300i \(-0.723578\pi\)
0.646045 0.763300i \(-0.276422\pi\)
\(228\) −5.19220e8 + 6.96041e8i −0.192137 + 0.257570i
\(229\) −2.28775e9 −0.831890 −0.415945 0.909390i \(-0.636549\pi\)
−0.415945 + 0.909390i \(0.636549\pi\)
\(230\) 0 0
\(231\) 9.17822e8i 0.322337i
\(232\) −7.45008e8 1.32468e8i −0.257163 0.0457257i
\(233\) −3.13148e9 −1.06249 −0.531247 0.847217i \(-0.678276\pi\)
−0.531247 + 0.847217i \(0.678276\pi\)
\(234\) 1.39873e9 + 2.78842e9i 0.466519 + 0.930026i
\(235\) 0 0
\(236\) −1.15977e9 8.65146e8i −0.373874 0.278896i
\(237\) 3.19760e9 1.01352
\(238\) −5.08716e8 + 2.55182e8i −0.158551 + 0.0795321i
\(239\) 1.66159e9i 0.509251i 0.967040 + 0.254626i \(0.0819523\pi\)
−0.967040 + 0.254626i \(0.918048\pi\)
\(240\) 0 0
\(241\) −1.60357e9 −0.475358 −0.237679 0.971344i \(-0.576387\pi\)
−0.237679 + 0.971344i \(0.576387\pi\)
\(242\) 2.85136e9 + 5.68431e9i 0.831364 + 1.65736i
\(243\) 3.61295e9i 1.03618i
\(244\) −1.03125e9 + 1.38244e9i −0.290940 + 0.390020i
\(245\) 0 0
\(246\) 1.22478e9 6.14375e8i 0.334441 0.167762i
\(247\) 3.26980e9i 0.878484i
\(248\) 1.10965e8 6.24074e8i 0.0293346 0.164979i
\(249\) 3.73477e9 0.971554
\(250\) 0 0
\(251\) 6.18770e9i 1.55896i −0.626429 0.779478i \(-0.715484\pi\)
0.626429 0.779478i \(-0.284516\pi\)
\(252\) −8.45991e8 6.31076e8i −0.209780 0.156488i
\(253\) 1.06004e10 2.58727
\(254\) 5.04760e9 2.53198e9i 1.21269 0.608310i
\(255\) 0 0
\(256\) −3.59740e9 + 2.34637e9i −0.837586 + 0.546306i
\(257\) 6.20387e9 1.42210 0.711050 0.703142i \(-0.248220\pi\)
0.711050 + 0.703142i \(0.248220\pi\)
\(258\) 4.37924e8 + 8.73021e8i 0.0988372 + 0.197036i
\(259\) 1.49762e9i 0.332815i
\(260\) 0 0
\(261\) −8.75775e8 −0.188725
\(262\) −1.72532e9 + 8.65453e8i −0.366154 + 0.183670i
\(263\) 1.96327e9i 0.410353i 0.978725 + 0.205177i \(0.0657769\pi\)
−0.978725 + 0.205177i \(0.934223\pi\)
\(264\) −4.25596e9 7.56743e8i −0.876156 0.155787i
\(265\) 0 0
\(266\) 4.96020e8 + 9.88836e8i 0.0990769 + 0.197514i
\(267\) 4.89183e8i 0.0962557i
\(268\) 1.02502e9 + 7.64625e8i 0.198698 + 0.148221i
\(269\) −6.31601e9 −1.20624 −0.603120 0.797651i \(-0.706076\pi\)
−0.603120 + 0.797651i \(0.706076\pi\)
\(270\) 0 0
\(271\) 4.71258e9i 0.873739i 0.899525 + 0.436869i \(0.143913\pi\)
−0.899525 + 0.436869i \(0.856087\pi\)
\(272\) 7.63849e8 + 2.56932e9i 0.139551 + 0.469400i
\(273\) −1.52612e9 −0.274751
\(274\) −2.13790e9 4.26200e9i −0.379302 0.756155i
\(275\) 0 0
\(276\) −2.79888e9 + 3.75204e9i −0.482333 + 0.646593i
\(277\) −1.00765e8 −0.0171156 −0.00855780 0.999963i \(-0.502724\pi\)
−0.00855780 + 0.999963i \(0.502724\pi\)
\(278\) −5.72202e9 + 2.87028e9i −0.958010 + 0.480557i
\(279\) 7.33614e8i 0.121074i
\(280\) 0 0
\(281\) −4.26355e9 −0.683827 −0.341914 0.939731i \(-0.611075\pi\)
−0.341914 + 0.939731i \(0.611075\pi\)
\(282\) −1.52582e9 3.04178e9i −0.241272 0.480985i
\(283\) 1.16260e10i 1.81253i −0.422710 0.906265i \(-0.638921\pi\)
0.422710 0.906265i \(-0.361079\pi\)
\(284\) −4.26214e9 3.17939e9i −0.655171 0.488732i
\(285\) 0 0
\(286\) 1.45492e10 7.29814e9i 2.17457 1.09081i
\(287\) 1.74563e9i 0.257292i
\(288\) −3.62383e9 + 3.40256e9i −0.526742 + 0.494578i
\(289\) −5.30289e9 −0.760189
\(290\) 0 0
\(291\) 3.73176e9i 0.520405i
\(292\) 5.07840e9 6.80786e9i 0.698547 0.936439i
\(293\) −3.75705e9 −0.509772 −0.254886 0.966971i \(-0.582038\pi\)
−0.254886 + 0.966971i \(0.582038\pi\)
\(294\) −3.05613e9 + 1.53301e9i −0.409055 + 0.205190i
\(295\) 0 0
\(296\) −6.94450e9 1.23479e9i −0.904636 0.160851i
\(297\) −1.19271e10 −1.53289
\(298\) 5.52967e9 + 1.10236e10i 0.701188 + 1.39785i
\(299\) 1.76260e10i 2.20531i
\(300\) 0 0
\(301\) 1.24428e9 0.151584
\(302\) −7.31514e9 + 3.66942e9i −0.879417 + 0.441133i
\(303\) 4.60624e9i 0.546483i
\(304\) 4.99422e9 1.48476e9i 0.584754 0.173845i
\(305\) 0 0
\(306\) 1.39098e9 + 2.77298e9i 0.158648 + 0.316272i
\(307\) 5.80347e9i 0.653333i 0.945140 + 0.326666i \(0.105925\pi\)
−0.945140 + 0.326666i \(0.894075\pi\)
\(308\) −3.29277e9 + 4.41413e9i −0.365897 + 0.490504i
\(309\) 4.10652e9 0.450443
\(310\) 0 0
\(311\) 1.22144e10i 1.30566i −0.757503 0.652832i \(-0.773581\pi\)
0.757503 0.652832i \(-0.226419\pi\)
\(312\) −1.25829e9 + 7.07666e9i −0.132789 + 0.746810i
\(313\) 8.99814e9 0.937509 0.468755 0.883328i \(-0.344703\pi\)
0.468755 + 0.883328i \(0.344703\pi\)
\(314\) −6.10765e8 1.21758e9i −0.0628283 0.125251i
\(315\) 0 0
\(316\) −1.53784e10 1.14717e10i −1.54228 1.15048i
\(317\) −2.25206e9 −0.223019 −0.111510 0.993763i \(-0.535569\pi\)
−0.111510 + 0.993763i \(0.535569\pi\)
\(318\) −4.25696e9 + 2.13537e9i −0.416285 + 0.208817i
\(319\) 4.56953e9i 0.441275i
\(320\) 0 0
\(321\) 3.76962e9 0.355040
\(322\) 2.67382e9 + 5.33036e9i 0.248718 + 0.495831i
\(323\) 3.25169e9i 0.298744i
\(324\) −1.61174e9 + 2.16062e9i −0.146256 + 0.196064i
\(325\) 0 0
\(326\) 3.99420e9 2.00357e9i 0.353638 0.177392i
\(327\) 2.05718e9i 0.179920i
\(328\) −8.09454e9 1.43927e9i −0.699354 0.124351i
\(329\) −4.33533e9 −0.370032
\(330\) 0 0
\(331\) 1.68572e9i 0.140434i −0.997532 0.0702172i \(-0.977631\pi\)
0.997532 0.0702172i \(-0.0223692\pi\)
\(332\) −1.79619e10 1.33988e10i −1.47842 1.10285i
\(333\) −8.16342e9 −0.663889
\(334\) −6.15966e9 + 3.08981e9i −0.494961 + 0.248282i
\(335\) 0 0
\(336\) −6.92985e8 2.33096e9i −0.0543709 0.182885i
\(337\) 7.73250e9 0.599515 0.299758 0.954015i \(-0.403094\pi\)
0.299758 + 0.954015i \(0.403094\pi\)
\(338\) −6.28310e9 1.25256e10i −0.481401 0.959693i
\(339\) 7.84470e9i 0.593988i
\(340\) 0 0
\(341\) −3.82778e9 −0.283093
\(342\) 5.39008e9 2.70377e9i 0.393995 0.197636i
\(343\) 9.36933e9i 0.676912i
\(344\) 1.02591e9 5.76976e9i 0.0732613 0.412025i
\(345\) 0 0
\(346\) 4.88720e9 + 9.74284e9i 0.341001 + 0.679800i
\(347\) 3.07433e9i 0.212047i −0.994364 0.106023i \(-0.966188\pi\)
0.994364 0.106023i \(-0.0338119\pi\)
\(348\) −1.61739e9 1.20651e9i −0.110281 0.0822650i
\(349\) 1.30882e10 0.882224 0.441112 0.897452i \(-0.354584\pi\)
0.441112 + 0.897452i \(0.354584\pi\)
\(350\) 0 0
\(351\) 1.98320e10i 1.30659i
\(352\) 1.77535e10 + 1.89081e10i 1.15642 + 1.23162i
\(353\) 6.61462e9 0.425996 0.212998 0.977053i \(-0.431677\pi\)
0.212998 + 0.977053i \(0.431677\pi\)
\(354\) −1.72999e9 3.44882e9i −0.110162 0.219612i
\(355\) 0 0
\(356\) −1.75499e9 + 2.35265e9i −0.109263 + 0.146473i
\(357\) −1.51767e9 −0.0934338
\(358\) 2.66310e10 1.33586e10i 1.62127 0.813260i
\(359\) 3.34086e9i 0.201132i 0.994930 + 0.100566i \(0.0320653\pi\)
−0.994930 + 0.100566i \(0.967935\pi\)
\(360\) 0 0
\(361\) 1.06630e10 0.627840
\(362\) −6.77954e9 1.35153e10i −0.394790 0.787030i
\(363\) 1.69582e10i 0.976681i
\(364\) 7.33966e9 + 5.47510e9i 0.418091 + 0.311879i
\(365\) 0 0
\(366\) −4.11096e9 + 2.06214e9i −0.229097 + 0.114919i
\(367\) 9.60705e9i 0.529573i −0.964307 0.264787i \(-0.914698\pi\)
0.964307 0.264787i \(-0.0853015\pi\)
\(368\) 2.69216e10 8.00366e9i 1.46794 0.436413i
\(369\) −9.51533e9 −0.513237
\(370\) 0 0
\(371\) 6.06727e9i 0.320256i
\(372\) 1.01067e9 1.35485e9i 0.0527759 0.0707489i
\(373\) −1.82578e10 −0.943222 −0.471611 0.881807i \(-0.656327\pi\)
−0.471611 + 0.881807i \(0.656327\pi\)
\(374\) 1.44686e10 7.25772e9i 0.739501 0.370948i
\(375\) 0 0
\(376\) −3.57447e9 + 2.01030e10i −0.178838 + 1.00580i
\(377\) 7.59806e9 0.376129
\(378\) −3.00846e9 5.99749e9i −0.147359 0.293767i
\(379\) 2.08206e10i 1.00910i 0.863382 + 0.504551i \(0.168342\pi\)
−0.863382 + 0.504551i \(0.831658\pi\)
\(380\) 0 0
\(381\) 1.50587e10 0.714639
\(382\) 8.77925e9 4.40385e9i 0.412291 0.206813i
\(383\) 2.29859e10i 1.06824i 0.845410 + 0.534118i \(0.179356\pi\)
−0.845410 + 0.534118i \(0.820644\pi\)
\(384\) −1.13801e10 + 1.29151e9i −0.523384 + 0.0593981i
\(385\) 0 0
\(386\) −5.34462e9 1.06547e10i −0.240751 0.479947i
\(387\) 6.78249e9i 0.302374i
\(388\) 1.33880e10 1.79474e10i 0.590731 0.791906i
\(389\) 1.60076e10 0.699083 0.349541 0.936921i \(-0.386337\pi\)
0.349541 + 0.936921i \(0.386337\pi\)
\(390\) 0 0
\(391\) 1.75284e10i 0.749954i
\(392\) 2.01978e10 + 3.59133e9i 0.855382 + 0.152094i
\(393\) −5.14719e9 −0.215774
\(394\) 1.77482e10 + 3.53818e10i 0.736494 + 1.46823i
\(395\) 0 0
\(396\) 2.40611e10 + 1.79486e10i 0.978441 + 0.729879i
\(397\) 1.72716e10 0.695299 0.347650 0.937625i \(-0.386980\pi\)
0.347650 + 0.937625i \(0.386980\pi\)
\(398\) −1.23342e10 + 6.18706e9i −0.491561 + 0.246577i
\(399\) 2.95002e9i 0.116395i
\(400\) 0 0
\(401\) −1.56829e10 −0.606524 −0.303262 0.952907i \(-0.598076\pi\)
−0.303262 + 0.952907i \(0.598076\pi\)
\(402\) 1.52899e9 + 3.04810e9i 0.0585462 + 0.116714i
\(403\) 6.36470e9i 0.241300i
\(404\) −1.65253e10 + 2.21530e10i −0.620332 + 0.831588i
\(405\) 0 0
\(406\) −2.29776e9 + 1.15260e9i −0.0845671 + 0.0424205i
\(407\) 4.25943e10i 1.55229i
\(408\) −1.25132e9 + 7.03746e9i −0.0451571 + 0.253966i
\(409\) 1.05519e8 0.00377082 0.00188541 0.999998i \(-0.499400\pi\)
0.00188541 + 0.999998i \(0.499400\pi\)
\(410\) 0 0
\(411\) 1.27149e10i 0.445602i
\(412\) −1.97497e10 1.47325e10i −0.685444 0.511315i
\(413\) −4.91546e9 −0.168952
\(414\) 2.90554e10 1.45748e10i 0.989067 0.496136i
\(415\) 0 0
\(416\) 3.14397e10 2.95199e10i 1.04980 0.985694i
\(417\) −1.70707e10 −0.564555
\(418\) −1.41075e10 2.81238e10i −0.462108 0.921232i
\(419\) 1.28448e10i 0.416746i 0.978049 + 0.208373i \(0.0668168\pi\)
−0.978049 + 0.208373i \(0.933183\pi\)
\(420\) 0 0
\(421\) −3.08274e10 −0.981315 −0.490658 0.871353i \(-0.663243\pi\)
−0.490658 + 0.871353i \(0.663243\pi\)
\(422\) 2.95194e10 1.48075e10i 0.930804 0.466910i
\(423\) 2.36316e10i 0.738127i
\(424\) 2.81341e10 + 5.00246e9i 0.870501 + 0.154782i
\(425\) 0 0
\(426\) −6.35768e9 1.26743e10i −0.193046 0.384845i
\(427\) 5.85918e9i 0.176249i
\(428\) −1.81294e10 1.35239e10i −0.540268 0.403019i
\(429\) 4.34049e10 1.28147
\(430\) 0 0
\(431\) 9.59665e9i 0.278106i 0.990285 + 0.139053i \(0.0444058\pi\)
−0.990285 + 0.139053i \(0.955594\pi\)
\(432\) −3.02909e10 + 9.00536e9i −0.869717 + 0.258563i
\(433\) −6.69168e8 −0.0190363 −0.00951817 0.999955i \(-0.503030\pi\)
−0.00951817 + 0.999955i \(0.503030\pi\)
\(434\) −9.65507e8 1.92478e9i −0.0272143 0.0542528i
\(435\) 0 0
\(436\) 7.38030e9 9.89368e9i 0.204234 0.273787i
\(437\) −3.40714e10 −0.934254
\(438\) 2.02445e10 1.01550e10i 0.550061 0.275921i
\(439\) 3.75455e10i 1.01088i −0.862862 0.505440i \(-0.831330\pi\)
0.862862 0.505440i \(-0.168670\pi\)
\(440\) 0 0
\(441\) 2.37430e10 0.627742
\(442\) −1.20679e10 2.40578e10i −0.316185 0.630329i
\(443\) 1.19986e10i 0.311542i −0.987793 0.155771i \(-0.950214\pi\)
0.987793 0.155771i \(-0.0497862\pi\)
\(444\) −1.50763e10 1.12464e10i −0.387939 0.289388i
\(445\) 0 0
\(446\) −3.56909e10 + 1.79033e10i −0.902025 + 0.452473i
\(447\) 3.28871e10i 0.823751i
\(448\) −5.02973e9 + 1.36966e10i −0.124863 + 0.340016i
\(449\) −6.86153e10 −1.68825 −0.844123 0.536150i \(-0.819878\pi\)
−0.844123 + 0.536150i \(0.819878\pi\)
\(450\) 0 0
\(451\) 4.96482e10i 1.20004i
\(452\) 2.81436e10 3.77279e10i 0.674257 0.903876i
\(453\) −2.18235e10 −0.518240
\(454\) −5.79711e10 + 2.90795e10i −1.36455 + 0.684483i
\(455\) 0 0
\(456\) 1.36793e10 + 2.43229e9i 0.316377 + 0.0562544i
\(457\) −5.08092e10 −1.16487 −0.582435 0.812877i \(-0.697900\pi\)
−0.582435 + 0.812877i \(0.697900\pi\)
\(458\) 1.64122e10 + 3.27183e10i 0.372996 + 0.743583i
\(459\) 1.97222e10i 0.444328i
\(460\) 0 0
\(461\) −3.46473e10 −0.767124 −0.383562 0.923515i \(-0.625303\pi\)
−0.383562 + 0.923515i \(0.625303\pi\)
\(462\) −1.31263e10 + 6.58440e9i −0.288120 + 0.144527i
\(463\) 4.92524e10i 1.07178i 0.844289 + 0.535888i \(0.180023\pi\)
−0.844289 + 0.535888i \(0.819977\pi\)
\(464\) 3.45014e9 + 1.16051e10i 0.0744329 + 0.250367i
\(465\) 0 0
\(466\) 2.24651e10 + 4.47851e10i 0.476392 + 0.949707i
\(467\) 7.83687e9i 0.164769i 0.996601 + 0.0823844i \(0.0262535\pi\)
−0.996601 + 0.0823844i \(0.973746\pi\)
\(468\) 2.98444e10 4.00080e10i 0.622127 0.833994i
\(469\) 4.34433e9 0.0897907
\(470\) 0 0
\(471\) 3.63246e9i 0.0738103i
\(472\) −4.05279e9 + 2.27931e10i −0.0816556 + 0.459235i
\(473\) −3.53890e10 −0.707007
\(474\) −2.29394e10 4.57307e10i −0.454432 0.905929i
\(475\) 0 0
\(476\) 7.29900e9 + 5.44477e9i 0.142179 + 0.106060i
\(477\) 3.30723e10 0.638838
\(478\) 2.37633e10 1.19202e10i 0.455193 0.228334i
\(479\) 2.94112e10i 0.558689i −0.960191 0.279345i \(-0.909883\pi\)
0.960191 0.279345i \(-0.0901172\pi\)
\(480\) 0 0
\(481\) 7.08244e10 1.32313
\(482\) 1.15039e10 + 2.29336e10i 0.213137 + 0.424897i
\(483\) 1.59022e10i 0.292193i
\(484\) 6.08390e10 8.15579e10i 1.10867 1.48622i
\(485\) 0 0
\(486\) −5.16707e10 + 2.59191e10i −0.926189 + 0.464595i
\(487\) 5.85444e10i 1.04080i −0.853921 0.520402i \(-0.825782\pi\)
0.853921 0.520402i \(-0.174218\pi\)
\(488\) 2.71691e10 + 4.83089e9i 0.479068 + 0.0851820i
\(489\) 1.19160e10 0.208399
\(490\) 0 0
\(491\) 8.05466e10i 1.38587i −0.721002 0.692933i \(-0.756318\pi\)
0.721002 0.692933i \(-0.243682\pi\)
\(492\) −1.75731e10 1.31088e10i −0.299907 0.223719i
\(493\) 7.55597e9 0.127909
\(494\) −4.67633e10 + 2.34574e10i −0.785231 + 0.393887i
\(495\) 0 0
\(496\) −9.72129e9 + 2.89010e9i −0.160619 + 0.0477514i
\(497\) −1.80642e10 −0.296069
\(498\) −2.67931e10 5.34131e10i −0.435617 0.868421i
\(499\) 2.25270e10i 0.363330i −0.983360 0.181665i \(-0.941851\pi\)
0.983360 0.181665i \(-0.0581487\pi\)
\(500\) 0 0
\(501\) −1.83763e10 −0.291681
\(502\) −8.84937e10 + 4.43902e10i −1.39347 + 0.698992i
\(503\) 4.17996e10i 0.652981i −0.945200 0.326491i \(-0.894134\pi\)
0.945200 0.326491i \(-0.105866\pi\)
\(504\) −2.95629e9 + 1.66263e10i −0.0458167 + 0.257676i
\(505\) 0 0
\(506\) −7.60468e10 1.51603e11i −1.16006 2.31262i
\(507\) 3.73680e10i 0.565547i
\(508\) −7.24224e10 5.40243e10i −1.08747 0.811212i
\(509\) −1.06239e10 −0.158276 −0.0791378 0.996864i \(-0.525217\pi\)
−0.0791378 + 0.996864i \(0.525217\pi\)
\(510\) 0 0
\(511\) 2.88537e10i 0.423173i
\(512\) 5.93643e10 + 3.46158e10i 0.863864 + 0.503726i
\(513\) 3.83357e10 0.553521
\(514\) −4.45062e10 8.87250e10i −0.637629 1.27114i
\(515\) 0 0
\(516\) 9.34391e9 1.25260e10i 0.131804 0.176691i
\(517\) 1.23303e11 1.72588
\(518\) −2.14183e10 + 1.07438e10i −0.297486 + 0.149225i
\(519\) 2.90661e10i 0.400606i
\(520\) 0 0
\(521\) −6.29819e10 −0.854800 −0.427400 0.904063i \(-0.640570\pi\)
−0.427400 + 0.904063i \(0.640570\pi\)
\(522\) 6.28276e9 + 1.25249e10i 0.0846191 + 0.168692i
\(523\) 2.56642e10i 0.343021i 0.985182 + 0.171511i \(0.0548648\pi\)
−0.985182 + 0.171511i \(0.945135\pi\)
\(524\) 2.47547e10 + 1.84660e10i 0.328346 + 0.244933i
\(525\) 0 0
\(526\) 2.80779e10 1.40844e10i 0.366793 0.183991i
\(527\) 6.32945e9i 0.0820584i
\(528\) 1.97094e10 + 6.62957e10i 0.253593 + 0.853001i
\(529\) −1.05353e11 −1.34531
\(530\) 0 0
\(531\) 2.67938e10i 0.337021i
\(532\) 1.05835e10 1.41877e10i 0.132124 0.177119i
\(533\) 8.25532e10 1.02288
\(534\) −6.99608e9 + 3.50937e9i −0.0860379 + 0.0431583i
\(535\) 0 0
\(536\) 3.58189e9 2.01447e10i 0.0433964 0.244063i
\(537\) 7.94490e10 0.955413
\(538\) 4.53107e10 + 9.03288e10i 0.540843 + 1.07819i
\(539\) 1.23884e11i 1.46778i
\(540\) 0 0
\(541\) 7.25189e10 0.846569 0.423285 0.905997i \(-0.360877\pi\)
0.423285 + 0.905997i \(0.360877\pi\)
\(542\) 6.73972e10 3.38078e10i 0.780989 0.391760i
\(543\) 4.03206e10i 0.463797i
\(544\) 3.12655e10 2.93564e10i 0.357002 0.335203i
\(545\) 0 0
\(546\) 1.09483e10 + 2.18259e10i 0.123190 + 0.245585i
\(547\) 2.29110e10i 0.255914i −0.991780 0.127957i \(-0.959158\pi\)
0.991780 0.127957i \(-0.0408420\pi\)
\(548\) −4.56160e10 + 6.11506e10i −0.505819 + 0.678077i
\(549\) 3.19380e10 0.351575
\(550\) 0 0
\(551\) 1.46872e10i 0.159343i
\(552\) 7.37390e10 + 1.31114e10i 0.794220 + 0.141219i
\(553\) −6.51781e10 −0.696949
\(554\) 7.22884e8 + 1.44110e9i 0.00767414 + 0.0152987i
\(555\) 0 0
\(556\) 8.20989e10 + 6.12426e10i 0.859089 + 0.640847i
\(557\) −1.28630e11 −1.33636 −0.668178 0.744001i \(-0.732926\pi\)
−0.668178 + 0.744001i \(0.732926\pi\)
\(558\) −1.04918e10 + 5.26291e9i −0.108222 + 0.0542861i
\(559\) 5.88436e10i 0.602632i
\(560\) 0 0
\(561\) 4.31645e10 0.435788
\(562\) 3.05865e10 + 6.09754e10i 0.306609 + 0.611237i
\(563\) 1.71738e11i 1.70936i −0.519159 0.854678i \(-0.673755\pi\)
0.519159 0.854678i \(-0.326245\pi\)
\(564\) −3.25561e10 + 4.36432e10i −0.321748 + 0.431320i
\(565\) 0 0
\(566\) −1.66270e11 + 8.34044e10i −1.62012 + 0.812686i
\(567\) 9.15734e9i 0.0886007i
\(568\) −1.48939e10 + 8.37640e10i −0.143092 + 0.804756i
\(569\) 8.20809e10 0.783056 0.391528 0.920166i \(-0.371947\pi\)
0.391528 + 0.920166i \(0.371947\pi\)
\(570\) 0 0
\(571\) 1.07462e11i 1.01090i 0.862855 + 0.505452i \(0.168674\pi\)
−0.862855 + 0.505452i \(0.831326\pi\)
\(572\) −2.08750e11 1.55719e11i −1.95003 1.45465i
\(573\) 2.61914e10 0.242963
\(574\) −2.49653e10 + 1.25231e10i −0.229980 + 0.115362i
\(575\) 0 0
\(576\) 7.46590e10 + 2.74167e10i 0.678254 + 0.249072i
\(577\) −3.37727e10 −0.304693 −0.152346 0.988327i \(-0.548683\pi\)
−0.152346 + 0.988327i \(0.548683\pi\)
\(578\) 3.80427e10 + 7.58396e10i 0.340847 + 0.679493i
\(579\) 3.17866e10i 0.282832i
\(580\) 0 0
\(581\) −7.61276e10 −0.668094
\(582\) 5.33700e10 2.67714e10i 0.465163 0.233335i
\(583\) 1.72561e11i 1.49372i
\(584\) −1.33795e11 2.37898e10i −1.15024 0.204522i
\(585\) 0 0
\(586\) 2.69528e10 + 5.37316e10i 0.228567 + 0.455659i
\(587\) 1.01250e11i 0.852793i 0.904536 + 0.426396i \(0.140217\pi\)
−0.904536 + 0.426396i \(0.859783\pi\)
\(588\) 4.38489e10 + 3.27096e10i 0.366817 + 0.273631i
\(589\) 1.23031e10 0.102224
\(590\) 0 0
\(591\) 1.05555e11i 0.865229i
\(592\) 3.21601e10 + 1.08175e11i 0.261836 + 0.880728i
\(593\) 1.86134e11 1.50525 0.752624 0.658451i \(-0.228788\pi\)
0.752624 + 0.658451i \(0.228788\pi\)
\(594\) 8.55645e10 + 1.70577e11i 0.687303 + 1.37017i
\(595\) 0 0
\(596\) 1.17986e11 1.58166e11i 0.935069 1.25351i
\(597\) −3.67969e10 −0.289677
\(598\) −2.52080e11 + 1.26448e11i −1.97121 + 0.988798i
\(599\) 7.77748e10i 0.604131i 0.953287 + 0.302066i \(0.0976762\pi\)
−0.953287 + 0.302066i \(0.902324\pi\)
\(600\) 0 0
\(601\) −1.76175e11 −1.35035 −0.675176 0.737657i \(-0.735932\pi\)
−0.675176 + 0.737657i \(0.735932\pi\)
\(602\) −8.92640e9 1.77952e10i −0.0679658 0.135493i
\(603\) 2.36806e10i 0.179112i
\(604\) 1.04957e11 + 7.82937e10i 0.788611 + 0.588273i
\(605\) 0 0
\(606\) −6.58764e10 + 3.30449e10i −0.488472 + 0.245027i
\(607\) 1.04822e11i 0.772143i −0.922469 0.386071i \(-0.873832\pi\)
0.922469 0.386071i \(-0.126168\pi\)
\(608\) −5.70626e10 6.07736e10i −0.417578 0.444734i
\(609\) −6.85499e9 −0.0498353
\(610\) 0 0
\(611\) 2.05023e11i 1.47109i
\(612\) 2.96791e10 3.97863e10i 0.211565 0.283614i
\(613\) −1.64383e10 −0.116417 −0.0582085 0.998304i \(-0.518539\pi\)
−0.0582085 + 0.998304i \(0.518539\pi\)
\(614\) 8.29987e10 4.16338e10i 0.583980 0.292936i
\(615\) 0 0
\(616\) 8.67511e10 + 1.54250e10i 0.602493 + 0.107128i
\(617\) 2.58887e11 1.78636 0.893181 0.449698i \(-0.148468\pi\)
0.893181 + 0.449698i \(0.148468\pi\)
\(618\) −2.94599e10 5.87296e10i −0.201966 0.402628i
\(619\) 1.40280e11i 0.955508i 0.878494 + 0.477754i \(0.158549\pi\)
−0.878494 + 0.477754i \(0.841451\pi\)
\(620\) 0 0
\(621\) 2.06650e11 1.38953
\(622\) −1.74685e11 + 8.76256e10i −1.16706 + 0.585422i
\(623\) 9.97123e9i 0.0661906i
\(624\) 1.10234e11 3.27721e10i 0.727072 0.216155i
\(625\) 0 0
\(626\) −6.45522e10 1.28687e11i −0.420352 0.837990i
\(627\) 8.39026e10i 0.542882i
\(628\) −1.30318e10 + 1.74698e10i −0.0837847 + 0.112318i
\(629\) 7.04320e10 0.449953
\(630\) 0 0
\(631\) 3.75788e10i 0.237042i 0.992952 + 0.118521i \(0.0378153\pi\)
−0.992952 + 0.118521i \(0.962185\pi\)
\(632\) −5.37392e10 + 3.02232e11i −0.336840 + 1.89440i
\(633\) 8.80662e10 0.548523
\(634\) 1.61561e10 + 3.22079e10i 0.0999955 + 0.199345i
\(635\) 0 0
\(636\) 6.10784e10 + 4.55621e10i 0.373301 + 0.278468i
\(637\) −2.05990e11 −1.25109
\(638\) 6.53514e10 3.27816e10i 0.394432 0.197855i
\(639\) 9.84666e10i 0.590589i
\(640\) 0 0
\(641\) −9.09734e10 −0.538868 −0.269434 0.963019i \(-0.586837\pi\)
−0.269434 + 0.963019i \(0.586837\pi\)
\(642\) −2.70430e10 5.39115e10i −0.159190 0.317352i
\(643\) 3.82679e10i 0.223868i −0.993716 0.111934i \(-0.964296\pi\)
0.993716 0.111934i \(-0.0357045\pi\)
\(644\) 5.70507e10 7.64794e10i 0.331679 0.444633i
\(645\) 0 0
\(646\) −4.65043e10 + 2.33274e10i −0.267032 + 0.133948i
\(647\) 1.00170e11i 0.571635i −0.958284 0.285818i \(-0.907735\pi\)
0.958284 0.285818i \(-0.0922652\pi\)
\(648\) 4.24628e10 + 7.55021e9i 0.240829 + 0.0428212i
\(649\) 1.39802e11 0.788016
\(650\) 0 0
\(651\) 5.74225e9i 0.0319711i
\(652\) −5.73083e10 4.27498e10i −0.317123 0.236561i
\(653\) −1.26162e11 −0.693869 −0.346934 0.937889i \(-0.612777\pi\)
−0.346934 + 0.937889i \(0.612777\pi\)
\(654\) 2.94208e10 1.47581e10i 0.160821 0.0806712i
\(655\) 0 0
\(656\) 3.74859e10 + 1.26090e11i 0.202420 + 0.680871i
\(657\) −1.57279e11 −0.844132
\(658\) 3.11014e10 + 6.20020e10i 0.165912 + 0.330752i
\(659\) 1.89374e9i 0.0100410i −0.999987 0.00502051i \(-0.998402\pi\)
0.999987 0.00502051i \(-0.00159809\pi\)
\(660\) 0 0
\(661\) 2.06198e11 1.08014 0.540068 0.841622i \(-0.318399\pi\)
0.540068 + 0.841622i \(0.318399\pi\)
\(662\) −2.41084e10 + 1.20933e10i −0.125527 + 0.0629668i
\(663\) 7.17724e10i 0.371453i
\(664\) −6.27671e10 + 3.53005e11i −0.322894 + 1.81597i
\(665\) 0 0
\(666\) 5.85639e10 + 1.16750e11i 0.297669 + 0.593415i
\(667\) 7.91720e10i 0.400008i
\(668\) 8.83782e10 + 6.59267e10i 0.443853 + 0.331097i
\(669\) −1.06478e11 −0.531563
\(670\) 0 0
\(671\) 1.66643e11i 0.822047i
\(672\) −2.83650e10 + 2.66330e10i −0.139093 + 0.130600i
\(673\) −2.75305e11 −1.34200 −0.671002 0.741455i \(-0.734136\pi\)
−0.671002 + 0.741455i \(0.734136\pi\)
\(674\) −5.54725e10 1.10587e11i −0.268806 0.535875i
\(675\) 0 0
\(676\) −1.34061e11 + 1.79716e11i −0.641973 + 0.860598i
\(677\) 2.05068e11 0.976208 0.488104 0.872785i \(-0.337689\pi\)
0.488104 + 0.872785i \(0.337689\pi\)
\(678\) 1.12191e11 5.62774e10i 0.530934 0.266327i
\(679\) 7.60661e10i 0.357859i
\(680\) 0 0
\(681\) −1.72947e11 −0.804127
\(682\) 2.74603e10 + 5.47432e10i 0.126931 + 0.253042i
\(683\) 3.92855e11i 1.80530i 0.430377 + 0.902649i \(0.358380\pi\)
−0.430377 + 0.902649i \(0.641620\pi\)
\(684\) −7.73362e10 5.76898e10i −0.353312 0.263557i
\(685\) 0 0
\(686\) 1.33996e11 6.72151e10i 0.605056 0.303508i
\(687\) 9.76096e10i 0.438193i
\(688\) −8.98763e10 + 2.67198e10i −0.401136 + 0.119256i
\(689\) −2.86929e11 −1.27320
\(690\) 0 0
\(691\) 1.92324e11i 0.843570i 0.906696 + 0.421785i \(0.138596\pi\)
−0.906696 + 0.421785i \(0.861404\pi\)
\(692\) 1.04277e11 1.39789e11i 0.454742 0.609606i
\(693\) 1.01978e11 0.442154
\(694\) −4.39677e10 + 2.20550e10i −0.189538 + 0.0950758i
\(695\) 0 0
\(696\) −5.65193e9 + 3.17867e10i −0.0240857 + 0.135459i
\(697\) 8.20959e10 0.347849
\(698\) −9.38942e10 1.87182e11i −0.395564 0.788574i
\(699\) 1.33609e11i 0.559662i
\(700\) 0 0
\(701\) 2.51795e11 1.04274 0.521369 0.853331i \(-0.325421\pi\)
0.521369 + 0.853331i \(0.325421\pi\)
\(702\) 2.83629e11 1.42274e11i 1.16789 0.585836i
\(703\) 1.36905e11i 0.560528i
\(704\) 1.43052e11 3.89549e11i 0.582377 1.58588i
\(705\) 0 0
\(706\) −4.74529e10 9.45993e10i −0.191005 0.380776i
\(707\) 9.38911e10i 0.375791i
\(708\) −3.69126e10 + 4.94832e10i −0.146907 + 0.196936i
\(709\) 4.10364e11 1.62400 0.811998 0.583661i \(-0.198380\pi\)
0.811998 + 0.583661i \(0.198380\pi\)
\(710\) 0 0
\(711\) 3.55281e11i 1.39025i
\(712\) 4.62368e10 + 8.22126e9i 0.179915 + 0.0319903i
\(713\) 6.63204e10 0.256619
\(714\) 1.08877e10 + 2.17050e10i 0.0418930 + 0.0835156i
\(715\) 0 0
\(716\) −3.82098e11 2.85030e11i −1.45386 1.08452i
\(717\) 7.08938e10 0.268245
\(718\) 4.77795e10 2.39672e10i 0.179781 0.0901817i
\(719\) 2.36375e11i 0.884474i −0.896898 0.442237i \(-0.854185\pi\)
0.896898 0.442237i \(-0.145815\pi\)
\(720\) 0 0
\(721\) −8.37050e10 −0.309749
\(722\) −7.64955e10 1.52497e11i −0.281506 0.561193i
\(723\) 6.84185e10i 0.250392i
\(724\) −1.44654e11 + 1.93916e11i −0.526472 + 0.705764i
\(725\) 0 0
\(726\) 2.42528e11 1.21657e11i 0.873004 0.437916i
\(727\) 1.16942e11i 0.418631i 0.977848 + 0.209316i \(0.0671236\pi\)
−0.977848 + 0.209316i \(0.932876\pi\)
\(728\) 2.56482e10 1.44247e11i 0.0913127 0.513547i
\(729\) −8.50669e10 −0.301197
\(730\) 0 0
\(731\) 5.85176e10i 0.204936i
\(732\) 5.89835e10 + 4.39994e10i 0.205441 + 0.153251i
\(733\) 4.81267e11 1.66713 0.833566 0.552420i \(-0.186296\pi\)
0.833566 + 0.552420i \(0.186296\pi\)
\(734\) −1.37396e11 + 6.89205e10i −0.473358 + 0.237445i
\(735\) 0 0
\(736\) −3.07599e11 3.27602e11i −1.04827 1.11644i
\(737\) −1.23558e11 −0.418796
\(738\) 6.82624e10 + 1.36084e11i 0.230121 + 0.458756i
\(739\) 9.92996e10i 0.332943i 0.986046 + 0.166471i \(0.0532374\pi\)
−0.986046 + 0.166471i \(0.946763\pi\)
\(740\) 0 0
\(741\) −1.39510e11 −0.462736
\(742\) 8.67715e10 4.35263e10i 0.286260 0.143594i
\(743\) 6.32997e10i 0.207705i 0.994593 + 0.103852i \(0.0331170\pi\)
−0.994593 + 0.103852i \(0.966883\pi\)
\(744\) −2.66269e10 4.73447e9i −0.0869019 0.0154518i
\(745\) 0 0
\(746\) 1.30981e11 + 2.61116e11i 0.422914 + 0.843097i
\(747\) 4.14966e11i 1.33269i
\(748\) −2.07593e11 1.54857e11i −0.663143 0.494679i
\(749\) −7.68378e10 −0.244145
\(750\) 0 0
\(751\) 4.98905e11i 1.56840i −0.620505 0.784202i \(-0.713072\pi\)
0.620505 0.784202i \(-0.286928\pi\)
\(752\) 3.13148e11 9.30974e10i 0.979214 0.291116i
\(753\) −2.64006e11 −0.821171
\(754\) −5.45081e10 1.08664e11i −0.168646 0.336202i
\(755\) 0 0
\(756\) −6.41909e10 + 8.60513e10i −0.196511 + 0.263433i
\(757\) 1.79684e11 0.547174 0.273587 0.961847i \(-0.411790\pi\)
0.273587 + 0.961847i \(0.411790\pi\)
\(758\) 2.97766e11 1.49365e11i 0.901984 0.452453i
\(759\) 4.52281e11i 1.36283i
\(760\) 0 0
\(761\) −3.04576e11 −0.908148 −0.454074 0.890964i \(-0.650030\pi\)
−0.454074 + 0.890964i \(0.650030\pi\)
\(762\) −1.08030e11 2.15362e11i −0.320424 0.638778i
\(763\) 4.19323e10i 0.123723i
\(764\) −1.25964e11 9.39640e10i −0.369719 0.275796i
\(765\) 0 0
\(766\) 3.28734e11 1.64900e11i 0.954839 0.478966i
\(767\) 2.32458e11i 0.671682i
\(768\) 1.00111e11 + 1.53488e11i 0.287763 + 0.441193i
\(769\) −2.22920e11 −0.637446 −0.318723 0.947848i \(-0.603254\pi\)
−0.318723 + 0.947848i \(0.603254\pi\)
\(770\) 0 0
\(771\) 2.64696e11i 0.749082i
\(772\) −1.14037e11 + 1.52873e11i −0.321053 + 0.430389i
\(773\) −5.59182e11 −1.56616 −0.783078 0.621924i \(-0.786351\pi\)
−0.783078 + 0.621924i \(0.786351\pi\)
\(774\) −9.70001e10 + 4.86572e10i −0.270277 + 0.135576i
\(775\) 0 0
\(776\) −3.52720e11 6.27164e10i −0.972710 0.172955i
\(777\) −6.38979e10 −0.175308
\(778\) −1.14838e11 2.28934e11i −0.313449 0.624873i
\(779\) 1.59577e11i 0.433332i
\(780\) 0 0
\(781\) 5.13770e11 1.38091
\(782\) −2.50683e11 + 1.25748e11i −0.670345 + 0.336258i
\(783\) 8.90808e10i 0.236994i
\(784\) −9.35363e10 3.14624e11i −0.247580 0.832775i
\(785\) 0 0
\(786\) 3.69256e10 + 7.36128e10i 0.0967471 + 0.192869i
\(787\) 1.13289e11i 0.295318i −0.989038 0.147659i \(-0.952826\pi\)
0.989038 0.147659i \(-0.0471738\pi\)
\(788\) 3.78690e11 5.07654e11i 0.982152 1.31663i
\(789\) 8.37655e10 0.216151
\(790\) 0 0
\(791\) 1.59902e11i 0.408458i
\(792\) 8.40807e10 4.72874e11i 0.213696 1.20183i
\(793\) −2.77088e11 −0.700689
\(794\) −1.23906e11 2.47011e11i −0.311752 0.621491i
\(795\) 0 0
\(796\) 1.76969e11 + 1.32012e11i 0.440804 + 0.328823i
\(797\) −7.63543e11 −1.89234 −0.946172 0.323663i \(-0.895086\pi\)
−0.946172 + 0.323663i \(0.895086\pi\)
\(798\) 4.21899e10 2.11633e10i 0.104039 0.0521882i
\(799\) 2.03888e11i 0.500269i
\(800\) 0 0
\(801\) 5.43525e10 0.132035
\(802\) 1.12508e11 + 2.24289e11i 0.271948 + 0.542140i
\(803\) 8.20637e11i 1.97374i
\(804\) 3.26237e10 4.37337e10i 0.0780744 0.104663i
\(805\) 0 0
\(806\) 9.10252e10 4.56600e10i 0.215686 0.108192i
\(807\) 2.69480e11i 0.635379i
\(808\) 4.35375e11 + 7.74130e10i 1.02145 + 0.181622i
\(809\) −4.67881e11 −1.09230 −0.546149 0.837688i \(-0.683907\pi\)
−0.546149 + 0.837688i \(0.683907\pi\)
\(810\) 0 0
\(811\) 6.66951e11i 1.54174i 0.636994 + 0.770869i \(0.280178\pi\)
−0.636994 + 0.770869i \(0.719822\pi\)
\(812\) 3.29681e10 + 2.45929e10i 0.0758349 + 0.0565699i
\(813\) 2.01068e11 0.460237
\(814\) 6.09165e11 3.05569e11i 1.38751 0.696004i
\(815\) 0 0
\(816\) 1.09623e11 3.25906e10i 0.247254 0.0735074i
\(817\) 1.13746e11 0.255298
\(818\) −7.56985e8 1.50908e9i −0.00169073 0.00337054i
\(819\) 1.69565e11i 0.376879i
\(820\) 0 0
\(821\) −4.34647e11 −0.956674 −0.478337 0.878176i \(-0.658760\pi\)
−0.478337 + 0.878176i \(0.658760\pi\)
\(822\) −1.81843e11 + 9.12163e10i −0.398300 + 0.199795i
\(823\) 6.53323e11i 1.42406i 0.702149 + 0.712030i \(0.252224\pi\)
−0.702149 + 0.712030i \(0.747776\pi\)
\(824\) −6.90147e10 + 3.88142e11i −0.149704 + 0.841941i
\(825\) 0 0
\(826\) 3.52632e10 + 7.02987e10i 0.0757534 + 0.151017i
\(827\) 8.42913e10i 0.180203i 0.995933 + 0.0901013i \(0.0287191\pi\)
−0.995933 + 0.0901013i \(0.971281\pi\)
\(828\) −4.16884e11 3.10979e11i −0.886939 0.661622i
\(829\) −1.67984e11 −0.355672 −0.177836 0.984060i \(-0.556910\pi\)
−0.177836 + 0.984060i \(0.556910\pi\)
\(830\) 0 0
\(831\) 4.29928e9i 0.00901553i
\(832\) −6.47728e11 2.37862e11i −1.35176 0.496401i
\(833\) −2.04849e11 −0.425455
\(834\) 1.22464e11 + 2.44137e11i 0.253130 + 0.504626i
\(835\) 0 0
\(836\) −3.01008e11 + 4.03517e11i −0.616245 + 0.826108i
\(837\) −7.46207e10 −0.152040
\(838\) 1.83701e11 9.21479e10i 0.372507 0.186857i
\(839\) 8.94664e11i 1.80556i 0.430102 + 0.902780i \(0.358477\pi\)
−0.430102 + 0.902780i \(0.641523\pi\)
\(840\) 0 0
\(841\) −4.66118e11 −0.931776
\(842\) 2.21154e11 + 4.40880e11i 0.439994 + 0.877146i
\(843\) 1.81910e11i 0.360202i
\(844\) −4.23542e11 3.15946e11i −0.834692 0.622648i
\(845\) 0 0
\(846\) 3.37968e11 1.69532e11i 0.659773 0.330955i
\(847\) 3.45666e11i 0.671619i
\(848\) −1.30289e11 4.38248e11i −0.251956 0.847494i
\(849\) −4.96039e11 −0.954739
\(850\) 0 0
\(851\) 7.37991e11i 1.40713i
\(852\) −1.35653e11 + 1.81850e11i −0.257437 + 0.345107i
\(853\) −1.57864e11 −0.298186 −0.149093 0.988823i \(-0.547635\pi\)
−0.149093 + 0.988823i \(0.547635\pi\)
\(854\) 8.37954e10 4.20334e10i 0.157539 0.0790248i
\(855\) 0 0
\(856\) −6.33527e10 + 3.56299e11i −0.117997 + 0.663619i
\(857\) −1.15753e10 −0.0214590 −0.0107295 0.999942i \(-0.503415\pi\)
−0.0107295 + 0.999942i \(0.503415\pi\)
\(858\) −3.11385e11 6.20758e11i −0.574577 1.14544i
\(859\) 5.96689e10i 0.109591i 0.998498 + 0.0547956i \(0.0174507\pi\)
−0.998498 + 0.0547956i \(0.982549\pi\)
\(860\) 0 0
\(861\) −7.44797e10 −0.135527
\(862\) 1.37247e11 6.88458e10i 0.248584 0.124695i
\(863\) 1.49504e11i 0.269532i 0.990877 + 0.134766i \(0.0430282\pi\)
−0.990877 + 0.134766i \(0.956972\pi\)
\(864\) 3.46096e11 + 3.68604e11i 0.621072 + 0.661462i
\(865\) 0 0
\(866\) 4.80057e9 + 9.57014e9i 0.00853535 + 0.0170156i
\(867\) 2.26255e11i 0.400425i
\(868\) −2.06008e10 + 2.76165e10i −0.0362916 + 0.0486508i
\(869\) 1.85375e12 3.25067
\(870\) 0 0
\(871\) 2.05449e11i 0.356969i
\(872\) −1.94441e11 3.45731e10i −0.336296 0.0597961i
\(873\) −4.14631e11 −0.713846
\(874\) 2.44427e11 + 4.87275e11i 0.418893 + 0.835080i
\(875\) 0 0
\(876\) −2.90466e11 2.16676e11i −0.493263 0.367955i
\(877\) 8.95446e11 1.51370 0.756852 0.653587i \(-0.226736\pi\)
0.756852 + 0.653587i \(0.226736\pi\)
\(878\) −5.36959e11 + 2.69349e11i −0.903573 + 0.453250i
\(879\) 1.60299e11i 0.268519i
\(880\) 0 0
\(881\) 9.41351e11 1.56260 0.781300 0.624155i \(-0.214557\pi\)
0.781300 + 0.624155i \(0.214557\pi\)
\(882\) −1.70331e11 3.39562e11i −0.281462 0.561106i
\(883\) 8.12182e11i 1.33601i −0.744156 0.668006i \(-0.767148\pi\)
0.744156 0.668006i \(-0.232852\pi\)
\(884\) −2.57490e11 + 3.45179e11i −0.421649 + 0.565243i
\(885\) 0 0
\(886\) −1.71599e11 + 8.60775e10i −0.278471 + 0.139687i
\(887\) 4.35414e11i 0.703409i 0.936111 + 0.351704i \(0.114398\pi\)
−0.936111 + 0.351704i \(0.885602\pi\)
\(888\) −5.26837e10 + 2.96296e11i −0.0847275 + 0.476512i
\(889\) −3.06947e11 −0.491424
\(890\) 0 0
\(891\) 2.60447e11i 0.413246i
\(892\) 5.12089e11 + 3.81999e11i 0.808884 + 0.603396i
\(893\) −3.96314e11 −0.623209
\(894\) 4.70337e11 2.35930e11i 0.736308 0.369346i
\(895\) 0 0
\(896\) 2.31965e11 2.63254e10i 0.359908 0.0408454i
\(897\) −7.52036e11 −1.16163
\(898\) 4.92242e11 + 9.81306e11i 0.756961 + 1.50903i
\(899\) 2.85888e10i 0.0437680i
\(900\) 0 0
\(901\) −2.85339e11 −0.432975
\(902\) 7.10046e11 3.56173e11i 1.07266 0.538065i
\(903\) 5.30888e10i 0.0798458i
\(904\) −7.41468e11 1.31839e11i −1.11025 0.197410i
\(905\) 0 0
\(906\) 1.56560e11 + 3.12110e11i 0.232364 + 0.463227i
\(907\) 8.59055e11i 1.26938i −0.772766 0.634690i \(-0.781128\pi\)
0.772766 0.634690i \(-0.218872\pi\)
\(908\) 8.31763e11 + 6.20463e11i 1.22365 + 0.912793i
\(909\) 5.11793e11 0.749617
\(910\) 0 0
\(911\) 9.78674e11i 1.42090i 0.703746 + 0.710452i \(0.251509\pi\)
−0.703746 + 0.710452i \(0.748491\pi\)
\(912\) −6.33491e10 2.13085e11i −0.0915717 0.308016i
\(913\) 2.16517e12 3.11608
\(914\) 3.64502e11 + 7.26650e11i 0.522294 + 1.04122i
\(915\) 0 0
\(916\) 3.50183e11 4.69439e11i 0.497409 0.666803i
\(917\) 1.04917e11 0.148378
\(918\) 2.82058e11 1.41486e11i 0.397161 0.199224i
\(919\) 3.76307e11i 0.527571i 0.964581 + 0.263785i \(0.0849711\pi\)
−0.964581 + 0.263785i \(0.915029\pi\)
\(920\) 0 0
\(921\) 2.47613e11 0.344139
\(922\) 2.48558e11 + 4.95510e11i 0.343957 + 0.685692i
\(923\) 8.54278e11i 1.17704i
\(924\) 1.88334e11 + 1.40490e11i 0.258370 + 0.192734i
\(925\) 0 0
\(926\) 7.04387e11 3.53334e11i 0.958004 0.480553i
\(927\) 4.56270e11i 0.617878i
\(928\) 1.41220e11 1.32597e11i 0.190416 0.178789i
\(929\) −1.22156e12 −1.64003 −0.820013 0.572345i \(-0.806034\pi\)
−0.820013 + 0.572345i \(0.806034\pi\)
\(930\) 0 0
\(931\) 3.98183e11i 0.530009i
\(932\) 4.79333e11 6.42571e11i 0.635293 0.851643i
\(933\) −5.21144e11 −0.687751
\(934\) 1.12079e11 5.62212e10i 0.147278 0.0738776i
\(935\) 0 0
\(936\) −7.86278e11 1.39806e11i −1.02441 0.182148i
\(937\) 5.06116e11 0.656586 0.328293 0.944576i \(-0.393527\pi\)
0.328293 + 0.944576i \(0.393527\pi\)
\(938\) −3.11660e10 6.21307e10i −0.0402596 0.0802592i
\(939\) 3.83917e11i 0.493827i
\(940\) 0 0
\(941\) −6.00360e9 −0.00765690 −0.00382845 0.999993i \(-0.501219\pi\)
−0.00382845 + 0.999993i \(0.501219\pi\)
\(942\) −5.19498e10 + 2.60590e10i −0.0659751 + 0.0330944i
\(943\) 8.60207e11i 1.08782i
\(944\) 3.55051e11 1.05555e11i 0.447098 0.132920i
\(945\) 0 0
\(946\) 2.53879e11 + 5.06118e11i 0.317002 + 0.631957i
\(947\) 3.08522e11i 0.383606i 0.981433 + 0.191803i \(0.0614335\pi\)
−0.981433 + 0.191803i \(0.938567\pi\)
\(948\) −4.89454e11 + 6.56138e11i −0.606008 + 0.812385i
\(949\) 1.36453e12 1.68235
\(950\) 0 0
\(951\) 9.60868e10i 0.117474i
\(952\) 2.55061e10 1.43448e11i 0.0310525 0.174641i
\(953\) 6.14491e11 0.744979 0.372489 0.928036i \(-0.378504\pi\)
0.372489 + 0.928036i \(0.378504\pi\)
\(954\) −2.37259e11 4.72985e11i −0.286436 0.571023i
\(955\) 0 0
\(956\) −3.40953e11 2.54338e11i −0.408191 0.304495i
\(957\) 1.94965e11 0.232439
\(958\) −4.20625e11 + 2.10994e11i −0.499383 + 0.250500i
\(959\) 2.59174e11i 0.306420i
\(960\) 0 0
\(961\) 8.28943e11 0.971921
\(962\) −5.08090e11 1.01290e12i −0.593253 1.18268i
\(963\) 4.18838e11i 0.487013i
\(964\) 2.45458e11 3.29049e11i 0.284229 0.381024i
\(965\) 0 0
\(966\) 2.27427e11 1.14082e11i 0.261176 0.131011i
\(967\) 7.29374e11i 0.834150i −0.908872 0.417075i \(-0.863055\pi\)
0.908872 0.417075i \(-0.136945\pi\)
\(968\) −1.60286e12 2.85001e11i −1.82555 0.324597i
\(969\) −1.38738e11 −0.157362
\(970\) 0 0
\(971\) 4.05501e11i 0.456158i 0.973643 + 0.228079i \(0.0732444\pi\)
−0.973643 + 0.228079i \(0.926756\pi\)
\(972\) 7.41366e11 + 5.53030e11i 0.830553 + 0.619561i
\(973\) 3.47959e11 0.388219
\(974\) −8.37276e11 + 4.19994e11i −0.930320 + 0.466667i
\(975\) 0 0
\(976\) −1.25821e11 4.23218e11i −0.138661 0.466406i
\(977\) 5.72274e11 0.628096 0.314048 0.949407i \(-0.398315\pi\)
0.314048 + 0.949407i \(0.398315\pi\)
\(978\) −8.54848e10 1.70418e11i −0.0934401 0.186277i
\(979\) 2.83595e11i 0.308722i
\(980\) 0 0
\(981\) −2.28570e11 −0.246799
\(982\) −1.15194e12 + 5.77837e11i −1.23875 + 0.621383i
\(983\) 8.31746e11i 0.890792i −0.895334 0.445396i \(-0.853063\pi\)
0.895334 0.445396i \(-0.146937\pi\)
\(984\) −6.14084e10 + 3.45364e11i −0.0655009 + 0.368380i
\(985\) 0 0
\(986\) −5.42061e10 1.08062e11i −0.0573509 0.114332i
\(987\) 1.84972e11i 0.194912i
\(988\) 6.70954e11 + 5.00506e11i 0.704150 + 0.525269i
\(989\) 6.13152e11 0.640889
\(990\) 0 0
\(991\) 1.13988e12i 1.18186i −0.806724 0.590928i \(-0.798762\pi\)
0.806724 0.590928i \(-0.201238\pi\)
\(992\) 1.11073e11 + 1.18296e11i 0.114699 + 0.122159i
\(993\) −7.19234e10 −0.0739729
\(994\) 1.29591e11 + 2.58346e11i 0.132749 + 0.264641i
\(995\) 0 0
\(996\) −5.71679e11 + 7.66365e11i −0.580918 + 0.778750i
\(997\) −1.49273e11 −0.151078 −0.0755390 0.997143i \(-0.524068\pi\)
−0.0755390 + 0.997143i \(0.524068\pi\)
\(998\) −3.22172e11 + 1.61608e11i −0.324762 + 0.162907i
\(999\) 8.30355e11i 0.833685i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.9.b.g.51.7 20
4.3 odd 2 inner 100.9.b.g.51.8 20
5.2 odd 4 20.9.d.c.19.17 yes 20
5.3 odd 4 20.9.d.c.19.4 yes 20
5.4 even 2 inner 100.9.b.g.51.14 20
20.3 even 4 20.9.d.c.19.18 yes 20
20.7 even 4 20.9.d.c.19.3 20
20.19 odd 2 inner 100.9.b.g.51.13 20
40.3 even 4 320.9.h.g.319.11 20
40.13 odd 4 320.9.h.g.319.9 20
40.27 even 4 320.9.h.g.319.10 20
40.37 odd 4 320.9.h.g.319.12 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.d.c.19.3 20 20.7 even 4
20.9.d.c.19.4 yes 20 5.3 odd 4
20.9.d.c.19.17 yes 20 5.2 odd 4
20.9.d.c.19.18 yes 20 20.3 even 4
100.9.b.g.51.7 20 1.1 even 1 trivial
100.9.b.g.51.8 20 4.3 odd 2 inner
100.9.b.g.51.13 20 20.19 odd 2 inner
100.9.b.g.51.14 20 5.4 even 2 inner
320.9.h.g.319.9 20 40.13 odd 4
320.9.h.g.319.10 20 40.27 even 4
320.9.h.g.319.11 20 40.3 even 4
320.9.h.g.319.12 20 40.37 odd 4