Properties

Label 320.8.c.g.129.4
Level $320$
Weight $8$
Character 320.129
Analytic conductor $99.963$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,8,Mod(129,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.129"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 320.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-60,0,0,0,-6788,0,17808] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(99.9632081549\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{31})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 15x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{10}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.4
Root \(2.78388 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 320.129
Dual form 320.8.c.g.129.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+83.6776i q^{3} +(-237.711 - 147.033i) q^{5} -185.744i q^{7} -4814.95 q^{9} +3561.16 q^{11} +6094.86i q^{13} +(12303.4 - 19891.1i) q^{15} -12470.2i q^{17} +50642.8 q^{19} +15542.6 q^{21} +11442.3i q^{23} +(34887.6 + 69902.6i) q^{25} -219900. i q^{27} +101926. q^{29} +29042.3 q^{31} +297989. i q^{33} +(-27310.4 + 44153.2i) q^{35} -149393. i q^{37} -510003. q^{39} -374382. q^{41} +174226. i q^{43} +(1.14456e6 + 707956. i) q^{45} +428201. i q^{47} +789042. q^{49} +1.04347e6 q^{51} +1.71297e6i q^{53} +(-846525. - 523607. i) q^{55} +4.23767e6i q^{57} -134952. q^{59} +1.39437e6 q^{61} +894345. i q^{63} +(896145. - 1.44881e6i) q^{65} -2.60763e6i q^{67} -957466. q^{69} +4.91925e6 q^{71} +119096. i q^{73} +(-5.84928e6 + 2.91932e6i) q^{75} -661462. i q^{77} -4.70584e6 q^{79} +7.87046e6 q^{81} +9.19870e6i q^{83} +(-1.83352e6 + 2.96429e6i) q^{85} +8.52897e6i q^{87} -6.43438e6 q^{89} +1.13208e6 q^{91} +2.43019e6i q^{93} +(-1.20383e7 - 7.44617e6i) q^{95} -1.26986e7i q^{97} -1.71468e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 60 q^{5} - 6788 q^{9} + 17808 q^{11} + 34960 q^{15} + 63600 q^{19} + 63952 q^{21} + 86100 q^{25} - 169560 q^{29} + 394112 q^{31} - 276720 q^{35} - 1163424 q^{39} + 232488 q^{41} + 2879420 q^{45} + 2520108 q^{49}+ \cdots - 19109776 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 83.6776i 1.78931i 0.446760 + 0.894654i \(0.352578\pi\)
−0.446760 + 0.894654i \(0.647422\pi\)
\(4\) 0 0
\(5\) −237.711 147.033i −0.850459 0.526041i
\(6\) 0 0
\(7\) 185.744i 0.204678i −0.994750 0.102339i \(-0.967367\pi\)
0.994750 0.102339i \(-0.0326326\pi\)
\(8\) 0 0
\(9\) −4814.95 −2.20162
\(10\) 0 0
\(11\) 3561.16 0.806709 0.403354 0.915044i \(-0.367844\pi\)
0.403354 + 0.915044i \(0.367844\pi\)
\(12\) 0 0
\(13\) 6094.86i 0.769417i 0.923038 + 0.384708i \(0.125698\pi\)
−0.923038 + 0.384708i \(0.874302\pi\)
\(14\) 0 0
\(15\) 12303.4 19891.1i 0.941249 1.52173i
\(16\) 0 0
\(17\) 12470.2i 0.615603i −0.951451 0.307801i \(-0.900407\pi\)
0.951451 0.307801i \(-0.0995933\pi\)
\(18\) 0 0
\(19\) 50642.8 1.69387 0.846936 0.531695i \(-0.178445\pi\)
0.846936 + 0.531695i \(0.178445\pi\)
\(20\) 0 0
\(21\) 15542.6 0.366231
\(22\) 0 0
\(23\) 11442.3i 0.196095i 0.995182 + 0.0980475i \(0.0312597\pi\)
−0.995182 + 0.0980475i \(0.968740\pi\)
\(24\) 0 0
\(25\) 34887.6 + 69902.6i 0.446562 + 0.894753i
\(26\) 0 0
\(27\) 219900.i 2.15007i
\(28\) 0 0
\(29\) 101926. 0.776058 0.388029 0.921647i \(-0.373156\pi\)
0.388029 + 0.921647i \(0.373156\pi\)
\(30\) 0 0
\(31\) 29042.3 0.175092 0.0875458 0.996160i \(-0.472098\pi\)
0.0875458 + 0.996160i \(0.472098\pi\)
\(32\) 0 0
\(33\) 297989.i 1.44345i
\(34\) 0 0
\(35\) −27310.4 + 44153.2i −0.107669 + 0.174070i
\(36\) 0 0
\(37\) 149393.i 0.484870i −0.970168 0.242435i \(-0.922054\pi\)
0.970168 0.242435i \(-0.0779461\pi\)
\(38\) 0 0
\(39\) −510003. −1.37672
\(40\) 0 0
\(41\) −374382. −0.848343 −0.424171 0.905582i \(-0.639435\pi\)
−0.424171 + 0.905582i \(0.639435\pi\)
\(42\) 0 0
\(43\) 174226.i 0.334174i 0.985942 + 0.167087i \(0.0534360\pi\)
−0.985942 + 0.167087i \(0.946564\pi\)
\(44\) 0 0
\(45\) 1.14456e6 + 707956.i 1.87239 + 1.15814i
\(46\) 0 0
\(47\) 428201.i 0.601597i 0.953688 + 0.300798i \(0.0972531\pi\)
−0.953688 + 0.300798i \(0.902747\pi\)
\(48\) 0 0
\(49\) 789042. 0.958107
\(50\) 0 0
\(51\) 1.04347e6 1.10150
\(52\) 0 0
\(53\) 1.71297e6i 1.58047i 0.612806 + 0.790233i \(0.290041\pi\)
−0.612806 + 0.790233i \(0.709959\pi\)
\(54\) 0 0
\(55\) −846525. 523607.i −0.686073 0.424362i
\(56\) 0 0
\(57\) 4.23767e6i 3.03086i
\(58\) 0 0
\(59\) −134952. −0.0855458 −0.0427729 0.999085i \(-0.513619\pi\)
−0.0427729 + 0.999085i \(0.513619\pi\)
\(60\) 0 0
\(61\) 1.39437e6 0.786545 0.393273 0.919422i \(-0.371343\pi\)
0.393273 + 0.919422i \(0.371343\pi\)
\(62\) 0 0
\(63\) 894345.i 0.450623i
\(64\) 0 0
\(65\) 896145. 1.44881e6i 0.404745 0.654358i
\(66\) 0 0
\(67\) 2.60763e6i 1.05922i −0.848243 0.529608i \(-0.822339\pi\)
0.848243 0.529608i \(-0.177661\pi\)
\(68\) 0 0
\(69\) −957466. −0.350874
\(70\) 0 0
\(71\) 4.91925e6 1.63115 0.815576 0.578650i \(-0.196420\pi\)
0.815576 + 0.578650i \(0.196420\pi\)
\(72\) 0 0
\(73\) 119096.i 0.0358316i 0.999839 + 0.0179158i \(0.00570309\pi\)
−0.999839 + 0.0179158i \(0.994297\pi\)
\(74\) 0 0
\(75\) −5.84928e6 + 2.91932e6i −1.60099 + 0.799036i
\(76\) 0 0
\(77\) 661462.i 0.165115i
\(78\) 0 0
\(79\) −4.70584e6 −1.07385 −0.536924 0.843631i \(-0.680414\pi\)
−0.536924 + 0.843631i \(0.680414\pi\)
\(80\) 0 0
\(81\) 7.87046e6 1.64552
\(82\) 0 0
\(83\) 9.19870e6i 1.76585i 0.469517 + 0.882923i \(0.344428\pi\)
−0.469517 + 0.882923i \(0.655572\pi\)
\(84\) 0 0
\(85\) −1.83352e6 + 2.96429e6i −0.323832 + 0.523545i
\(86\) 0 0
\(87\) 8.52897e6i 1.38861i
\(88\) 0 0
\(89\) −6.43438e6 −0.967480 −0.483740 0.875212i \(-0.660722\pi\)
−0.483740 + 0.875212i \(0.660722\pi\)
\(90\) 0 0
\(91\) 1.13208e6 0.157482
\(92\) 0 0
\(93\) 2.43019e6i 0.313293i
\(94\) 0 0
\(95\) −1.20383e7 7.44617e6i −1.44057 0.891046i
\(96\) 0 0
\(97\) 1.26986e7i 1.41271i −0.707858 0.706355i \(-0.750338\pi\)
0.707858 0.706355i \(-0.249662\pi\)
\(98\) 0 0
\(99\) −1.71468e7 −1.77607
\(100\) 0 0
\(101\) −6.66850e6 −0.644026 −0.322013 0.946735i \(-0.604359\pi\)
−0.322013 + 0.946735i \(0.604359\pi\)
\(102\) 0 0
\(103\) 2.10469e6i 0.189783i −0.995488 0.0948916i \(-0.969750\pi\)
0.995488 0.0948916i \(-0.0302505\pi\)
\(104\) 0 0
\(105\) −3.69464e6 2.28527e6i −0.311465 0.192653i
\(106\) 0 0
\(107\) 7.43589e6i 0.586799i 0.955990 + 0.293400i \(0.0947867\pi\)
−0.955990 + 0.293400i \(0.905213\pi\)
\(108\) 0 0
\(109\) −9.12137e6 −0.674633 −0.337316 0.941391i \(-0.609519\pi\)
−0.337316 + 0.941391i \(0.609519\pi\)
\(110\) 0 0
\(111\) 1.25009e7 0.867582
\(112\) 0 0
\(113\) 2.93903e6i 0.191615i −0.995400 0.0958075i \(-0.969457\pi\)
0.995400 0.0958075i \(-0.0305433\pi\)
\(114\) 0 0
\(115\) 1.68240e6 2.71996e6i 0.103154 0.166771i
\(116\) 0 0
\(117\) 2.93464e7i 1.69397i
\(118\) 0 0
\(119\) −2.31625e6 −0.126000
\(120\) 0 0
\(121\) −6.80533e6 −0.349221
\(122\) 0 0
\(123\) 3.13274e7i 1.51795i
\(124\) 0 0
\(125\) 1.98482e6 2.17462e7i 0.0908942 0.995861i
\(126\) 0 0
\(127\) 1.76254e7i 0.763529i −0.924260 0.381764i \(-0.875317\pi\)
0.924260 0.381764i \(-0.124683\pi\)
\(128\) 0 0
\(129\) −1.45788e7 −0.597939
\(130\) 0 0
\(131\) 3.95489e6 0.153704 0.0768520 0.997043i \(-0.475513\pi\)
0.0768520 + 0.997043i \(0.475513\pi\)
\(132\) 0 0
\(133\) 9.40658e6i 0.346698i
\(134\) 0 0
\(135\) −3.23326e7 + 5.22727e7i −1.13103 + 1.82855i
\(136\) 0 0
\(137\) 2.95868e7i 0.983051i −0.870863 0.491525i \(-0.836440\pi\)
0.870863 0.491525i \(-0.163560\pi\)
\(138\) 0 0
\(139\) −4.26561e6 −0.134719 −0.0673596 0.997729i \(-0.521457\pi\)
−0.0673596 + 0.997729i \(0.521457\pi\)
\(140\) 0 0
\(141\) −3.58309e7 −1.07644
\(142\) 0 0
\(143\) 2.17047e7i 0.620695i
\(144\) 0 0
\(145\) −2.42290e7 1.49865e7i −0.660005 0.408238i
\(146\) 0 0
\(147\) 6.60252e7i 1.71435i
\(148\) 0 0
\(149\) 7.09039e7 1.75597 0.877987 0.478685i \(-0.158886\pi\)
0.877987 + 0.478685i \(0.158886\pi\)
\(150\) 0 0
\(151\) −3.36796e7 −0.796063 −0.398032 0.917372i \(-0.630307\pi\)
−0.398032 + 0.917372i \(0.630307\pi\)
\(152\) 0 0
\(153\) 6.00432e7i 1.35533i
\(154\) 0 0
\(155\) −6.90366e6 4.27017e6i −0.148908 0.0921053i
\(156\) 0 0
\(157\) 7.51572e7i 1.54997i 0.631982 + 0.774983i \(0.282241\pi\)
−0.631982 + 0.774983i \(0.717759\pi\)
\(158\) 0 0
\(159\) −1.43338e8 −2.82794
\(160\) 0 0
\(161\) 2.12534e6 0.0401363
\(162\) 0 0
\(163\) 8.50523e7i 1.53826i 0.639093 + 0.769130i \(0.279310\pi\)
−0.639093 + 0.769130i \(0.720690\pi\)
\(164\) 0 0
\(165\) 4.38142e7 7.08352e7i 0.759314 1.22760i
\(166\) 0 0
\(167\) 5.10526e7i 0.848223i 0.905610 + 0.424111i \(0.139413\pi\)
−0.905610 + 0.424111i \(0.860587\pi\)
\(168\) 0 0
\(169\) 2.56012e7 0.407998
\(170\) 0 0
\(171\) −2.43843e8 −3.72927
\(172\) 0 0
\(173\) 7.71282e7i 1.13254i 0.824221 + 0.566268i \(0.191613\pi\)
−0.824221 + 0.566268i \(0.808387\pi\)
\(174\) 0 0
\(175\) 1.29839e7 6.48015e6i 0.183136 0.0914012i
\(176\) 0 0
\(177\) 1.12925e7i 0.153068i
\(178\) 0 0
\(179\) 9.92044e6 0.129284 0.0646421 0.997909i \(-0.479409\pi\)
0.0646421 + 0.997909i \(0.479409\pi\)
\(180\) 0 0
\(181\) −5.60330e7 −0.702374 −0.351187 0.936305i \(-0.614222\pi\)
−0.351187 + 0.936305i \(0.614222\pi\)
\(182\) 0 0
\(183\) 1.16678e8i 1.40737i
\(184\) 0 0
\(185\) −2.19657e7 + 3.55124e7i −0.255062 + 0.412362i
\(186\) 0 0
\(187\) 4.44082e7i 0.496612i
\(188\) 0 0
\(189\) −4.08451e7 −0.440072
\(190\) 0 0
\(191\) −8.36160e7 −0.868305 −0.434153 0.900839i \(-0.642952\pi\)
−0.434153 + 0.900839i \(0.642952\pi\)
\(192\) 0 0
\(193\) 1.84081e8i 1.84314i 0.388216 + 0.921569i \(0.373092\pi\)
−0.388216 + 0.921569i \(0.626908\pi\)
\(194\) 0 0
\(195\) 1.21233e8 + 7.49873e7i 1.17085 + 0.724213i
\(196\) 0 0
\(197\) 3.32048e7i 0.309435i −0.987959 0.154717i \(-0.950553\pi\)
0.987959 0.154717i \(-0.0494467\pi\)
\(198\) 0 0
\(199\) 1.57568e8 1.41737 0.708683 0.705527i \(-0.249290\pi\)
0.708683 + 0.705527i \(0.249290\pi\)
\(200\) 0 0
\(201\) 2.18200e8 1.89526
\(202\) 0 0
\(203\) 1.89322e7i 0.158842i
\(204\) 0 0
\(205\) 8.89945e7 + 5.50465e7i 0.721481 + 0.446263i
\(206\) 0 0
\(207\) 5.50942e7i 0.431727i
\(208\) 0 0
\(209\) 1.80347e8 1.36646
\(210\) 0 0
\(211\) −1.86392e8 −1.36597 −0.682983 0.730435i \(-0.739318\pi\)
−0.682983 + 0.730435i \(0.739318\pi\)
\(212\) 0 0
\(213\) 4.11631e8i 2.91863i
\(214\) 0 0
\(215\) 2.56169e7 4.14152e7i 0.175789 0.284201i
\(216\) 0 0
\(217\) 5.39442e6i 0.0358373i
\(218\) 0 0
\(219\) −9.96566e6 −0.0641138
\(220\) 0 0
\(221\) 7.60038e7 0.473655
\(222\) 0 0
\(223\) 2.57497e8i 1.55491i −0.628938 0.777456i \(-0.716510\pi\)
0.628938 0.777456i \(-0.283490\pi\)
\(224\) 0 0
\(225\) −1.67982e8 3.36577e8i −0.983160 1.96991i
\(226\) 0 0
\(227\) 1.10040e8i 0.624398i 0.950017 + 0.312199i \(0.101066\pi\)
−0.950017 + 0.312199i \(0.898934\pi\)
\(228\) 0 0
\(229\) 4.69036e7 0.258096 0.129048 0.991638i \(-0.458808\pi\)
0.129048 + 0.991638i \(0.458808\pi\)
\(230\) 0 0
\(231\) 5.53496e7 0.295442
\(232\) 0 0
\(233\) 1.60419e8i 0.830824i 0.909633 + 0.415412i \(0.136363\pi\)
−0.909633 + 0.415412i \(0.863637\pi\)
\(234\) 0 0
\(235\) 6.29597e7 1.01788e8i 0.316464 0.511633i
\(236\) 0 0
\(237\) 3.93774e8i 1.92144i
\(238\) 0 0
\(239\) −2.51647e8 −1.19234 −0.596169 0.802859i \(-0.703311\pi\)
−0.596169 + 0.802859i \(0.703311\pi\)
\(240\) 0 0
\(241\) 2.30623e8 1.06131 0.530655 0.847588i \(-0.321946\pi\)
0.530655 + 0.847588i \(0.321946\pi\)
\(242\) 0 0
\(243\) 1.77660e8i 0.794267i
\(244\) 0 0
\(245\) −1.87564e8 1.16015e8i −0.814831 0.504004i
\(246\) 0 0
\(247\) 3.08661e8i 1.30329i
\(248\) 0 0
\(249\) −7.69725e8 −3.15964
\(250\) 0 0
\(251\) −2.64559e8 −1.05600 −0.528002 0.849243i \(-0.677058\pi\)
−0.528002 + 0.849243i \(0.677058\pi\)
\(252\) 0 0
\(253\) 4.07479e7i 0.158192i
\(254\) 0 0
\(255\) −2.48045e8 1.53425e8i −0.936783 0.579436i
\(256\) 0 0
\(257\) 1.54580e8i 0.568050i 0.958817 + 0.284025i \(0.0916699\pi\)
−0.958817 + 0.284025i \(0.908330\pi\)
\(258\) 0 0
\(259\) −2.77489e7 −0.0992421
\(260\) 0 0
\(261\) −4.90771e8 −1.70859
\(262\) 0 0
\(263\) 4.30058e8i 1.45775i 0.684649 + 0.728873i \(0.259955\pi\)
−0.684649 + 0.728873i \(0.740045\pi\)
\(264\) 0 0
\(265\) 2.51864e8 4.07192e8i 0.831390 1.34412i
\(266\) 0 0
\(267\) 5.38414e8i 1.73112i
\(268\) 0 0
\(269\) 1.73129e6 0.00542297 0.00271149 0.999996i \(-0.499137\pi\)
0.00271149 + 0.999996i \(0.499137\pi\)
\(270\) 0 0
\(271\) 2.91507e8 0.889727 0.444864 0.895598i \(-0.353252\pi\)
0.444864 + 0.895598i \(0.353252\pi\)
\(272\) 0 0
\(273\) 9.47298e7i 0.281785i
\(274\) 0 0
\(275\) 1.24240e8 + 2.48934e8i 0.360245 + 0.721805i
\(276\) 0 0
\(277\) 2.01058e8i 0.568383i −0.958767 0.284192i \(-0.908275\pi\)
0.958767 0.284192i \(-0.0917252\pi\)
\(278\) 0 0
\(279\) −1.39837e8 −0.385485
\(280\) 0 0
\(281\) −3.53690e8 −0.950935 −0.475468 0.879733i \(-0.657721\pi\)
−0.475468 + 0.879733i \(0.657721\pi\)
\(282\) 0 0
\(283\) 9.83086e7i 0.257833i −0.991655 0.128917i \(-0.958850\pi\)
0.991655 0.128917i \(-0.0411500\pi\)
\(284\) 0 0
\(285\) 6.23078e8 1.00734e9i 1.59436 2.57762i
\(286\) 0 0
\(287\) 6.95390e7i 0.173637i
\(288\) 0 0
\(289\) 2.54834e8 0.621033
\(290\) 0 0
\(291\) 1.06258e9 2.52777
\(292\) 0 0
\(293\) 2.63252e8i 0.611414i 0.952126 + 0.305707i \(0.0988928\pi\)
−0.952126 + 0.305707i \(0.901107\pi\)
\(294\) 0 0
\(295\) 3.20796e7 + 1.98425e7i 0.0727532 + 0.0450006i
\(296\) 0 0
\(297\) 7.83100e8i 1.73448i
\(298\) 0 0
\(299\) −6.97393e7 −0.150879
\(300\) 0 0
\(301\) 3.23613e7 0.0683979
\(302\) 0 0
\(303\) 5.58004e8i 1.15236i
\(304\) 0 0
\(305\) −3.31457e8 2.05018e8i −0.668925 0.413755i
\(306\) 0 0
\(307\) 4.04138e8i 0.797160i 0.917133 + 0.398580i \(0.130497\pi\)
−0.917133 + 0.398580i \(0.869503\pi\)
\(308\) 0 0
\(309\) 1.76115e8 0.339581
\(310\) 0 0
\(311\) 5.84260e8 1.10140 0.550700 0.834703i \(-0.314361\pi\)
0.550700 + 0.834703i \(0.314361\pi\)
\(312\) 0 0
\(313\) 8.58721e8i 1.58288i 0.611250 + 0.791438i \(0.290667\pi\)
−0.611250 + 0.791438i \(0.709333\pi\)
\(314\) 0 0
\(315\) 1.31498e8 2.12595e8i 0.237046 0.383236i
\(316\) 0 0
\(317\) 1.01493e8i 0.178950i 0.995989 + 0.0894748i \(0.0285188\pi\)
−0.995989 + 0.0894748i \(0.971481\pi\)
\(318\) 0 0
\(319\) 3.62976e8 0.626052
\(320\) 0 0
\(321\) −6.22218e8 −1.04996
\(322\) 0 0
\(323\) 6.31524e8i 1.04275i
\(324\) 0 0
\(325\) −4.26046e8 + 2.12635e8i −0.688438 + 0.343592i
\(326\) 0 0
\(327\) 7.63255e8i 1.20713i
\(328\) 0 0
\(329\) 7.95356e7 0.123133
\(330\) 0 0
\(331\) 5.45528e8 0.826835 0.413418 0.910542i \(-0.364335\pi\)
0.413418 + 0.910542i \(0.364335\pi\)
\(332\) 0 0
\(333\) 7.19321e8i 1.06750i
\(334\) 0 0
\(335\) −3.83408e8 + 6.19861e8i −0.557191 + 0.900819i
\(336\) 0 0
\(337\) 6.98565e8i 0.994266i −0.867674 0.497133i \(-0.834386\pi\)
0.867674 0.497133i \(-0.165614\pi\)
\(338\) 0 0
\(339\) 2.45931e8 0.342858
\(340\) 0 0
\(341\) 1.03424e8 0.141248
\(342\) 0 0
\(343\) 2.99527e8i 0.400781i
\(344\) 0 0
\(345\) 2.27600e8 + 1.40779e8i 0.298404 + 0.184574i
\(346\) 0 0
\(347\) 5.05448e8i 0.649417i 0.945814 + 0.324708i \(0.105266\pi\)
−0.945814 + 0.324708i \(0.894734\pi\)
\(348\) 0 0
\(349\) −1.05055e9 −1.32290 −0.661449 0.749990i \(-0.730058\pi\)
−0.661449 + 0.749990i \(0.730058\pi\)
\(350\) 0 0
\(351\) 1.34026e9 1.65430
\(352\) 0 0
\(353\) 1.35289e9i 1.63701i 0.574501 + 0.818504i \(0.305196\pi\)
−0.574501 + 0.818504i \(0.694804\pi\)
\(354\) 0 0
\(355\) −1.16936e9 7.23291e8i −1.38723 0.858053i
\(356\) 0 0
\(357\) 1.93818e8i 0.225453i
\(358\) 0 0
\(359\) −4.43730e8 −0.506161 −0.253080 0.967445i \(-0.581444\pi\)
−0.253080 + 0.967445i \(0.581444\pi\)
\(360\) 0 0
\(361\) 1.67083e9 1.86920
\(362\) 0 0
\(363\) 5.69454e8i 0.624864i
\(364\) 0 0
\(365\) 1.75110e7 2.83103e7i 0.0188489 0.0304733i
\(366\) 0 0
\(367\) 1.51050e9i 1.59510i −0.603251 0.797551i \(-0.706128\pi\)
0.603251 0.797551i \(-0.293872\pi\)
\(368\) 0 0
\(369\) 1.80263e9 1.86773
\(370\) 0 0
\(371\) 3.18174e8 0.323486
\(372\) 0 0
\(373\) 1.64359e9i 1.63988i 0.572448 + 0.819941i \(0.305994\pi\)
−0.572448 + 0.819941i \(0.694006\pi\)
\(374\) 0 0
\(375\) 1.81967e9 + 1.66085e8i 1.78190 + 0.162638i
\(376\) 0 0
\(377\) 6.21227e8i 0.597112i
\(378\) 0 0
\(379\) −3.65881e7 −0.0345225 −0.0172613 0.999851i \(-0.505495\pi\)
−0.0172613 + 0.999851i \(0.505495\pi\)
\(380\) 0 0
\(381\) 1.47485e9 1.36619
\(382\) 0 0
\(383\) 5.68889e8i 0.517406i 0.965957 + 0.258703i \(0.0832952\pi\)
−0.965957 + 0.258703i \(0.916705\pi\)
\(384\) 0 0
\(385\) −9.72567e7 + 1.57236e8i −0.0868574 + 0.140424i
\(386\) 0 0
\(387\) 8.38887e8i 0.735724i
\(388\) 0 0
\(389\) 2.10183e9 1.81040 0.905199 0.424988i \(-0.139722\pi\)
0.905199 + 0.424988i \(0.139722\pi\)
\(390\) 0 0
\(391\) 1.42688e8 0.120717
\(392\) 0 0
\(393\) 3.30936e8i 0.275024i
\(394\) 0 0
\(395\) 1.11863e9 + 6.91914e8i 0.913263 + 0.564888i
\(396\) 0 0
\(397\) 1.62761e9i 1.30552i 0.757564 + 0.652760i \(0.226389\pi\)
−0.757564 + 0.652760i \(0.773611\pi\)
\(398\) 0 0
\(399\) 7.87120e8 0.620349
\(400\) 0 0
\(401\) −6.33359e8 −0.490506 −0.245253 0.969459i \(-0.578871\pi\)
−0.245253 + 0.969459i \(0.578871\pi\)
\(402\) 0 0
\(403\) 1.77009e8i 0.134718i
\(404\) 0 0
\(405\) −1.87089e9 1.15722e9i −1.39945 0.865610i
\(406\) 0 0
\(407\) 5.32013e8i 0.391149i
\(408\) 0 0
\(409\) −1.41470e9 −1.02243 −0.511213 0.859454i \(-0.670804\pi\)
−0.511213 + 0.859454i \(0.670804\pi\)
\(410\) 0 0
\(411\) 2.47575e9 1.75898
\(412\) 0 0
\(413\) 2.50665e7i 0.0175093i
\(414\) 0 0
\(415\) 1.35251e9 2.18663e9i 0.928908 1.50178i
\(416\) 0 0
\(417\) 3.56936e8i 0.241054i
\(418\) 0 0
\(419\) 8.14907e7 0.0541202 0.0270601 0.999634i \(-0.491385\pi\)
0.0270601 + 0.999634i \(0.491385\pi\)
\(420\) 0 0
\(421\) −2.06996e7 −0.0135199 −0.00675996 0.999977i \(-0.502152\pi\)
−0.00675996 + 0.999977i \(0.502152\pi\)
\(422\) 0 0
\(423\) 2.06177e9i 1.32449i
\(424\) 0 0
\(425\) 8.71696e8 4.35054e8i 0.550812 0.274905i
\(426\) 0 0
\(427\) 2.58995e8i 0.160988i
\(428\) 0 0
\(429\) −1.81620e9 −1.11062
\(430\) 0 0
\(431\) −2.21145e9 −1.33047 −0.665237 0.746633i \(-0.731669\pi\)
−0.665237 + 0.746633i \(0.731669\pi\)
\(432\) 0 0
\(433\) 1.16437e9i 0.689261i −0.938738 0.344630i \(-0.888004\pi\)
0.938738 0.344630i \(-0.111996\pi\)
\(434\) 0 0
\(435\) 1.25404e9 2.02743e9i 0.730464 1.18095i
\(436\) 0 0
\(437\) 5.79472e8i 0.332160i
\(438\) 0 0
\(439\) 7.24010e8 0.408431 0.204216 0.978926i \(-0.434536\pi\)
0.204216 + 0.978926i \(0.434536\pi\)
\(440\) 0 0
\(441\) −3.79920e9 −2.10939
\(442\) 0 0
\(443\) 1.52679e9i 0.834385i 0.908818 + 0.417193i \(0.136986\pi\)
−0.908818 + 0.417193i \(0.863014\pi\)
\(444\) 0 0
\(445\) 1.52952e9 + 9.46066e8i 0.822802 + 0.508934i
\(446\) 0 0
\(447\) 5.93307e9i 3.14198i
\(448\) 0 0
\(449\) 2.71929e9 1.41773 0.708864 0.705345i \(-0.249208\pi\)
0.708864 + 0.705345i \(0.249208\pi\)
\(450\) 0 0
\(451\) −1.33323e9 −0.684366
\(452\) 0 0
\(453\) 2.81823e9i 1.42440i
\(454\) 0 0
\(455\) −2.69107e8 1.66453e8i −0.133932 0.0828422i
\(456\) 0 0
\(457\) 2.20279e9i 1.07961i 0.841790 + 0.539805i \(0.181502\pi\)
−0.841790 + 0.539805i \(0.818498\pi\)
\(458\) 0 0
\(459\) −2.74219e9 −1.32359
\(460\) 0 0
\(461\) 2.41318e9 1.14719 0.573597 0.819137i \(-0.305547\pi\)
0.573597 + 0.819137i \(0.305547\pi\)
\(462\) 0 0
\(463\) 3.44274e9i 1.61202i 0.591902 + 0.806010i \(0.298377\pi\)
−0.591902 + 0.806010i \(0.701623\pi\)
\(464\) 0 0
\(465\) 3.57318e8 5.77682e8i 0.164805 0.266443i
\(466\) 0 0
\(467\) 2.27849e9i 1.03523i −0.855613 0.517616i \(-0.826820\pi\)
0.855613 0.517616i \(-0.173180\pi\)
\(468\) 0 0
\(469\) −4.84350e8 −0.216798
\(470\) 0 0
\(471\) −6.28898e9 −2.77337
\(472\) 0 0
\(473\) 6.20444e8i 0.269581i
\(474\) 0 0
\(475\) 1.76681e9 + 3.54007e9i 0.756418 + 1.51560i
\(476\) 0 0
\(477\) 8.24788e9i 3.47959i
\(478\) 0 0
\(479\) −1.54719e8 −0.0643235 −0.0321618 0.999483i \(-0.510239\pi\)
−0.0321618 + 0.999483i \(0.510239\pi\)
\(480\) 0 0
\(481\) 9.10531e8 0.373067
\(482\) 0 0
\(483\) 1.77843e8i 0.0718162i
\(484\) 0 0
\(485\) −1.86711e9 + 3.01858e9i −0.743144 + 1.20145i
\(486\) 0 0
\(487\) 2.63948e9i 1.03554i −0.855520 0.517770i \(-0.826762\pi\)
0.855520 0.517770i \(-0.173238\pi\)
\(488\) 0 0
\(489\) −7.11698e9 −2.75242
\(490\) 0 0
\(491\) −1.72366e9 −0.657151 −0.328576 0.944478i \(-0.606569\pi\)
−0.328576 + 0.944478i \(0.606569\pi\)
\(492\) 0 0
\(493\) 1.27104e9i 0.477743i
\(494\) 0 0
\(495\) 4.07597e9 + 2.52114e9i 1.51047 + 0.934285i
\(496\) 0 0
\(497\) 9.13718e8i 0.333860i
\(498\) 0 0
\(499\) −2.37910e9 −0.857158 −0.428579 0.903504i \(-0.640986\pi\)
−0.428579 + 0.903504i \(0.640986\pi\)
\(500\) 0 0
\(501\) −4.27196e9 −1.51773
\(502\) 0 0
\(503\) 4.58013e8i 0.160468i −0.996776 0.0802342i \(-0.974433\pi\)
0.996776 0.0802342i \(-0.0255668\pi\)
\(504\) 0 0
\(505\) 1.58517e9 + 9.80489e8i 0.547717 + 0.338784i
\(506\) 0 0
\(507\) 2.14225e9i 0.730033i
\(508\) 0 0
\(509\) 1.88963e9 0.635132 0.317566 0.948236i \(-0.397134\pi\)
0.317566 + 0.948236i \(0.397134\pi\)
\(510\) 0 0
\(511\) 2.21213e7 0.00733394
\(512\) 0 0
\(513\) 1.11364e10i 3.64195i
\(514\) 0 0
\(515\) −3.09459e8 + 5.00307e8i −0.0998338 + 0.161403i
\(516\) 0 0
\(517\) 1.52489e9i 0.485313i
\(518\) 0 0
\(519\) −6.45390e9 −2.02645
\(520\) 0 0
\(521\) −4.36991e9 −1.35376 −0.676878 0.736096i \(-0.736667\pi\)
−0.676878 + 0.736096i \(0.736667\pi\)
\(522\) 0 0
\(523\) 7.59971e8i 0.232296i −0.993232 0.116148i \(-0.962945\pi\)
0.993232 0.116148i \(-0.0370547\pi\)
\(524\) 0 0
\(525\) 5.42244e8 + 1.08647e9i 0.163545 + 0.327687i
\(526\) 0 0
\(527\) 3.62162e8i 0.107787i
\(528\) 0 0
\(529\) 3.27390e9 0.961547
\(530\) 0 0
\(531\) 6.49789e8 0.188340
\(532\) 0 0
\(533\) 2.28180e9i 0.652729i
\(534\) 0 0
\(535\) 1.09332e9 1.76759e9i 0.308681 0.499049i
\(536\) 0 0
\(537\) 8.30119e8i 0.231329i
\(538\) 0 0
\(539\) 2.80990e9 0.772913
\(540\) 0 0
\(541\) 3.02681e9 0.821854 0.410927 0.911668i \(-0.365205\pi\)
0.410927 + 0.911668i \(0.365205\pi\)
\(542\) 0 0
\(543\) 4.68871e9i 1.25676i
\(544\) 0 0
\(545\) 2.16825e9 + 1.34114e9i 0.573748 + 0.354884i
\(546\) 0 0
\(547\) 1.76298e9i 0.460566i 0.973124 + 0.230283i \(0.0739651\pi\)
−0.973124 + 0.230283i \(0.926035\pi\)
\(548\) 0 0
\(549\) −6.71382e9 −1.73168
\(550\) 0 0
\(551\) 5.16185e9 1.31454
\(552\) 0 0
\(553\) 8.74080e8i 0.219793i
\(554\) 0 0
\(555\) −2.97159e9 1.83804e9i −0.737843 0.456384i
\(556\) 0 0
\(557\) 6.96721e9i 1.70831i 0.520021 + 0.854153i \(0.325924\pi\)
−0.520021 + 0.854153i \(0.674076\pi\)
\(558\) 0 0
\(559\) −1.06188e9 −0.257119
\(560\) 0 0
\(561\) 3.71597e9 0.888592
\(562\) 0 0
\(563\) 2.44613e9i 0.577698i −0.957375 0.288849i \(-0.906728\pi\)
0.957375 0.288849i \(-0.0932725\pi\)
\(564\) 0 0
\(565\) −4.32134e8 + 6.98638e8i −0.100797 + 0.162961i
\(566\) 0 0
\(567\) 1.46189e9i 0.336801i
\(568\) 0 0
\(569\) 4.26784e9 0.971215 0.485607 0.874177i \(-0.338599\pi\)
0.485607 + 0.874177i \(0.338599\pi\)
\(570\) 0 0
\(571\) 3.15003e9 0.708090 0.354045 0.935228i \(-0.384806\pi\)
0.354045 + 0.935228i \(0.384806\pi\)
\(572\) 0 0
\(573\) 6.99679e9i 1.55367i
\(574\) 0 0
\(575\) −7.99847e8 + 3.99195e8i −0.175457 + 0.0875685i
\(576\) 0 0
\(577\) 1.59513e8i 0.0345685i −0.999851 0.0172843i \(-0.994498\pi\)
0.999851 0.0172843i \(-0.00550202\pi\)
\(578\) 0 0
\(579\) −1.54034e10 −3.29794
\(580\) 0 0
\(581\) 1.70860e9 0.361429
\(582\) 0 0
\(583\) 6.10017e9i 1.27498i
\(584\) 0 0
\(585\) −4.31489e9 + 6.97595e9i −0.891095 + 1.44065i
\(586\) 0 0
\(587\) 3.17099e9i 0.647085i −0.946214 0.323543i \(-0.895126\pi\)
0.946214 0.323543i \(-0.104874\pi\)
\(588\) 0 0
\(589\) 1.47078e9 0.296583
\(590\) 0 0
\(591\) 2.77850e9 0.553674
\(592\) 0 0
\(593\) 5.65837e9i 1.11429i 0.830414 + 0.557147i \(0.188104\pi\)
−0.830414 + 0.557147i \(0.811896\pi\)
\(594\) 0 0
\(595\) 5.50597e8 + 3.40565e8i 0.107158 + 0.0662813i
\(596\) 0 0
\(597\) 1.31849e10i 2.53610i
\(598\) 0 0
\(599\) −3.67540e9 −0.698732 −0.349366 0.936986i \(-0.613603\pi\)
−0.349366 + 0.936986i \(0.613603\pi\)
\(600\) 0 0
\(601\) 5.94912e9 1.11787 0.558936 0.829211i \(-0.311210\pi\)
0.558936 + 0.829211i \(0.311210\pi\)
\(602\) 0 0
\(603\) 1.25556e10i 2.33199i
\(604\) 0 0
\(605\) 1.61770e9 + 1.00061e9i 0.296998 + 0.183704i
\(606\) 0 0
\(607\) 5.91556e9i 1.07358i 0.843715 + 0.536792i \(0.180364\pi\)
−0.843715 + 0.536792i \(0.819636\pi\)
\(608\) 0 0
\(609\) 1.58420e9 0.284217
\(610\) 0 0
\(611\) −2.60982e9 −0.462879
\(612\) 0 0
\(613\) 2.91525e8i 0.0511169i −0.999673 0.0255585i \(-0.991864\pi\)
0.999673 0.0255585i \(-0.00813639\pi\)
\(614\) 0 0
\(615\) −4.60616e9 + 7.44685e9i −0.798502 + 1.29095i
\(616\) 0 0
\(617\) 6.88662e9i 1.18034i 0.807278 + 0.590171i \(0.200940\pi\)
−0.807278 + 0.590171i \(0.799060\pi\)
\(618\) 0 0
\(619\) −5.67213e9 −0.961234 −0.480617 0.876931i \(-0.659587\pi\)
−0.480617 + 0.876931i \(0.659587\pi\)
\(620\) 0 0
\(621\) 2.51617e9 0.421619
\(622\) 0 0
\(623\) 1.19514e9i 0.198021i
\(624\) 0 0
\(625\) −3.66922e9 + 4.87747e9i −0.601165 + 0.799125i
\(626\) 0 0
\(627\) 1.50910e10i 2.44502i
\(628\) 0 0
\(629\) −1.86296e9 −0.298487
\(630\) 0 0
\(631\) 1.36737e9 0.216662 0.108331 0.994115i \(-0.465449\pi\)
0.108331 + 0.994115i \(0.465449\pi\)
\(632\) 0 0
\(633\) 1.55969e10i 2.44413i
\(634\) 0 0
\(635\) −2.59151e9 + 4.18974e9i −0.401647 + 0.649350i
\(636\) 0 0
\(637\) 4.80910e9i 0.737184i
\(638\) 0 0
\(639\) −2.36859e10 −3.59118
\(640\) 0 0
\(641\) 6.50671e9 0.975794 0.487897 0.872901i \(-0.337764\pi\)
0.487897 + 0.872901i \(0.337764\pi\)
\(642\) 0 0
\(643\) 1.00325e10i 1.48824i −0.668048 0.744118i \(-0.732870\pi\)
0.668048 0.744118i \(-0.267130\pi\)
\(644\) 0 0
\(645\) 3.46553e9 + 2.14356e9i 0.508523 + 0.314541i
\(646\) 0 0
\(647\) 7.56024e9i 1.09741i −0.836015 0.548707i \(-0.815120\pi\)
0.836015 0.548707i \(-0.184880\pi\)
\(648\) 0 0
\(649\) −4.80587e8 −0.0690106
\(650\) 0 0
\(651\) 4.51392e8 0.0641240
\(652\) 0 0
\(653\) 7.10083e9i 0.997960i −0.866613 0.498980i \(-0.833708\pi\)
0.866613 0.498980i \(-0.166292\pi\)
\(654\) 0 0
\(655\) −9.40120e8 5.81499e8i −0.130719 0.0808546i
\(656\) 0 0
\(657\) 5.73440e8i 0.0788877i
\(658\) 0 0
\(659\) 2.72098e8 0.0370362 0.0185181 0.999829i \(-0.494105\pi\)
0.0185181 + 0.999829i \(0.494105\pi\)
\(660\) 0 0
\(661\) −9.94289e8 −0.133908 −0.0669541 0.997756i \(-0.521328\pi\)
−0.0669541 + 0.997756i \(0.521328\pi\)
\(662\) 0 0
\(663\) 6.35982e9i 0.847515i
\(664\) 0 0
\(665\) −1.38308e9 + 2.23604e9i −0.182377 + 0.294852i
\(666\) 0 0
\(667\) 1.16628e9i 0.152181i
\(668\) 0 0
\(669\) 2.15468e10 2.78222
\(670\) 0 0
\(671\) 4.96557e9 0.634513
\(672\) 0 0
\(673\) 4.39633e9i 0.555953i 0.960588 + 0.277976i \(0.0896637\pi\)
−0.960588 + 0.277976i \(0.910336\pi\)
\(674\) 0 0
\(675\) 1.53716e10 7.67181e9i 1.92378 0.960140i
\(676\) 0 0
\(677\) 5.81617e9i 0.720406i −0.932874 0.360203i \(-0.882708\pi\)
0.932874 0.360203i \(-0.117292\pi\)
\(678\) 0 0
\(679\) −2.35867e9 −0.289150
\(680\) 0 0
\(681\) −9.20792e9 −1.11724
\(682\) 0 0
\(683\) 1.01860e10i 1.22329i −0.791130 0.611647i \(-0.790507\pi\)
0.791130 0.611647i \(-0.209493\pi\)
\(684\) 0 0
\(685\) −4.35023e9 + 7.03309e9i −0.517125 + 0.836044i
\(686\) 0 0
\(687\) 3.92478e9i 0.461814i
\(688\) 0 0
\(689\) −1.04403e10 −1.21604
\(690\) 0 0
\(691\) 1.04954e10 1.21011 0.605056 0.796183i \(-0.293151\pi\)
0.605056 + 0.796183i \(0.293151\pi\)
\(692\) 0 0
\(693\) 3.18490e9i 0.363522i
\(694\) 0 0
\(695\) 1.01398e9 + 6.27185e8i 0.114573 + 0.0708678i
\(696\) 0 0
\(697\) 4.66860e9i 0.522242i
\(698\) 0 0
\(699\) −1.34235e10 −1.48660
\(700\) 0 0
\(701\) −1.44399e10 −1.58325 −0.791626 0.611006i \(-0.790765\pi\)
−0.791626 + 0.611006i \(0.790765\pi\)
\(702\) 0 0
\(703\) 7.56571e9i 0.821308i
\(704\) 0 0
\(705\) 8.51738e9 + 5.26832e9i 0.915469 + 0.566252i
\(706\) 0 0
\(707\) 1.23863e9i 0.131818i
\(708\) 0 0
\(709\) −5.52527e8 −0.0582226 −0.0291113 0.999576i \(-0.509268\pi\)
−0.0291113 + 0.999576i \(0.509268\pi\)
\(710\) 0 0
\(711\) 2.26584e10 2.36421
\(712\) 0 0
\(713\) 3.32311e8i 0.0343346i
\(714\) 0 0
\(715\) 3.19131e9 5.15945e9i 0.326511 0.527876i
\(716\) 0 0
\(717\) 2.10572e10i 2.13346i
\(718\) 0 0
\(719\) 3.15086e8 0.0316139 0.0158069 0.999875i \(-0.494968\pi\)
0.0158069 + 0.999875i \(0.494968\pi\)
\(720\) 0 0
\(721\) −3.90932e8 −0.0388444
\(722\) 0 0
\(723\) 1.92980e10i 1.89901i
\(724\) 0 0
\(725\) 3.55597e9 + 7.12492e9i 0.346558 + 0.694380i
\(726\) 0 0
\(727\) 2.96166e9i 0.285867i 0.989732 + 0.142934i \(0.0456535\pi\)
−0.989732 + 0.142934i \(0.954346\pi\)
\(728\) 0 0
\(729\) 2.34658e9 0.224330
\(730\) 0 0
\(731\) 2.17262e9 0.205718
\(732\) 0 0
\(733\) 2.04158e10i 1.91471i −0.288914 0.957355i \(-0.593294\pi\)
0.288914 0.957355i \(-0.406706\pi\)
\(734\) 0 0
\(735\) 9.70788e9 1.56949e10i 0.901818 1.45798i
\(736\) 0 0
\(737\) 9.28618e9i 0.854478i
\(738\) 0 0
\(739\) 1.24593e10 1.13563 0.567817 0.823155i \(-0.307788\pi\)
0.567817 + 0.823155i \(0.307788\pi\)
\(740\) 0 0
\(741\) −2.58280e10 −2.33199
\(742\) 0 0
\(743\) 8.88793e9i 0.794950i 0.917613 + 0.397475i \(0.130114\pi\)
−0.917613 + 0.397475i \(0.869886\pi\)
\(744\) 0 0
\(745\) −1.68546e10 1.04252e10i −1.49338 0.923714i
\(746\) 0 0
\(747\) 4.42912e10i 3.88773i
\(748\) 0 0
\(749\) 1.38117e9 0.120105
\(750\) 0 0
\(751\) −7.69514e9 −0.662944 −0.331472 0.943465i \(-0.607545\pi\)
−0.331472 + 0.943465i \(0.607545\pi\)
\(752\) 0 0
\(753\) 2.21377e10i 1.88951i
\(754\) 0 0
\(755\) 8.00600e9 + 4.95201e9i 0.677019 + 0.418762i
\(756\) 0 0
\(757\) 1.31095e9i 0.109838i 0.998491 + 0.0549189i \(0.0174900\pi\)
−0.998491 + 0.0549189i \(0.982510\pi\)
\(758\) 0 0
\(759\) −3.40969e9 −0.283053
\(760\) 0 0
\(761\) −4.20324e9 −0.345731 −0.172865 0.984945i \(-0.555303\pi\)
−0.172865 + 0.984945i \(0.555303\pi\)
\(762\) 0 0
\(763\) 1.69424e9i 0.138082i
\(764\) 0 0
\(765\) 8.82832e9 1.42729e10i 0.712957 1.15265i
\(766\) 0 0
\(767\) 8.22516e8i 0.0658204i
\(768\) 0 0
\(769\) −4.90370e9 −0.388850 −0.194425 0.980917i \(-0.562284\pi\)
−0.194425 + 0.980917i \(0.562284\pi\)
\(770\) 0 0
\(771\) −1.29349e10 −1.01642
\(772\) 0 0
\(773\) 8.59620e9i 0.669389i 0.942327 + 0.334694i \(0.108633\pi\)
−0.942327 + 0.334694i \(0.891367\pi\)
\(774\) 0 0
\(775\) 1.01322e9 + 2.03013e9i 0.0781892 + 0.156664i
\(776\) 0 0
\(777\) 2.32196e9i 0.177575i
\(778\) 0 0
\(779\) −1.89598e10 −1.43698
\(780\) 0 0
\(781\) 1.75182e10 1.31586
\(782\) 0 0
\(783\) 2.24137e10i 1.66858i
\(784\) 0 0
\(785\) 1.10506e10 1.78657e10i 0.815345 1.31818i
\(786\) 0 0
\(787\) 1.11113e10i 0.812555i 0.913750 + 0.406277i \(0.133173\pi\)
−0.913750 + 0.406277i \(0.866827\pi\)
\(788\) 0 0
\(789\) −3.59862e10 −2.60836
\(790\) 0 0
\(791\) −5.45906e8 −0.0392193
\(792\) 0 0
\(793\) 8.49849e9i 0.605181i
\(794\) 0 0
\(795\) 3.40729e10 + 2.10753e10i 2.40505 + 1.48761i
\(796\) 0 0
\(797\) 6.73976e9i 0.471564i 0.971806 + 0.235782i \(0.0757650\pi\)
−0.971806 + 0.235782i \(0.924235\pi\)
\(798\) 0 0
\(799\) 5.33974e9 0.370345
\(800\) 0 0
\(801\) 3.09812e10 2.13002
\(802\) 0 0
\(803\) 4.24119e8i 0.0289057i
\(804\) 0 0
\(805\) −5.05215e8 3.12494e8i −0.0341343 0.0211133i
\(806\) 0 0
\(807\) 1.44870e8i 0.00970336i
\(808\) 0 0
\(809\) −2.01007e9 −0.133472 −0.0667362 0.997771i \(-0.521259\pi\)
−0.0667362 + 0.997771i \(0.521259\pi\)
\(810\) 0 0
\(811\) −1.56045e10 −1.02725 −0.513626 0.858014i \(-0.671698\pi\)
−0.513626 + 0.858014i \(0.671698\pi\)
\(812\) 0 0
\(813\) 2.43926e10i 1.59200i
\(814\) 0 0
\(815\) 1.25055e10 2.02178e10i 0.809188 1.30823i
\(816\) 0 0
\(817\) 8.82328e9i 0.566047i
\(818\) 0 0
\(819\) −5.45091e9 −0.346717
\(820\) 0 0
\(821\) 7.82354e9 0.493403 0.246702 0.969091i \(-0.420653\pi\)
0.246702 + 0.969091i \(0.420653\pi\)
\(822\) 0 0
\(823\) 9.42050e9i 0.589080i −0.955639 0.294540i \(-0.904834\pi\)
0.955639 0.294540i \(-0.0951665\pi\)
\(824\) 0 0
\(825\) −2.08302e10 + 1.03961e10i −1.29153 + 0.644590i
\(826\) 0 0
\(827\) 3.29188e9i 0.202383i 0.994867 + 0.101192i \(0.0322655\pi\)
−0.994867 + 0.101192i \(0.967734\pi\)
\(828\) 0 0
\(829\) 1.72231e10 1.04995 0.524976 0.851117i \(-0.324074\pi\)
0.524976 + 0.851117i \(0.324074\pi\)
\(830\) 0 0
\(831\) 1.68240e10 1.01701
\(832\) 0 0
\(833\) 9.83948e9i 0.589813i
\(834\) 0 0
\(835\) 7.50641e9 1.21357e10i 0.446200 0.721379i
\(836\) 0 0
\(837\) 6.38642e9i 0.376459i
\(838\) 0 0
\(839\) −9.34237e9 −0.546123 −0.273061 0.961997i \(-0.588036\pi\)
−0.273061 + 0.961997i \(0.588036\pi\)
\(840\) 0 0
\(841\) −6.86087e9 −0.397735
\(842\) 0 0
\(843\) 2.95960e10i 1.70152i
\(844\) 0 0
\(845\) −6.08569e9 3.76423e9i −0.346985 0.214623i
\(846\) 0 0
\(847\) 1.26405e9i 0.0714777i
\(848\) 0 0
\(849\) 8.22623e9 0.461343
\(850\) 0 0
\(851\) 1.70941e9 0.0950806
\(852\) 0 0
\(853\) 1.68999e9i 0.0932312i 0.998913 + 0.0466156i \(0.0148436\pi\)
−0.998913 + 0.0466156i \(0.985156\pi\)
\(854\) 0 0
\(855\) 5.79640e10 + 3.58529e10i 3.17159 + 1.96175i
\(856\) 0 0
\(857\) 3.51222e9i 0.190611i 0.995448 + 0.0953057i \(0.0303829\pi\)
−0.995448 + 0.0953057i \(0.969617\pi\)
\(858\) 0 0
\(859\) 2.67283e10 1.43878 0.719392 0.694604i \(-0.244421\pi\)
0.719392 + 0.694604i \(0.244421\pi\)
\(860\) 0 0
\(861\) −5.81886e9 −0.310690
\(862\) 0 0
\(863\) 7.78348e9i 0.412227i 0.978528 + 0.206113i \(0.0660815\pi\)
−0.978528 + 0.206113i \(0.933918\pi\)
\(864\) 0 0
\(865\) 1.13404e10 1.83342e10i 0.595760 0.963175i
\(866\) 0 0
\(867\) 2.13239e10i 1.11122i
\(868\) 0 0
\(869\) −1.67582e10 −0.866282
\(870\) 0 0
\(871\) 1.58931e10 0.814978
\(872\) 0 0
\(873\) 6.11429e10i 3.11025i
\(874\) 0 0
\(875\) −4.03922e9 3.68667e8i −0.203830 0.0186040i
\(876\) 0 0
\(877\) 9.46355e9i 0.473757i −0.971539 0.236878i \(-0.923876\pi\)
0.971539 0.236878i \(-0.0761243\pi\)
\(878\) 0 0
\(879\) −2.20283e10 −1.09401
\(880\) 0 0
\(881\) 2.29088e10 1.12872 0.564360 0.825529i \(-0.309123\pi\)
0.564360 + 0.825529i \(0.309123\pi\)
\(882\) 0 0
\(883\) 1.00814e10i 0.492784i −0.969170 0.246392i \(-0.920755\pi\)
0.969170 0.246392i \(-0.0792451\pi\)
\(884\) 0 0
\(885\) −1.66037e9 + 2.68435e9i −0.0805199 + 0.130178i
\(886\) 0 0
\(887\) 2.86392e10i 1.37793i −0.724792 0.688967i \(-0.758064\pi\)
0.724792 0.688967i \(-0.241936\pi\)
\(888\) 0 0
\(889\) −3.27380e9 −0.156277
\(890\) 0 0
\(891\) 2.80280e10 1.32745
\(892\) 0 0
\(893\) 2.16853e10i 1.01903i
\(894\) 0 0
\(895\) −2.35819e9 1.45863e9i −0.109951 0.0680088i
\(896\) 0 0
\(897\) 5.83562e9i 0.269969i
\(898\) 0 0
\(899\) 2.96018e9 0.135881
\(900\) 0 0
\(901\) 2.13611e10 0.972940
\(902\) 0 0
\(903\) 2.70791e9i 0.122385i
\(904\) 0 0
\(905\) 1.33196e10 + 8.23869e9i 0.597341 + 0.369478i
\(906\) 0 0
\(907\) 3.43088e10i 1.52679i −0.645930 0.763397i \(-0.723530\pi\)
0.645930 0.763397i \(-0.276470\pi\)
\(908\) 0 0
\(909\) 3.21085e10 1.41790
\(910\) 0 0
\(911\) −1.71466e10 −0.751385 −0.375693 0.926744i \(-0.622595\pi\)
−0.375693 + 0.926744i \(0.622595\pi\)
\(912\) 0 0
\(913\) 3.27580e10i 1.42452i
\(914\) 0 0
\(915\) 1.71554e10 2.77355e10i 0.740335 1.19691i
\(916\) 0 0
\(917\) 7.34596e8i 0.0314598i
\(918\) 0 0
\(919\) −1.75219e10 −0.744692 −0.372346 0.928094i \(-0.621447\pi\)
−0.372346 + 0.928094i \(0.621447\pi\)
\(920\) 0 0
\(921\) −3.38173e10 −1.42637
\(922\) 0 0
\(923\) 2.99821e10i 1.25504i
\(924\) 0 0
\(925\) 1.04430e10 5.21198e9i 0.433839 0.216524i
\(926\) 0 0
\(927\) 1.01340e10i 0.417831i
\(928\) 0 0
\(929\) −1.78228e10 −0.729324 −0.364662 0.931140i \(-0.618816\pi\)
−0.364662 + 0.931140i \(0.618816\pi\)
\(930\) 0 0
\(931\) 3.99594e10 1.62291
\(932\) 0 0
\(933\) 4.88895e10i 1.97074i
\(934\) 0 0
\(935\) −6.52947e9 + 1.05563e10i −0.261238 + 0.422348i
\(936\) 0 0
\(937\) 3.74390e10i 1.48674i −0.668879 0.743371i \(-0.733226\pi\)
0.668879 0.743371i \(-0.266774\pi\)
\(938\) 0 0
\(939\) −7.18557e10 −2.83225
\(940\) 0 0
\(941\) 5.59371e9 0.218845 0.109422 0.993995i \(-0.465100\pi\)
0.109422 + 0.993995i \(0.465100\pi\)
\(942\) 0 0
\(943\) 4.28380e9i 0.166356i
\(944\) 0 0
\(945\) 9.70931e9 + 6.00557e9i 0.374263 + 0.231496i
\(946\) 0 0
\(947\) 4.72461e10i 1.80776i 0.427785 + 0.903880i \(0.359294\pi\)
−0.427785 + 0.903880i \(0.640706\pi\)
\(948\) 0 0
\(949\) −7.25872e8 −0.0275695
\(950\) 0 0
\(951\) −8.49273e9 −0.320196
\(952\) 0 0
\(953\) 1.44402e10i 0.540442i 0.962798 + 0.270221i \(0.0870967\pi\)
−0.962798 + 0.270221i \(0.912903\pi\)
\(954\) 0 0
\(955\) 1.98764e10 + 1.22943e10i 0.738458 + 0.456764i
\(956\) 0 0
\(957\) 3.03730e10i 1.12020i
\(958\) 0 0
\(959\) −5.49555e9 −0.201209
\(960\) 0 0
\(961\) −2.66692e10 −0.969343
\(962\) 0 0
\(963\) 3.58034e10i 1.29191i
\(964\) 0 0
\(965\) 2.70659e10 4.37579e10i 0.969566 1.56751i
\(966\) 0 0
\(967\) 3.52615e10i 1.25403i −0.779008 0.627014i \(-0.784277\pi\)
0.779008 0.627014i \(-0.215723\pi\)
\(968\) 0 0
\(969\) 5.28445e10 1.86580
\(970\) 0 0
\(971\) 6.30626e9 0.221057 0.110528 0.993873i \(-0.464746\pi\)
0.110528 + 0.993873i \(0.464746\pi\)
\(972\) 0 0
\(973\) 7.92310e8i 0.0275740i
\(974\) 0 0
\(975\) −1.77928e10 3.56505e10i −0.614792 1.23183i
\(976\) 0 0
\(977\) 2.25969e10i 0.775206i −0.921826 0.387603i \(-0.873303\pi\)
0.921826 0.387603i \(-0.126697\pi\)
\(978\) 0 0
\(979\) −2.29138e10 −0.780474
\(980\) 0 0
\(981\) 4.39189e10 1.48529
\(982\) 0 0
\(983\) 1.48266e10i 0.497855i 0.968522 + 0.248928i \(0.0800781\pi\)
−0.968522 + 0.248928i \(0.919922\pi\)
\(984\) 0 0
\(985\) −4.88220e9 + 7.89313e9i −0.162775 + 0.263161i
\(986\) 0 0
\(987\) 6.65535e9i 0.220324i
\(988\) 0 0
\(989\) −1.99354e9 −0.0655298
\(990\) 0 0
\(991\) 4.13851e10 1.35079 0.675393 0.737458i \(-0.263974\pi\)
0.675393 + 0.737458i \(0.263974\pi\)
\(992\) 0 0
\(993\) 4.56485e10i 1.47946i
\(994\) 0 0
\(995\) −3.74556e10 2.31677e10i −1.20541 0.745593i
\(996\) 0 0
\(997\) 4.69228e9i 0.149952i 0.997185 + 0.0749758i \(0.0238879\pi\)
−0.997185 + 0.0749758i \(0.976112\pi\)
\(998\) 0 0
\(999\) −3.28517e10 −1.04251
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.8.c.g.129.4 4
4.3 odd 2 320.8.c.f.129.1 4
5.4 even 2 inner 320.8.c.g.129.1 4
8.3 odd 2 10.8.b.a.9.2 4
8.5 even 2 80.8.c.d.49.1 4
20.19 odd 2 320.8.c.f.129.4 4
24.11 even 2 90.8.c.c.19.3 4
40.3 even 4 50.8.a.i.1.1 2
40.13 odd 4 400.8.a.bf.1.2 2
40.19 odd 2 10.8.b.a.9.3 yes 4
40.27 even 4 50.8.a.j.1.2 2
40.29 even 2 80.8.c.d.49.4 4
40.37 odd 4 400.8.a.t.1.1 2
120.59 even 2 90.8.c.c.19.1 4
120.83 odd 4 450.8.a.bi.1.2 2
120.107 odd 4 450.8.a.bd.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.8.b.a.9.2 4 8.3 odd 2
10.8.b.a.9.3 yes 4 40.19 odd 2
50.8.a.i.1.1 2 40.3 even 4
50.8.a.j.1.2 2 40.27 even 4
80.8.c.d.49.1 4 8.5 even 2
80.8.c.d.49.4 4 40.29 even 2
90.8.c.c.19.1 4 120.59 even 2
90.8.c.c.19.3 4 24.11 even 2
320.8.c.f.129.1 4 4.3 odd 2
320.8.c.f.129.4 4 20.19 odd 2
320.8.c.g.129.1 4 5.4 even 2 inner
320.8.c.g.129.4 4 1.1 even 1 trivial
400.8.a.t.1.1 2 40.37 odd 4
400.8.a.bf.1.2 2 40.13 odd 4
450.8.a.bd.1.1 2 120.107 odd 4
450.8.a.bi.1.2 2 120.83 odd 4