Properties

Label 320.5.b.c
Level $320$
Weight $5$
Character orbit 320.b
Analytic conductor $33.078$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,5,Mod(191,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.191"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 320.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-584] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.0783881868\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 35x^{6} + 413x^{4} + 2015x^{2} + 3481 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{20}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + \beta_{3} q^{5} + ( - \beta_{7} - 4 \beta_{2} - 2 \beta_1) q^{7} + (\beta_{6} + \beta_{5} + 4 \beta_{3} - 73) q^{9} + (3 \beta_{7} - \beta_{4} + \cdots + \beta_1) q^{11} + ( - \beta_{5} - 8 \beta_{3} - 4) q^{13}+ \cdots + ( - 291 \beta_{7} + 253 \beta_{4} + \cdots + 147 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 584 q^{9} - 32 q^{13} - 560 q^{17} - 2384 q^{21} + 1000 q^{25} + 2064 q^{29} + 544 q^{33} - 3616 q^{37} - 5216 q^{41} + 3600 q^{45} + 4088 q^{49} - 5088 q^{53} + 3072 q^{57} + 5504 q^{61} - 7600 q^{65}+ \cdots + 3440 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 35x^{6} + 413x^{4} + 2015x^{2} + 3481 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 94\nu^{7} + 2464\nu^{5} + 16402\nu^{3} + 39904\nu ) / 3009 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 56\nu^{7} + 1724\nu^{5} + 15576\nu^{3} + 42040\nu ) / 1003 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 50\nu^{6} + 1430\nu^{4} + 11600\nu^{2} + 28295 ) / 51 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -1252\nu^{7} - 37684\nu^{5} - 336772\nu^{3} - 942760\nu ) / 3009 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -36\nu^{6} - 1084\nu^{4} - 9440\nu^{2} - 24466 ) / 17 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -224\nu^{6} - 6080\nu^{4} - 43808\nu^{2} - 87920 ) / 51 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 3878\nu^{7} + 110360\nu^{5} + 882050\nu^{3} + 2090816\nu ) / 3009 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{7} - \beta_{4} + 5\beta_{2} + 19\beta_1 ) / 80 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 5\beta_{6} + 10\beta_{5} + 44\beta_{3} - 1400 ) / 160 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4\beta_{7} - 11\beta_{4} - 115\beta_{2} - 106\beta_1 ) / 40 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -50\beta_{6} - 125\beta_{5} - 494\beta_{3} + 7980 ) / 80 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -11\beta_{7} + 57\beta_{4} + 517\beta_{2} + 289\beta_1 ) / 8 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 850\beta_{6} + 2415\beta_{5} + 9106\beta_{3} - 111100 ) / 80 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 956\beta_{7} - 5339\beta_{4} - 48755\beta_{2} - 22134\beta_1 ) / 40 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
191.1
4.10910i
2.72964i
2.49107i
2.11161i
2.11161i
2.49107i
2.72964i
4.10910i
0 17.6725i 0 −11.1803 0 41.7166i 0 −231.317 0
191.2 0 14.1546i 0 11.1803 0 49.8485i 0 −119.354 0
191.3 0 8.72821i 0 −11.1803 0 47.9490i 0 4.81829 0
191.4 0 5.21036i 0 11.1803 0 32.1829i 0 53.8521 0
191.5 0 5.21036i 0 11.1803 0 32.1829i 0 53.8521 0
191.6 0 8.72821i 0 −11.1803 0 47.9490i 0 4.81829 0
191.7 0 14.1546i 0 11.1803 0 49.8485i 0 −119.354 0
191.8 0 17.6725i 0 −11.1803 0 41.7166i 0 −231.317 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 191.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 320.5.b.c 8
4.b odd 2 1 inner 320.5.b.c 8
8.b even 2 1 160.5.b.a 8
8.d odd 2 1 160.5.b.a 8
24.f even 2 1 1440.5.e.b 8
24.h odd 2 1 1440.5.e.b 8
40.e odd 2 1 800.5.b.g 8
40.f even 2 1 800.5.b.g 8
40.i odd 4 1 800.5.h.k 8
40.i odd 4 1 800.5.h.l 8
40.k even 4 1 800.5.h.k 8
40.k even 4 1 800.5.h.l 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.5.b.a 8 8.b even 2 1
160.5.b.a 8 8.d odd 2 1
320.5.b.c 8 1.a even 1 1 trivial
320.5.b.c 8 4.b odd 2 1 inner
800.5.b.g 8 40.e odd 2 1
800.5.b.g 8 40.f even 2 1
800.5.h.k 8 40.i odd 4 1
800.5.h.k 8 40.k even 4 1
800.5.h.l 8 40.i odd 4 1
800.5.h.l 8 40.k even 4 1
1440.5.e.b 8 24.f even 2 1
1440.5.e.b 8 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + 616T_{3}^{6} + 117616T_{3}^{4} + 7526016T_{3}^{2} + 129413376 \) acting on \(S_{5}^{\mathrm{new}}(320, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + 616 T^{6} + \cdots + 129413376 \) Copy content Toggle raw display
$5$ \( (T^{2} - 125)^{4} \) Copy content Toggle raw display
$7$ \( T^{8} + \cdots + 10297526968576 \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots + 7518651744256 \) Copy content Toggle raw display
$13$ \( (T^{4} + 16 T^{3} + \cdots + 24176144)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + 280 T^{3} + \cdots + 3410634256)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots + 22\!\cdots\!36 \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 56\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{4} - 1032 T^{3} + \cdots - 131615691120)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots + 35\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( (T^{4} + 1808 T^{3} + \cdots + 482453699600)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + \cdots + 8307294475280)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 69\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( (T^{4} + \cdots - 21920933051120)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 43\!\cdots\!16 \) Copy content Toggle raw display
$61$ \( (T^{4} + \cdots + 121504764169616)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 85\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 21\!\cdots\!16 \) Copy content Toggle raw display
$73$ \( (T^{4} + \cdots + 119575623950096)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots + 13\!\cdots\!76 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 74\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{4} + \cdots - 17\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + \cdots + 774583434485136)^{2} \) Copy content Toggle raw display
show more
show less