Properties

Label 2-320-4.3-c4-0-0
Degree $2$
Conductor $320$
Sign $-i$
Analytic cond. $33.0783$
Root an. cond. $5.75138$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 14.1i·3-s + 11.1·5-s − 49.8i·7-s − 119.·9-s + 213. i·11-s − 127.·13-s − 158. i·15-s − 299.·17-s + 286. i·19-s − 705.·21-s + 596. i·23-s + 125.·25-s + 542. i·27-s − 1.23e3·29-s − 1.04e3i·31-s + ⋯
L(s)  = 1  − 1.57i·3-s + 0.447·5-s − 1.01i·7-s − 1.47·9-s + 1.76i·11-s − 0.755·13-s − 0.703i·15-s − 1.03·17-s + 0.794i·19-s − 1.59·21-s + 1.12i·23-s + 0.200·25-s + 0.744i·27-s − 1.46·29-s − 1.09i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(320\)    =    \(2^{6} \cdot 5\)
Sign: $-i$
Analytic conductor: \(33.0783\)
Root analytic conductor: \(5.75138\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{320} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 320,\ (\ :2),\ -i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.1433882199\)
\(L(\frac12)\) \(\approx\) \(0.1433882199\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 11.1T \)
good3 \( 1 + 14.1iT - 81T^{2} \)
7 \( 1 + 49.8iT - 2.40e3T^{2} \)
11 \( 1 - 213. iT - 1.46e4T^{2} \)
13 \( 1 + 127.T + 2.85e4T^{2} \)
17 \( 1 + 299.T + 8.35e4T^{2} \)
19 \( 1 - 286. iT - 1.30e5T^{2} \)
23 \( 1 - 596. iT - 2.79e5T^{2} \)
29 \( 1 + 1.23e3T + 7.07e5T^{2} \)
31 \( 1 + 1.04e3iT - 9.23e5T^{2} \)
37 \( 1 - 165.T + 1.87e6T^{2} \)
41 \( 1 + 2.84e3T + 2.82e6T^{2} \)
43 \( 1 - 1.40e3iT - 3.41e6T^{2} \)
47 \( 1 + 3.36e3iT - 4.87e6T^{2} \)
53 \( 1 + 660.T + 7.89e6T^{2} \)
59 \( 1 - 5.53e3iT - 1.21e7T^{2} \)
61 \( 1 - 3.65e3T + 1.38e7T^{2} \)
67 \( 1 - 2.01e3iT - 2.01e7T^{2} \)
71 \( 1 - 657. iT - 2.54e7T^{2} \)
73 \( 1 - 6.96e3T + 2.83e7T^{2} \)
79 \( 1 - 2.73e3iT - 3.89e7T^{2} \)
83 \( 1 + 4.75e3iT - 4.74e7T^{2} \)
89 \( 1 + 1.02e4T + 6.27e7T^{2} \)
97 \( 1 - 5.74e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.49446380183315422682997396816, −10.20501581423353377394604098450, −9.460673844866965704587876352550, −7.987377328709064287905747529874, −7.20783265750568158995673087260, −6.81113792698386019406358504317, −5.45740103090090143447082664528, −4.09918090628619022486447060814, −2.23124361504205485128147854767, −1.53397627785903090310511406624, 0.03990977591736968136765593375, 2.46248405619482656931365022017, 3.47365284628795689002535924566, 4.83195184362545220782284465079, 5.51210659673282033766924852386, 6.57422041498685172954624296262, 8.480259313359792291026383792279, 8.958583635827320279216868454046, 9.738834737872859493870128507006, 10.86101962013796194658361295432

Graph of the $Z$-function along the critical line