Properties

Label 320.4.n.g.63.1
Level $320$
Weight $4$
Character 320.63
Analytic conductor $18.881$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,4,Mod(63,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.63"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 320.n (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-2,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.8806112018\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 22x^{5} + 532x^{4} - 636x^{3} + 450x^{2} + 2160x + 5184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 63.1
Root \(3.63424 - 3.63424i\) of defining polynomial
Character \(\chi\) \(=\) 320.63
Dual form 320.4.n.g.127.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.50577 + 4.50577i) q^{3} +(6.30193 - 9.23502i) q^{5} +(19.0427 + 19.0427i) q^{7} -13.6039i q^{9} -24.0624i q^{11} +(-35.4262 - 35.4262i) q^{13} +(13.2158 + 70.0059i) q^{15} +(51.7286 - 51.7286i) q^{17} +68.8524 q^{19} -171.604 q^{21} +(63.6865 - 63.6865i) q^{23} +(-45.5714 - 116.397i) q^{25} +(-60.3599 - 60.3599i) q^{27} +276.882i q^{29} +165.440i q^{31} +(108.419 + 108.419i) q^{33} +(295.866 - 55.8541i) q^{35} +(245.210 - 245.210i) q^{37} +319.244 q^{39} +255.156 q^{41} +(-10.3009 + 10.3009i) q^{43} +(-125.632 - 85.7306i) q^{45} +(352.011 + 352.011i) q^{47} +382.250i q^{49} +466.154i q^{51} +(275.902 + 275.902i) q^{53} +(-222.217 - 151.639i) q^{55} +(-310.233 + 310.233i) q^{57} +245.936 q^{59} +1.64423 q^{61} +(259.054 - 259.054i) q^{63} +(-550.415 + 103.908i) q^{65} +(544.329 + 544.329i) q^{67} +573.913i q^{69} +127.897i q^{71} +(-786.990 - 786.990i) q^{73} +(729.791 + 319.124i) q^{75} +(458.213 - 458.213i) q^{77} +111.627 q^{79} +911.239 q^{81} +(-650.682 + 650.682i) q^{83} +(-151.725 - 803.705i) q^{85} +(-1247.56 - 1247.56i) q^{87} -467.584i q^{89} -1349.22i q^{91} +(-745.433 - 745.433i) q^{93} +(433.903 - 635.854i) q^{95} +(695.729 - 695.729i) q^{97} -327.341 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} + 14 q^{5} + 10 q^{7} + 32 q^{13} + 22 q^{15} + 44 q^{17} - 80 q^{19} - 236 q^{21} + 230 q^{23} - 44 q^{25} - 80 q^{27} - 260 q^{33} + 866 q^{35} + 292 q^{37} + 1068 q^{39} + 932 q^{41} - 458 q^{43}+ \cdots - 1844 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.50577 + 4.50577i −0.867135 + 0.867135i −0.992154 0.125019i \(-0.960101\pi\)
0.125019 + 0.992154i \(0.460101\pi\)
\(4\) 0 0
\(5\) 6.30193 9.23502i 0.563662 0.826006i
\(6\) 0 0
\(7\) 19.0427 + 19.0427i 1.02821 + 1.02821i 0.999590 + 0.0286199i \(0.00911124\pi\)
0.0286199 + 0.999590i \(0.490889\pi\)
\(8\) 0 0
\(9\) 13.6039i 0.503847i
\(10\) 0 0
\(11\) 24.0624i 0.659553i −0.944059 0.329776i \(-0.893027\pi\)
0.944059 0.329776i \(-0.106973\pi\)
\(12\) 0 0
\(13\) −35.4262 35.4262i −0.755805 0.755805i 0.219751 0.975556i \(-0.429475\pi\)
−0.975556 + 0.219751i \(0.929475\pi\)
\(14\) 0 0
\(15\) 13.2158 + 70.0059i 0.227488 + 1.20503i
\(16\) 0 0
\(17\) 51.7286 51.7286i 0.738002 0.738002i −0.234189 0.972191i \(-0.575244\pi\)
0.972191 + 0.234189i \(0.0752435\pi\)
\(18\) 0 0
\(19\) 68.8524 0.831359 0.415680 0.909511i \(-0.363544\pi\)
0.415680 + 0.909511i \(0.363544\pi\)
\(20\) 0 0
\(21\) −171.604 −1.78319
\(22\) 0 0
\(23\) 63.6865 63.6865i 0.577372 0.577372i −0.356807 0.934178i \(-0.616135\pi\)
0.934178 + 0.356807i \(0.116135\pi\)
\(24\) 0 0
\(25\) −45.5714 116.397i −0.364571 0.931176i
\(26\) 0 0
\(27\) −60.3599 60.3599i −0.430232 0.430232i
\(28\) 0 0
\(29\) 276.882i 1.77295i 0.462774 + 0.886476i \(0.346854\pi\)
−0.462774 + 0.886476i \(0.653146\pi\)
\(30\) 0 0
\(31\) 165.440i 0.958512i 0.877675 + 0.479256i \(0.159093\pi\)
−0.877675 + 0.479256i \(0.840907\pi\)
\(32\) 0 0
\(33\) 108.419 + 108.419i 0.571921 + 0.571921i
\(34\) 0 0
\(35\) 295.866 55.8541i 1.42887 0.269745i
\(36\) 0 0
\(37\) 245.210 245.210i 1.08952 1.08952i 0.0939428 0.995578i \(-0.470053\pi\)
0.995578 0.0939428i \(-0.0299471\pi\)
\(38\) 0 0
\(39\) 319.244 1.31077
\(40\) 0 0
\(41\) 255.156 0.971918 0.485959 0.873982i \(-0.338470\pi\)
0.485959 + 0.873982i \(0.338470\pi\)
\(42\) 0 0
\(43\) −10.3009 + 10.3009i −0.0365318 + 0.0365318i −0.725137 0.688605i \(-0.758223\pi\)
0.688605 + 0.725137i \(0.258223\pi\)
\(44\) 0 0
\(45\) −125.632 85.7306i −0.416180 0.283999i
\(46\) 0 0
\(47\) 352.011 + 352.011i 1.09247 + 1.09247i 0.995264 + 0.0972053i \(0.0309903\pi\)
0.0972053 + 0.995264i \(0.469010\pi\)
\(48\) 0 0
\(49\) 382.250i 1.11443i
\(50\) 0 0
\(51\) 466.154i 1.27989i
\(52\) 0 0
\(53\) 275.902 + 275.902i 0.715057 + 0.715057i 0.967589 0.252532i \(-0.0812633\pi\)
−0.252532 + 0.967589i \(0.581263\pi\)
\(54\) 0 0
\(55\) −222.217 151.639i −0.544794 0.371765i
\(56\) 0 0
\(57\) −310.233 + 310.233i −0.720901 + 0.720901i
\(58\) 0 0
\(59\) 245.936 0.542680 0.271340 0.962484i \(-0.412533\pi\)
0.271340 + 0.962484i \(0.412533\pi\)
\(60\) 0 0
\(61\) 1.64423 0.00345119 0.00172559 0.999999i \(-0.499451\pi\)
0.00172559 + 0.999999i \(0.499451\pi\)
\(62\) 0 0
\(63\) 259.054 259.054i 0.518060 0.518060i
\(64\) 0 0
\(65\) −550.415 + 103.908i −1.05032 + 0.198281i
\(66\) 0 0
\(67\) 544.329 + 544.329i 0.992542 + 0.992542i 0.999972 0.00743015i \(-0.00236511\pi\)
−0.00743015 + 0.999972i \(0.502365\pi\)
\(68\) 0 0
\(69\) 573.913i 1.00132i
\(70\) 0 0
\(71\) 127.897i 0.213782i 0.994271 + 0.106891i \(0.0340896\pi\)
−0.994271 + 0.106891i \(0.965910\pi\)
\(72\) 0 0
\(73\) −786.990 786.990i −1.26178 1.26178i −0.950228 0.311556i \(-0.899150\pi\)
−0.311556 0.950228i \(-0.600850\pi\)
\(74\) 0 0
\(75\) 729.791 + 319.124i 1.12359 + 0.491323i
\(76\) 0 0
\(77\) 458.213 458.213i 0.678159 0.678159i
\(78\) 0 0
\(79\) 111.627 0.158975 0.0794876 0.996836i \(-0.474672\pi\)
0.0794876 + 0.996836i \(0.474672\pi\)
\(80\) 0 0
\(81\) 911.239 1.24999
\(82\) 0 0
\(83\) −650.682 + 650.682i −0.860502 + 0.860502i −0.991396 0.130894i \(-0.958215\pi\)
0.130894 + 0.991396i \(0.458215\pi\)
\(84\) 0 0
\(85\) −151.725 803.705i −0.193610 1.02558i
\(86\) 0 0
\(87\) −1247.56 1247.56i −1.53739 1.53739i
\(88\) 0 0
\(89\) 467.584i 0.556897i −0.960451 0.278448i \(-0.910180\pi\)
0.960451 0.278448i \(-0.0898201\pi\)
\(90\) 0 0
\(91\) 1349.22i 1.55425i
\(92\) 0 0
\(93\) −745.433 745.433i −0.831159 0.831159i
\(94\) 0 0
\(95\) 433.903 635.854i 0.468605 0.686708i
\(96\) 0 0
\(97\) 695.729 695.729i 0.728253 0.728253i −0.242018 0.970272i \(-0.577809\pi\)
0.970272 + 0.242018i \(0.0778094\pi\)
\(98\) 0 0
\(99\) −327.341 −0.332313
\(100\) 0 0
\(101\) 1250.06 1.23154 0.615770 0.787926i \(-0.288845\pi\)
0.615770 + 0.787926i \(0.288845\pi\)
\(102\) 0 0
\(103\) −323.304 + 323.304i −0.309283 + 0.309283i −0.844631 0.535348i \(-0.820180\pi\)
0.535348 + 0.844631i \(0.320180\pi\)
\(104\) 0 0
\(105\) −1081.44 + 1584.77i −1.00512 + 1.47293i
\(106\) 0 0
\(107\) −694.477 694.477i −0.627454 0.627454i 0.319973 0.947427i \(-0.396326\pi\)
−0.947427 + 0.319973i \(0.896326\pi\)
\(108\) 0 0
\(109\) 110.318i 0.0969411i −0.998825 0.0484705i \(-0.984565\pi\)
0.998825 0.0484705i \(-0.0154347\pi\)
\(110\) 0 0
\(111\) 2209.72i 1.88952i
\(112\) 0 0
\(113\) −640.630 640.630i −0.533322 0.533322i 0.388237 0.921559i \(-0.373084\pi\)
−0.921559 + 0.388237i \(0.873084\pi\)
\(114\) 0 0
\(115\) −186.798 989.494i −0.151470 0.802354i
\(116\) 0 0
\(117\) −481.933 + 481.933i −0.380810 + 0.380810i
\(118\) 0 0
\(119\) 1970.11 1.51764
\(120\) 0 0
\(121\) 752.002 0.564990
\(122\) 0 0
\(123\) −1149.67 + 1149.67i −0.842784 + 0.842784i
\(124\) 0 0
\(125\) −1362.12 312.673i −0.974651 0.223730i
\(126\) 0 0
\(127\) −1688.98 1688.98i −1.18010 1.18010i −0.979719 0.200378i \(-0.935783\pi\)
−0.200378 0.979719i \(-0.564217\pi\)
\(128\) 0 0
\(129\) 92.8266i 0.0633561i
\(130\) 0 0
\(131\) 447.782i 0.298648i −0.988788 0.149324i \(-0.952290\pi\)
0.988788 0.149324i \(-0.0477097\pi\)
\(132\) 0 0
\(133\) 1311.14 + 1311.14i 0.854812 + 0.854812i
\(134\) 0 0
\(135\) −937.809 + 177.041i −0.597879 + 0.112869i
\(136\) 0 0
\(137\) 402.750 402.750i 0.251163 0.251163i −0.570285 0.821447i \(-0.693167\pi\)
0.821447 + 0.570285i \(0.193167\pi\)
\(138\) 0 0
\(139\) −1826.99 −1.11484 −0.557422 0.830229i \(-0.688209\pi\)
−0.557422 + 0.830229i \(0.688209\pi\)
\(140\) 0 0
\(141\) −3172.16 −1.89464
\(142\) 0 0
\(143\) −852.439 + 852.439i −0.498493 + 0.498493i
\(144\) 0 0
\(145\) 2557.01 + 1744.89i 1.46447 + 0.999345i
\(146\) 0 0
\(147\) −1722.33 1722.33i −0.966364 0.966364i
\(148\) 0 0
\(149\) 2424.72i 1.33316i 0.745435 + 0.666579i \(0.232242\pi\)
−0.745435 + 0.666579i \(0.767758\pi\)
\(150\) 0 0
\(151\) 2496.98i 1.34570i 0.739778 + 0.672851i \(0.234931\pi\)
−0.739778 + 0.672851i \(0.765069\pi\)
\(152\) 0 0
\(153\) −703.709 703.709i −0.371840 0.371840i
\(154\) 0 0
\(155\) 1527.84 + 1042.59i 0.791736 + 0.540276i
\(156\) 0 0
\(157\) −573.265 + 573.265i −0.291411 + 0.291411i −0.837638 0.546226i \(-0.816064\pi\)
0.546226 + 0.837638i \(0.316064\pi\)
\(158\) 0 0
\(159\) −2486.30 −1.24010
\(160\) 0 0
\(161\) 2425.53 1.18732
\(162\) 0 0
\(163\) 1863.90 1863.90i 0.895658 0.895658i −0.0993905 0.995049i \(-0.531689\pi\)
0.995049 + 0.0993905i \(0.0316893\pi\)
\(164\) 0 0
\(165\) 1684.51 318.005i 0.794780 0.150040i
\(166\) 0 0
\(167\) −1005.91 1005.91i −0.466105 0.466105i 0.434545 0.900650i \(-0.356909\pi\)
−0.900650 + 0.434545i \(0.856909\pi\)
\(168\) 0 0
\(169\) 313.033i 0.142482i
\(170\) 0 0
\(171\) 936.659i 0.418878i
\(172\) 0 0
\(173\) 1498.38 + 1498.38i 0.658495 + 0.658495i 0.955024 0.296529i \(-0.0958291\pi\)
−0.296529 + 0.955024i \(0.595829\pi\)
\(174\) 0 0
\(175\) 1348.71 3084.32i 0.582589 1.33230i
\(176\) 0 0
\(177\) −1108.13 + 1108.13i −0.470577 + 0.470577i
\(178\) 0 0
\(179\) −2761.65 −1.15316 −0.576578 0.817042i \(-0.695612\pi\)
−0.576578 + 0.817042i \(0.695612\pi\)
\(180\) 0 0
\(181\) −375.460 −0.154186 −0.0770932 0.997024i \(-0.524564\pi\)
−0.0770932 + 0.997024i \(0.524564\pi\)
\(182\) 0 0
\(183\) −7.40852 + 7.40852i −0.00299264 + 0.00299264i
\(184\) 0 0
\(185\) −719.224 3809.81i −0.285829 1.51407i
\(186\) 0 0
\(187\) −1244.71 1244.71i −0.486751 0.486751i
\(188\) 0 0
\(189\) 2298.83i 0.884738i
\(190\) 0 0
\(191\) 1955.48i 0.740802i −0.928872 0.370401i \(-0.879220\pi\)
0.928872 0.370401i \(-0.120780\pi\)
\(192\) 0 0
\(193\) 2668.92 + 2668.92i 0.995404 + 0.995404i 0.999989 0.00458525i \(-0.00145954\pi\)
−0.00458525 + 0.999989i \(0.501460\pi\)
\(194\) 0 0
\(195\) 2011.86 2948.23i 0.738831 1.08270i
\(196\) 0 0
\(197\) 1985.98 1985.98i 0.718249 0.718249i −0.249998 0.968246i \(-0.580430\pi\)
0.968246 + 0.249998i \(0.0804298\pi\)
\(198\) 0 0
\(199\) 2555.09 0.910179 0.455090 0.890446i \(-0.349607\pi\)
0.455090 + 0.890446i \(0.349607\pi\)
\(200\) 0 0
\(201\) −4905.24 −1.72134
\(202\) 0 0
\(203\) −5272.58 + 5272.58i −1.82297 + 1.82297i
\(204\) 0 0
\(205\) 1607.97 2356.37i 0.547833 0.802810i
\(206\) 0 0
\(207\) −866.382 866.382i −0.290907 0.290907i
\(208\) 0 0
\(209\) 1656.75i 0.548325i
\(210\) 0 0
\(211\) 4962.05i 1.61896i 0.587145 + 0.809482i \(0.300252\pi\)
−0.587145 + 0.809482i \(0.699748\pi\)
\(212\) 0 0
\(213\) −576.272 576.272i −0.185378 0.185378i
\(214\) 0 0
\(215\) 30.2134 + 160.044i 0.00958390 + 0.0507671i
\(216\) 0 0
\(217\) −3150.42 + 3150.42i −0.985552 + 0.985552i
\(218\) 0 0
\(219\) 7091.99 2.18827
\(220\) 0 0
\(221\) −3665.10 −1.11557
\(222\) 0 0
\(223\) −406.248 + 406.248i −0.121993 + 0.121993i −0.765467 0.643475i \(-0.777492\pi\)
0.643475 + 0.765467i \(0.277492\pi\)
\(224\) 0 0
\(225\) −1583.45 + 619.946i −0.469170 + 0.183688i
\(226\) 0 0
\(227\) −1741.25 1741.25i −0.509123 0.509123i 0.405134 0.914257i \(-0.367225\pi\)
−0.914257 + 0.405134i \(0.867225\pi\)
\(228\) 0 0
\(229\) 2752.03i 0.794146i −0.917787 0.397073i \(-0.870026\pi\)
0.917787 0.397073i \(-0.129974\pi\)
\(230\) 0 0
\(231\) 4129.20i 1.17611i
\(232\) 0 0
\(233\) −1429.30 1429.30i −0.401875 0.401875i 0.477018 0.878893i \(-0.341717\pi\)
−0.878893 + 0.477018i \(0.841717\pi\)
\(234\) 0 0
\(235\) 5469.18 1032.48i 1.51817 0.286603i
\(236\) 0 0
\(237\) −502.966 + 502.966i −0.137853 + 0.137853i
\(238\) 0 0
\(239\) 652.750 0.176665 0.0883324 0.996091i \(-0.471846\pi\)
0.0883324 + 0.996091i \(0.471846\pi\)
\(240\) 0 0
\(241\) −2698.72 −0.721328 −0.360664 0.932696i \(-0.617450\pi\)
−0.360664 + 0.932696i \(0.617450\pi\)
\(242\) 0 0
\(243\) −2476.11 + 2476.11i −0.653674 + 0.653674i
\(244\) 0 0
\(245\) 3530.09 + 2408.92i 0.920528 + 0.628163i
\(246\) 0 0
\(247\) −2439.18 2439.18i −0.628345 0.628345i
\(248\) 0 0
\(249\) 5863.65i 1.49234i
\(250\) 0 0
\(251\) 5353.49i 1.34625i 0.739528 + 0.673126i \(0.235049\pi\)
−0.739528 + 0.673126i \(0.764951\pi\)
\(252\) 0 0
\(253\) −1532.45 1532.45i −0.380807 0.380807i
\(254\) 0 0
\(255\) 4304.94 + 2937.67i 1.05720 + 0.721428i
\(256\) 0 0
\(257\) 835.937 835.937i 0.202896 0.202896i −0.598343 0.801240i \(-0.704174\pi\)
0.801240 + 0.598343i \(0.204174\pi\)
\(258\) 0 0
\(259\) 9338.93 2.24051
\(260\) 0 0
\(261\) 3766.66 0.893296
\(262\) 0 0
\(263\) 1135.76 1135.76i 0.266289 0.266289i −0.561314 0.827603i \(-0.689704\pi\)
0.827603 + 0.561314i \(0.189704\pi\)
\(264\) 0 0
\(265\) 4286.67 809.246i 0.993691 0.187591i
\(266\) 0 0
\(267\) 2106.83 + 2106.83i 0.482905 + 0.482905i
\(268\) 0 0
\(269\) 188.749i 0.0427814i 0.999771 + 0.0213907i \(0.00680940\pi\)
−0.999771 + 0.0213907i \(0.993191\pi\)
\(270\) 0 0
\(271\) 6368.79i 1.42759i −0.700356 0.713794i \(-0.746975\pi\)
0.700356 0.713794i \(-0.253025\pi\)
\(272\) 0 0
\(273\) 6079.28 + 6079.28i 1.34775 + 1.34775i
\(274\) 0 0
\(275\) −2800.79 + 1096.56i −0.614159 + 0.240454i
\(276\) 0 0
\(277\) −1045.45 + 1045.45i −0.226769 + 0.226769i −0.811341 0.584573i \(-0.801262\pi\)
0.584573 + 0.811341i \(0.301262\pi\)
\(278\) 0 0
\(279\) 2250.62 0.482943
\(280\) 0 0
\(281\) −1076.19 −0.228470 −0.114235 0.993454i \(-0.536442\pi\)
−0.114235 + 0.993454i \(0.536442\pi\)
\(282\) 0 0
\(283\) 4873.91 4873.91i 1.02376 1.02376i 0.0240482 0.999711i \(-0.492344\pi\)
0.999711 0.0240482i \(-0.00765550\pi\)
\(284\) 0 0
\(285\) 909.943 + 4820.07i 0.189124 + 1.00181i
\(286\) 0 0
\(287\) 4858.86 + 4858.86i 0.999336 + 0.999336i
\(288\) 0 0
\(289\) 438.699i 0.0892934i
\(290\) 0 0
\(291\) 6269.59i 1.26299i
\(292\) 0 0
\(293\) 1143.86 + 1143.86i 0.228072 + 0.228072i 0.811887 0.583815i \(-0.198441\pi\)
−0.583815 + 0.811887i \(0.698441\pi\)
\(294\) 0 0
\(295\) 1549.87 2271.22i 0.305888 0.448257i
\(296\) 0 0
\(297\) −1452.40 + 1452.40i −0.283761 + 0.283761i
\(298\) 0 0
\(299\) −4512.34 −0.872760
\(300\) 0 0
\(301\) −392.313 −0.0751248
\(302\) 0 0
\(303\) −5632.47 + 5632.47i −1.06791 + 1.06791i
\(304\) 0 0
\(305\) 10.3618 15.1845i 0.00194530 0.00285070i
\(306\) 0 0
\(307\) −5265.16 5265.16i −0.978822 0.978822i 0.0209582 0.999780i \(-0.493328\pi\)
−0.999780 + 0.0209582i \(0.993328\pi\)
\(308\) 0 0
\(309\) 2913.47i 0.536380i
\(310\) 0 0
\(311\) 6997.16i 1.27580i 0.770121 + 0.637898i \(0.220196\pi\)
−0.770121 + 0.637898i \(0.779804\pi\)
\(312\) 0 0
\(313\) −2468.13 2468.13i −0.445708 0.445708i 0.448217 0.893925i \(-0.352059\pi\)
−0.893925 + 0.448217i \(0.852059\pi\)
\(314\) 0 0
\(315\) −759.831 4024.92i −0.135910 0.719932i
\(316\) 0 0
\(317\) −2339.88 + 2339.88i −0.414577 + 0.414577i −0.883329 0.468753i \(-0.844704\pi\)
0.468753 + 0.883329i \(0.344704\pi\)
\(318\) 0 0
\(319\) 6662.43 1.16936
\(320\) 0 0
\(321\) 6258.30 1.08818
\(322\) 0 0
\(323\) 3561.64 3561.64i 0.613545 0.613545i
\(324\) 0 0
\(325\) −2509.08 + 5737.92i −0.428243 + 0.979332i
\(326\) 0 0
\(327\) 497.069 + 497.069i 0.0840610 + 0.0840610i
\(328\) 0 0
\(329\) 13406.5i 2.24658i
\(330\) 0 0
\(331\) 8050.09i 1.33678i −0.743812 0.668388i \(-0.766984\pi\)
0.743812 0.668388i \(-0.233016\pi\)
\(332\) 0 0
\(333\) −3335.80 3335.80i −0.548951 0.548951i
\(334\) 0 0
\(335\) 8457.21 1596.57i 1.37930 0.260388i
\(336\) 0 0
\(337\) 872.819 872.819i 0.141085 0.141085i −0.633037 0.774122i \(-0.718192\pi\)
0.774122 + 0.633037i \(0.218192\pi\)
\(338\) 0 0
\(339\) 5773.06 0.924925
\(340\) 0 0
\(341\) 3980.88 0.632189
\(342\) 0 0
\(343\) −747.435 + 747.435i −0.117661 + 0.117661i
\(344\) 0 0
\(345\) 5300.10 + 3616.76i 0.827095 + 0.564405i
\(346\) 0 0
\(347\) −2135.83 2135.83i −0.330425 0.330425i 0.522323 0.852748i \(-0.325066\pi\)
−0.852748 + 0.522323i \(0.825066\pi\)
\(348\) 0 0
\(349\) 5750.76i 0.882038i −0.897498 0.441019i \(-0.854617\pi\)
0.897498 0.441019i \(-0.145383\pi\)
\(350\) 0 0
\(351\) 4276.64i 0.650343i
\(352\) 0 0
\(353\) −4490.90 4490.90i −0.677128 0.677128i 0.282221 0.959349i \(-0.408929\pi\)
−0.959349 + 0.282221i \(0.908929\pi\)
\(354\) 0 0
\(355\) 1181.13 + 805.996i 0.176585 + 0.120501i
\(356\) 0 0
\(357\) −8876.84 + 8876.84i −1.31600 + 1.31600i
\(358\) 0 0
\(359\) −4519.92 −0.664491 −0.332245 0.943193i \(-0.607806\pi\)
−0.332245 + 0.943193i \(0.607806\pi\)
\(360\) 0 0
\(361\) −2118.34 −0.308842
\(362\) 0 0
\(363\) −3388.35 + 3388.35i −0.489923 + 0.489923i
\(364\) 0 0
\(365\) −12227.4 + 2308.32i −1.75346 + 0.331021i
\(366\) 0 0
\(367\) −1807.81 1807.81i −0.257131 0.257131i 0.566756 0.823886i \(-0.308198\pi\)
−0.823886 + 0.566756i \(0.808198\pi\)
\(368\) 0 0
\(369\) 3471.10i 0.489698i
\(370\) 0 0
\(371\) 10507.8i 1.47046i
\(372\) 0 0
\(373\) −3871.38 3871.38i −0.537406 0.537406i 0.385360 0.922766i \(-0.374077\pi\)
−0.922766 + 0.385360i \(0.874077\pi\)
\(374\) 0 0
\(375\) 7546.21 4728.55i 1.03916 0.651150i
\(376\) 0 0
\(377\) 9808.87 9808.87i 1.34001 1.34001i
\(378\) 0 0
\(379\) −9766.74 −1.32370 −0.661852 0.749635i \(-0.730229\pi\)
−0.661852 + 0.749635i \(0.730229\pi\)
\(380\) 0 0
\(381\) 15220.3 2.04661
\(382\) 0 0
\(383\) −9798.07 + 9798.07i −1.30720 + 1.30720i −0.383774 + 0.923427i \(0.625376\pi\)
−0.923427 + 0.383774i \(0.874624\pi\)
\(384\) 0 0
\(385\) −1343.98 7119.24i −0.177911 0.942415i
\(386\) 0 0
\(387\) 140.132 + 140.132i 0.0184064 + 0.0184064i
\(388\) 0 0
\(389\) 3097.02i 0.403664i 0.979420 + 0.201832i \(0.0646895\pi\)
−0.979420 + 0.201832i \(0.935310\pi\)
\(390\) 0 0
\(391\) 6588.82i 0.852203i
\(392\) 0 0
\(393\) 2017.60 + 2017.60i 0.258968 + 0.258968i
\(394\) 0 0
\(395\) 703.467 1030.88i 0.0896082 0.131314i
\(396\) 0 0
\(397\) 4297.58 4297.58i 0.543298 0.543298i −0.381197 0.924494i \(-0.624488\pi\)
0.924494 + 0.381197i \(0.124488\pi\)
\(398\) 0 0
\(399\) −11815.4 −1.48248
\(400\) 0 0
\(401\) −13709.1 −1.70723 −0.853615 0.520905i \(-0.825595\pi\)
−0.853615 + 0.520905i \(0.825595\pi\)
\(402\) 0 0
\(403\) 5860.91 5860.91i 0.724448 0.724448i
\(404\) 0 0
\(405\) 5742.57 8415.32i 0.704569 1.03249i
\(406\) 0 0
\(407\) −5900.33 5900.33i −0.718596 0.718596i
\(408\) 0 0
\(409\) 4992.59i 0.603588i −0.953373 0.301794i \(-0.902414\pi\)
0.953373 0.301794i \(-0.0975855\pi\)
\(410\) 0 0
\(411\) 3629.40i 0.435584i
\(412\) 0 0
\(413\) 4683.29 + 4683.29i 0.557989 + 0.557989i
\(414\) 0 0
\(415\) 1908.51 + 10109.6i 0.225748 + 1.19581i
\(416\) 0 0
\(417\) 8231.99 8231.99i 0.966721 0.966721i
\(418\) 0 0
\(419\) 6897.24 0.804182 0.402091 0.915600i \(-0.368284\pi\)
0.402091 + 0.915600i \(0.368284\pi\)
\(420\) 0 0
\(421\) −4086.33 −0.473053 −0.236527 0.971625i \(-0.576009\pi\)
−0.236527 + 0.971625i \(0.576009\pi\)
\(422\) 0 0
\(423\) 4788.71 4788.71i 0.550437 0.550437i
\(424\) 0 0
\(425\) −8378.40 3663.71i −0.956263 0.418155i
\(426\) 0 0
\(427\) 31.3106 + 31.3106i 0.00354854 + 0.00354854i
\(428\) 0 0
\(429\) 7681.78i 0.864522i
\(430\) 0 0
\(431\) 3100.64i 0.346526i −0.984876 0.173263i \(-0.944569\pi\)
0.984876 0.173263i \(-0.0554311\pi\)
\(432\) 0 0
\(433\) 4730.61 + 4730.61i 0.525031 + 0.525031i 0.919087 0.394055i \(-0.128928\pi\)
−0.394055 + 0.919087i \(0.628928\pi\)
\(434\) 0 0
\(435\) −19383.3 + 3659.22i −2.13646 + 0.403325i
\(436\) 0 0
\(437\) 4384.97 4384.97i 0.480003 0.480003i
\(438\) 0 0
\(439\) −2151.92 −0.233953 −0.116977 0.993135i \(-0.537320\pi\)
−0.116977 + 0.993135i \(0.537320\pi\)
\(440\) 0 0
\(441\) 5200.08 0.561503
\(442\) 0 0
\(443\) 658.583 658.583i 0.0706326 0.0706326i −0.670908 0.741541i \(-0.734095\pi\)
0.741541 + 0.670908i \(0.234095\pi\)
\(444\) 0 0
\(445\) −4318.15 2946.68i −0.460000 0.313901i
\(446\) 0 0
\(447\) −10925.2 10925.2i −1.15603 1.15603i
\(448\) 0 0
\(449\) 12825.5i 1.34805i 0.738709 + 0.674025i \(0.235436\pi\)
−0.738709 + 0.674025i \(0.764564\pi\)
\(450\) 0 0
\(451\) 6139.65i 0.641031i
\(452\) 0 0
\(453\) −11250.8 11250.8i −1.16691 1.16691i
\(454\) 0 0
\(455\) −12460.1 8502.71i −1.28382 0.876073i
\(456\) 0 0
\(457\) −12267.0 + 12267.0i −1.25564 + 1.25564i −0.302485 + 0.953154i \(0.597816\pi\)
−0.953154 + 0.302485i \(0.902184\pi\)
\(458\) 0 0
\(459\) −6244.67 −0.635024
\(460\) 0 0
\(461\) 3613.51 0.365072 0.182536 0.983199i \(-0.441569\pi\)
0.182536 + 0.983199i \(0.441569\pi\)
\(462\) 0 0
\(463\) 6123.47 6123.47i 0.614647 0.614647i −0.329506 0.944153i \(-0.606882\pi\)
0.944153 + 0.329506i \(0.106882\pi\)
\(464\) 0 0
\(465\) −11581.8 + 2186.43i −1.15504 + 0.218050i
\(466\) 0 0
\(467\) 25.8320 + 25.8320i 0.00255966 + 0.00255966i 0.708385 0.705826i \(-0.249424\pi\)
−0.705826 + 0.708385i \(0.749424\pi\)
\(468\) 0 0
\(469\) 20731.0i 2.04108i
\(470\) 0 0
\(471\) 5166.00i 0.505386i
\(472\) 0 0
\(473\) 247.863 + 247.863i 0.0240947 + 0.0240947i
\(474\) 0 0
\(475\) −3137.70 8014.21i −0.303089 0.774142i
\(476\) 0 0
\(477\) 3753.33 3753.33i 0.360279 0.360279i
\(478\) 0 0
\(479\) 4039.99 0.385370 0.192685 0.981261i \(-0.438281\pi\)
0.192685 + 0.981261i \(0.438281\pi\)
\(480\) 0 0
\(481\) −17373.7 −1.64693
\(482\) 0 0
\(483\) −10928.9 + 10928.9i −1.02957 + 1.02957i
\(484\) 0 0
\(485\) −2040.64 10809.5i −0.191053 1.01203i
\(486\) 0 0
\(487\) 2976.53 + 2976.53i 0.276960 + 0.276960i 0.831894 0.554934i \(-0.187257\pi\)
−0.554934 + 0.831894i \(0.687257\pi\)
\(488\) 0 0
\(489\) 16796.6i 1.55331i
\(490\) 0 0
\(491\) 5036.72i 0.462941i −0.972842 0.231470i \(-0.925646\pi\)
0.972842 0.231470i \(-0.0743536\pi\)
\(492\) 0 0
\(493\) 14322.7 + 14322.7i 1.30844 + 1.30844i
\(494\) 0 0
\(495\) −2062.88 + 3023.00i −0.187312 + 0.274493i
\(496\) 0 0
\(497\) −2435.50 + 2435.50i −0.219813 + 0.219813i
\(498\) 0 0
\(499\) 1212.29 0.108756 0.0543781 0.998520i \(-0.482682\pi\)
0.0543781 + 0.998520i \(0.482682\pi\)
\(500\) 0 0
\(501\) 9064.77 0.808351
\(502\) 0 0
\(503\) −6638.76 + 6638.76i −0.588485 + 0.588485i −0.937221 0.348736i \(-0.886611\pi\)
0.348736 + 0.937221i \(0.386611\pi\)
\(504\) 0 0
\(505\) 7877.78 11544.3i 0.694172 1.01726i
\(506\) 0 0
\(507\) −1410.45 1410.45i −0.123551 0.123551i
\(508\) 0 0
\(509\) 9412.97i 0.819690i 0.912155 + 0.409845i \(0.134417\pi\)
−0.912155 + 0.409845i \(0.865583\pi\)
\(510\) 0 0
\(511\) 29972.9i 2.59476i
\(512\) 0 0
\(513\) −4155.92 4155.92i −0.357677 0.357677i
\(514\) 0 0
\(515\) 948.283 + 5023.17i 0.0811385 + 0.429800i
\(516\) 0 0
\(517\) 8470.22 8470.22i 0.720541 0.720541i
\(518\) 0 0
\(519\) −13502.7 −1.14201
\(520\) 0 0
\(521\) 19248.8 1.61863 0.809316 0.587374i \(-0.199838\pi\)
0.809316 + 0.587374i \(0.199838\pi\)
\(522\) 0 0
\(523\) 261.022 261.022i 0.0218235 0.0218235i −0.696111 0.717934i \(-0.745088\pi\)
0.717934 + 0.696111i \(0.245088\pi\)
\(524\) 0 0
\(525\) 7820.23 + 19974.2i 0.650101 + 1.66047i
\(526\) 0 0
\(527\) 8557.97 + 8557.97i 0.707384 + 0.707384i
\(528\) 0 0
\(529\) 4055.07i 0.333284i
\(530\) 0 0
\(531\) 3345.68i 0.273427i
\(532\) 0 0
\(533\) −9039.20 9039.20i −0.734580 0.734580i
\(534\) 0 0
\(535\) −10790.1 + 2036.97i −0.871953 + 0.164609i
\(536\) 0 0
\(537\) 12443.3 12443.3i 0.999943 0.999943i
\(538\) 0 0
\(539\) 9197.85 0.735027
\(540\) 0 0
\(541\) −10923.4 −0.868081 −0.434040 0.900893i \(-0.642912\pi\)
−0.434040 + 0.900893i \(0.642912\pi\)
\(542\) 0 0
\(543\) 1691.74 1691.74i 0.133700 0.133700i
\(544\) 0 0
\(545\) −1018.79 695.218i −0.0800739 0.0546420i
\(546\) 0 0
\(547\) −5573.10 5573.10i −0.435628 0.435628i 0.454909 0.890538i \(-0.349672\pi\)
−0.890538 + 0.454909i \(0.849672\pi\)
\(548\) 0 0
\(549\) 22.3679i 0.00173887i
\(550\) 0 0
\(551\) 19064.0i 1.47396i
\(552\) 0 0
\(553\) 2125.69 + 2125.69i 0.163460 + 0.163460i
\(554\) 0 0
\(555\) 20406.8 + 13925.5i 1.56076 + 1.06505i
\(556\) 0 0
\(557\) 5747.58 5747.58i 0.437222 0.437222i −0.453854 0.891076i \(-0.649951\pi\)
0.891076 + 0.453854i \(0.149951\pi\)
\(558\) 0 0
\(559\) 729.842 0.0552219
\(560\) 0 0
\(561\) 11216.8 0.844158
\(562\) 0 0
\(563\) 3286.45 3286.45i 0.246016 0.246016i −0.573317 0.819334i \(-0.694344\pi\)
0.819334 + 0.573317i \(0.194344\pi\)
\(564\) 0 0
\(565\) −9953.44 + 1879.03i −0.741141 + 0.139914i
\(566\) 0 0
\(567\) 17352.5 + 17352.5i 1.28525 + 1.28525i
\(568\) 0 0
\(569\) 6597.28i 0.486067i 0.970018 + 0.243034i \(0.0781426\pi\)
−0.970018 + 0.243034i \(0.921857\pi\)
\(570\) 0 0
\(571\) 17436.9i 1.27796i 0.769225 + 0.638978i \(0.220642\pi\)
−0.769225 + 0.638978i \(0.779358\pi\)
\(572\) 0 0
\(573\) 8810.92 + 8810.92i 0.642376 + 0.642376i
\(574\) 0 0
\(575\) −10315.2 4510.63i −0.748127 0.327141i
\(576\) 0 0
\(577\) 1224.90 1224.90i 0.0883764 0.0883764i −0.661537 0.749913i \(-0.730095\pi\)
0.749913 + 0.661537i \(0.230095\pi\)
\(578\) 0 0
\(579\) −24051.1 −1.72630
\(580\) 0 0
\(581\) −24781.5 −1.76955
\(582\) 0 0
\(583\) 6638.85 6638.85i 0.471617 0.471617i
\(584\) 0 0
\(585\) 1413.56 + 7487.77i 0.0999032 + 0.529199i
\(586\) 0 0
\(587\) 9031.37 + 9031.37i 0.635033 + 0.635033i 0.949326 0.314293i \(-0.101767\pi\)
−0.314293 + 0.949326i \(0.601767\pi\)
\(588\) 0 0
\(589\) 11390.9i 0.796868i
\(590\) 0 0
\(591\) 17896.7i 1.24564i
\(592\) 0 0
\(593\) 5309.82 + 5309.82i 0.367703 + 0.367703i 0.866639 0.498936i \(-0.166276\pi\)
−0.498936 + 0.866639i \(0.666276\pi\)
\(594\) 0 0
\(595\) 12415.5 18194.0i 0.855437 1.25358i
\(596\) 0 0
\(597\) −11512.7 + 11512.7i −0.789249 + 0.789249i
\(598\) 0 0
\(599\) 10472.4 0.714339 0.357169 0.934040i \(-0.383742\pi\)
0.357169 + 0.934040i \(0.383742\pi\)
\(600\) 0 0
\(601\) 16729.2 1.13544 0.567718 0.823223i \(-0.307826\pi\)
0.567718 + 0.823223i \(0.307826\pi\)
\(602\) 0 0
\(603\) 7404.97 7404.97i 0.500089 0.500089i
\(604\) 0 0
\(605\) 4739.06 6944.76i 0.318463 0.466685i
\(606\) 0 0
\(607\) 5258.02 + 5258.02i 0.351592 + 0.351592i 0.860702 0.509110i \(-0.170025\pi\)
−0.509110 + 0.860702i \(0.670025\pi\)
\(608\) 0 0
\(609\) 47514.0i 3.16152i
\(610\) 0 0
\(611\) 24940.8i 1.65139i
\(612\) 0 0
\(613\) −6137.40 6137.40i −0.404384 0.404384i 0.475391 0.879775i \(-0.342307\pi\)
−0.879775 + 0.475391i \(0.842307\pi\)
\(614\) 0 0
\(615\) 3372.10 + 17862.4i 0.221099 + 1.17119i
\(616\) 0 0
\(617\) −18906.7 + 18906.7i −1.23364 + 1.23364i −0.271084 + 0.962556i \(0.587382\pi\)
−0.962556 + 0.271084i \(0.912618\pi\)
\(618\) 0 0
\(619\) −13550.3 −0.879859 −0.439929 0.898032i \(-0.644997\pi\)
−0.439929 + 0.898032i \(0.644997\pi\)
\(620\) 0 0
\(621\) −7688.21 −0.496807
\(622\) 0 0
\(623\) 8904.08 8904.08i 0.572607 0.572607i
\(624\) 0 0
\(625\) −11471.5 + 10608.7i −0.734176 + 0.678959i
\(626\) 0 0
\(627\) 7464.94 + 7464.94i 0.475472 + 0.475472i
\(628\) 0 0
\(629\) 25368.7i 1.60814i
\(630\) 0 0
\(631\) 5665.10i 0.357407i −0.983903 0.178704i \(-0.942810\pi\)
0.983903 0.178704i \(-0.0571903\pi\)
\(632\) 0 0
\(633\) −22357.8 22357.8i −1.40386 1.40386i
\(634\) 0 0
\(635\) −26241.5 + 4953.93i −1.63994 + 0.309591i
\(636\) 0 0
\(637\) 13541.7 13541.7i 0.842294 0.842294i
\(638\) 0 0
\(639\) 1739.89 0.107713
\(640\) 0 0
\(641\) −836.036 −0.0515155 −0.0257578 0.999668i \(-0.508200\pi\)
−0.0257578 + 0.999668i \(0.508200\pi\)
\(642\) 0 0
\(643\) 4378.78 4378.78i 0.268557 0.268557i −0.559962 0.828519i \(-0.689184\pi\)
0.828519 + 0.559962i \(0.189184\pi\)
\(644\) 0 0
\(645\) −857.256 584.987i −0.0523325 0.0357114i
\(646\) 0 0
\(647\) 14469.2 + 14469.2i 0.879201 + 0.879201i 0.993452 0.114251i \(-0.0364469\pi\)
−0.114251 + 0.993452i \(0.536447\pi\)
\(648\) 0 0
\(649\) 5917.80i 0.357926i
\(650\) 0 0
\(651\) 28390.2i 1.70921i
\(652\) 0 0
\(653\) −6716.28 6716.28i −0.402494 0.402494i 0.476617 0.879111i \(-0.341863\pi\)
−0.879111 + 0.476617i \(0.841863\pi\)
\(654\) 0 0
\(655\) −4135.28 2821.89i −0.246685 0.168336i
\(656\) 0 0
\(657\) −10706.1 + 10706.1i −0.635745 + 0.635745i
\(658\) 0 0
\(659\) 19429.3 1.14850 0.574248 0.818682i \(-0.305295\pi\)
0.574248 + 0.818682i \(0.305295\pi\)
\(660\) 0 0
\(661\) 1931.93 0.113681 0.0568406 0.998383i \(-0.481897\pi\)
0.0568406 + 0.998383i \(0.481897\pi\)
\(662\) 0 0
\(663\) 16514.1 16514.1i 0.967351 0.967351i
\(664\) 0 0
\(665\) 20371.1 3845.69i 1.18790 0.224255i
\(666\) 0 0
\(667\) 17633.6 + 17633.6i 1.02365 + 1.02365i
\(668\) 0 0
\(669\) 3660.92i 0.211568i
\(670\) 0 0
\(671\) 39.5641i 0.00227624i
\(672\) 0 0
\(673\) 5530.06 + 5530.06i 0.316743 + 0.316743i 0.847515 0.530772i \(-0.178098\pi\)
−0.530772 + 0.847515i \(0.678098\pi\)
\(674\) 0 0
\(675\) −4275.02 + 9776.39i −0.243771 + 0.557472i
\(676\) 0 0
\(677\) −17641.4 + 17641.4i −1.00150 + 1.00150i −0.00150001 + 0.999999i \(0.500477\pi\)
−0.999999 + 0.00150001i \(0.999523\pi\)
\(678\) 0 0
\(679\) 26497.2 1.49760
\(680\) 0 0
\(681\) 15691.4 0.882957
\(682\) 0 0
\(683\) −5334.23 + 5334.23i −0.298841 + 0.298841i −0.840560 0.541719i \(-0.817774\pi\)
0.541719 + 0.840560i \(0.317774\pi\)
\(684\) 0 0
\(685\) −1181.31 6257.51i −0.0658910 0.349033i
\(686\) 0 0
\(687\) 12400.0 + 12400.0i 0.688632 + 0.688632i
\(688\) 0 0
\(689\) 19548.3i 1.08089i
\(690\) 0 0
\(691\) 9565.00i 0.526584i −0.964716 0.263292i \(-0.915192\pi\)
0.964716 0.263292i \(-0.0848083\pi\)
\(692\) 0 0
\(693\) −6233.47 6233.47i −0.341688 0.341688i
\(694\) 0 0
\(695\) −11513.6 + 16872.3i −0.628395 + 0.920868i
\(696\) 0 0
\(697\) 13198.9 13198.9i 0.717277 0.717277i
\(698\) 0 0
\(699\) 12880.2 0.696960
\(700\) 0 0
\(701\) −834.888 −0.0449833 −0.0224916 0.999747i \(-0.507160\pi\)
−0.0224916 + 0.999747i \(0.507160\pi\)
\(702\) 0 0
\(703\) 16883.3 16883.3i 0.905783 0.905783i
\(704\) 0 0
\(705\) −19990.7 + 29295.0i −1.06793 + 1.56498i
\(706\) 0 0
\(707\) 23804.5 + 23804.5i 1.26628 + 1.26628i
\(708\) 0 0
\(709\) 14997.9i 0.794442i 0.917723 + 0.397221i \(0.130025\pi\)
−0.917723 + 0.397221i \(0.869975\pi\)
\(710\) 0 0
\(711\) 1518.56i 0.0800991i
\(712\) 0 0
\(713\) 10536.3 + 10536.3i 0.553418 + 0.553418i
\(714\) 0 0
\(715\) 2500.28 + 13244.3i 0.130777 + 0.692740i
\(716\) 0 0
\(717\) −2941.14 + 2941.14i −0.153192 + 0.153192i
\(718\) 0 0
\(719\) −28170.8 −1.46119 −0.730593 0.682813i \(-0.760756\pi\)
−0.730593 + 0.682813i \(0.760756\pi\)
\(720\) 0 0
\(721\) −12313.2 −0.636016
\(722\) 0 0
\(723\) 12159.8 12159.8i 0.625489 0.625489i
\(724\) 0 0
\(725\) 32228.2 12617.9i 1.65093 0.646367i
\(726\) 0 0
\(727\) −23410.6 23410.6i −1.19429 1.19429i −0.975850 0.218442i \(-0.929903\pi\)
−0.218442 0.975850i \(-0.570097\pi\)
\(728\) 0 0
\(729\) 2289.88i 0.116338i
\(730\) 0 0
\(731\) 1065.70i 0.0539211i
\(732\) 0 0
\(733\) 22255.1 + 22255.1i 1.12143 + 1.12143i 0.991526 + 0.129908i \(0.0414681\pi\)
0.129908 + 0.991526i \(0.458532\pi\)
\(734\) 0 0
\(735\) −26759.8 + 5051.76i −1.34292 + 0.253520i
\(736\) 0 0
\(737\) 13097.8 13097.8i 0.654634 0.654634i
\(738\) 0 0
\(739\) −31299.7 −1.55802 −0.779010 0.627011i \(-0.784278\pi\)
−0.779010 + 0.627011i \(0.784278\pi\)
\(740\) 0 0
\(741\) 21980.8 1.08972
\(742\) 0 0
\(743\) −6394.92 + 6394.92i −0.315756 + 0.315756i −0.847135 0.531378i \(-0.821674\pi\)
0.531378 + 0.847135i \(0.321674\pi\)
\(744\) 0 0
\(745\) 22392.3 + 15280.4i 1.10120 + 0.751450i
\(746\) 0 0
\(747\) 8851.79 + 8851.79i 0.433561 + 0.433561i
\(748\) 0 0
\(749\) 26449.5i 1.29031i
\(750\) 0 0
\(751\) 35567.0i 1.72817i 0.503344 + 0.864086i \(0.332103\pi\)
−0.503344 + 0.864086i \(0.667897\pi\)
\(752\) 0 0
\(753\) −24121.6 24121.6i −1.16738 1.16738i
\(754\) 0 0
\(755\) 23059.6 + 15735.8i 1.11156 + 0.758521i
\(756\) 0 0
\(757\) −17860.9 + 17860.9i −0.857550 + 0.857550i −0.991049 0.133499i \(-0.957379\pi\)
0.133499 + 0.991049i \(0.457379\pi\)
\(758\) 0 0
\(759\) 13809.7 0.660422
\(760\) 0 0
\(761\) −1174.25 −0.0559350 −0.0279675 0.999609i \(-0.508903\pi\)
−0.0279675 + 0.999609i \(0.508903\pi\)
\(762\) 0 0
\(763\) 2100.76 2100.76i 0.0996758 0.0996758i
\(764\) 0 0
\(765\) −10933.5 + 2064.04i −0.516734 + 0.0975499i
\(766\) 0 0
\(767\) −8712.57 8712.57i −0.410160 0.410160i
\(768\) 0 0
\(769\) 17440.1i 0.817822i −0.912574 0.408911i \(-0.865909\pi\)
0.912574 0.408911i \(-0.134091\pi\)
\(770\) 0 0
\(771\) 7533.08i 0.351877i
\(772\) 0 0
\(773\) 21388.2 + 21388.2i 0.995188 + 0.995188i 0.999988 0.00480031i \(-0.00152799\pi\)
−0.00480031 + 0.999988i \(0.501528\pi\)
\(774\) 0 0
\(775\) 19256.7 7539.32i 0.892543 0.349446i
\(776\) 0 0
\(777\) −42079.0 + 42079.0i −1.94283 + 1.94283i
\(778\) 0 0
\(779\) 17568.1 0.808013
\(780\) 0 0
\(781\) 3077.50 0.141001
\(782\) 0 0
\(783\) 16712.5 16712.5i 0.762781 0.762781i
\(784\) 0 0
\(785\) 1681.44 + 8906.80i 0.0764500 + 0.404965i
\(786\) 0 0
\(787\) 22085.8 + 22085.8i 1.00035 + 1.00035i 1.00000 0.000346279i \(0.000110224\pi\)
0.000346279 1.00000i \(0.499890\pi\)
\(788\) 0 0
\(789\) 10234.9i 0.461816i
\(790\) 0 0
\(791\) 24398.7i 1.09673i
\(792\) 0 0
\(793\) −58.2489 58.2489i −0.00260842 0.00260842i
\(794\) 0 0
\(795\) −15668.5 + 22961.0i −0.698998 + 1.02433i
\(796\) 0 0
\(797\) 332.495 332.495i 0.0147774 0.0147774i −0.699679 0.714457i \(-0.746674\pi\)
0.714457 + 0.699679i \(0.246674\pi\)
\(798\) 0 0
\(799\) 36418.1 1.61249
\(800\) 0 0
\(801\) −6360.95 −0.280591
\(802\) 0 0
\(803\) −18936.8 + 18936.8i −0.832213 + 0.832213i
\(804\) 0 0
\(805\) 15285.5 22399.8i 0.669246 0.980732i
\(806\) 0 0
\(807\) −850.457 850.457i −0.0370973 0.0370973i
\(808\) 0 0
\(809\) 35130.2i 1.52672i 0.645976 + 0.763358i \(0.276451\pi\)
−0.645976 + 0.763358i \(0.723549\pi\)
\(810\) 0 0
\(811\) 20353.7i 0.881278i −0.897684 0.440639i \(-0.854752\pi\)
0.897684 0.440639i \(-0.145248\pi\)
\(812\) 0 0
\(813\) 28696.3 + 28696.3i 1.23791 + 1.23791i
\(814\) 0 0
\(815\) −5467.01 28959.4i −0.234971 1.24467i
\(816\) 0 0
\(817\) −709.240 + 709.240i −0.0303711 + 0.0303711i
\(818\) 0 0
\(819\) −18354.6 −0.783105
\(820\) 0 0
\(821\) −35961.9 −1.52872 −0.764360 0.644790i \(-0.776945\pi\)
−0.764360 + 0.644790i \(0.776945\pi\)
\(822\) 0 0
\(823\) −20475.6 + 20475.6i −0.867236 + 0.867236i −0.992166 0.124930i \(-0.960129\pi\)
0.124930 + 0.992166i \(0.460129\pi\)
\(824\) 0 0
\(825\) 7678.87 17560.5i 0.324053 0.741065i
\(826\) 0 0
\(827\) −14505.7 14505.7i −0.609930 0.609930i 0.332998 0.942928i \(-0.391940\pi\)
−0.942928 + 0.332998i \(0.891940\pi\)
\(828\) 0 0
\(829\) 12556.2i 0.526051i −0.964789 0.263026i \(-0.915280\pi\)
0.964789 0.263026i \(-0.0847204\pi\)
\(830\) 0 0
\(831\) 9421.10i 0.393278i
\(832\) 0 0
\(833\) 19773.3 + 19773.3i 0.822453 + 0.822453i
\(834\) 0 0
\(835\) −15628.7 + 2950.42i −0.647730 + 0.122280i
\(836\) 0 0
\(837\) 9985.93 9985.93i 0.412383 0.412383i
\(838\) 0 0
\(839\) −42777.2 −1.76023 −0.880116 0.474759i \(-0.842535\pi\)
−0.880116 + 0.474759i \(0.842535\pi\)
\(840\) 0 0
\(841\) −52274.4 −2.14336
\(842\) 0 0
\(843\) 4849.06 4849.06i 0.198115 0.198115i
\(844\) 0 0
\(845\) 2890.86 + 1972.71i 0.117691 + 0.0803116i
\(846\) 0 0
\(847\) 14320.2 + 14320.2i 0.580929 + 0.580929i
\(848\) 0 0
\(849\) 43921.4i 1.77547i
\(850\) 0 0
\(851\) 31233.1i 1.25812i
\(852\) 0 0
\(853\) −19721.7 19721.7i −0.791628 0.791628i 0.190131 0.981759i \(-0.439109\pi\)
−0.981759 + 0.190131i \(0.939109\pi\)
\(854\) 0 0
\(855\) −8650.07 5902.76i −0.345995 0.236105i
\(856\) 0 0
\(857\) −3410.56 + 3410.56i −0.135942 + 0.135942i −0.771804 0.635861i \(-0.780645\pi\)
0.635861 + 0.771804i \(0.280645\pi\)
\(858\) 0 0
\(859\) −23192.7 −0.921217 −0.460609 0.887603i \(-0.652369\pi\)
−0.460609 + 0.887603i \(0.652369\pi\)
\(860\) 0 0
\(861\) −43785.8 −1.73312
\(862\) 0 0
\(863\) −15477.6 + 15477.6i −0.610502 + 0.610502i −0.943077 0.332575i \(-0.892083\pi\)
0.332575 + 0.943077i \(0.392083\pi\)
\(864\) 0 0
\(865\) 23280.2 4394.89i 0.915089 0.172752i
\(866\) 0 0
\(867\) 1976.67 + 1976.67i 0.0774295 + 0.0774295i
\(868\) 0 0
\(869\) 2686.02i 0.104853i
\(870\) 0 0
\(871\) 38567.0i 1.50034i
\(872\) 0 0
\(873\) −9464.60 9464.60i −0.366928 0.366928i
\(874\) 0 0
\(875\) −19984.3 31892.5i −0.772104 1.23219i
\(876\) 0 0
\(877\) 26716.5 26716.5i 1.02868 1.02868i 0.0291035 0.999576i \(-0.490735\pi\)
0.999576 0.0291035i \(-0.00926525\pi\)
\(878\) 0 0
\(879\) −10307.9 −0.395538
\(880\) 0 0
\(881\) −2792.61 −0.106794 −0.0533970 0.998573i \(-0.517005\pi\)
−0.0533970 + 0.998573i \(0.517005\pi\)
\(882\) 0 0
\(883\) 19487.1 19487.1i 0.742687 0.742687i −0.230407 0.973094i \(-0.574006\pi\)
0.973094 + 0.230407i \(0.0740058\pi\)
\(884\) 0 0
\(885\) 3250.25 + 17217.0i 0.123453 + 0.653945i
\(886\) 0 0
\(887\) 8117.18 + 8117.18i 0.307270 + 0.307270i 0.843849 0.536580i \(-0.180284\pi\)
−0.536580 + 0.843849i \(0.680284\pi\)
\(888\) 0 0
\(889\) 64325.4i 2.42678i
\(890\) 0 0
\(891\) 21926.6i 0.824431i
\(892\) 0 0
\(893\) 24236.8 + 24236.8i 0.908235 + 0.908235i
\(894\) 0 0
\(895\) −17403.7 + 25503.9i −0.649990 + 0.952514i
\(896\) 0 0
\(897\) 20331.6 20331.6i 0.756801 0.756801i
\(898\) 0 0
\(899\) −45807.2 −1.69940
\(900\) 0 0
\(901\) 28544.0 1.05543
\(902\) 0 0
\(903\) 1767.67 1767.67i 0.0651433 0.0651433i
\(904\) 0 0
\(905\) −2366.12 + 3467.38i −0.0869089 + 0.127359i
\(906\) 0 0
\(907\) 1356.62 + 1356.62i 0.0496645 + 0.0496645i 0.731503 0.681838i \(-0.238819\pi\)
−0.681838 + 0.731503i \(0.738819\pi\)
\(908\) 0 0
\(909\) 17005.6i 0.620507i
\(910\) 0 0
\(911\) 5974.65i 0.217288i 0.994081 + 0.108644i \(0.0346508\pi\)
−0.994081 + 0.108644i \(0.965349\pi\)
\(912\) 0 0
\(913\) 15657.0 + 15657.0i 0.567546 + 0.567546i
\(914\) 0 0
\(915\) 21.7299 + 115.106i 0.000785102 + 0.00415878i
\(916\) 0 0
\(917\) 8526.99 8526.99i 0.307073 0.307073i
\(918\) 0 0
\(919\) −32095.3 −1.15204 −0.576020 0.817436i \(-0.695395\pi\)
−0.576020 + 0.817436i \(0.695395\pi\)
\(920\) 0 0
\(921\) 47447.1 1.69754
\(922\) 0 0
\(923\) 4530.89 4530.89i 0.161578 0.161578i
\(924\) 0 0
\(925\) −39716.2 17367.1i −1.41174 0.617327i
\(926\) 0 0
\(927\) 4398.19 + 4398.19i 0.155831 + 0.155831i
\(928\) 0 0
\(929\) 37055.0i 1.30865i −0.756214 0.654324i \(-0.772953\pi\)
0.756214 0.654324i \(-0.227047\pi\)
\(930\) 0 0
\(931\) 26318.9i 0.926494i
\(932\) 0 0
\(933\) −31527.5 31527.5i −1.10629 1.10629i
\(934\) 0 0
\(935\) −19339.1 + 3650.86i −0.676422 + 0.127696i
\(936\) 0 0
\(937\) 29292.7 29292.7i 1.02129 1.02129i 0.0215234 0.999768i \(-0.493148\pi\)
0.999768 0.0215234i \(-0.00685166\pi\)
\(938\) 0 0
\(939\) 22241.6 0.772979
\(940\) 0 0
\(941\) −24894.3 −0.862412 −0.431206 0.902254i \(-0.641912\pi\)
−0.431206 + 0.902254i \(0.641912\pi\)
\(942\) 0 0
\(943\) 16250.0 16250.0i 0.561158 0.561158i
\(944\) 0 0
\(945\) −21229.8 14487.1i −0.730799 0.498693i
\(946\) 0 0
\(947\) −1733.67 1733.67i −0.0594896 0.0594896i 0.676736 0.736226i \(-0.263394\pi\)
−0.736226 + 0.676736i \(0.763394\pi\)
\(948\) 0 0
\(949\) 55760.1i 1.90732i
\(950\) 0 0
\(951\) 21085.9i 0.718988i
\(952\) 0 0
\(953\) −26550.8 26550.8i −0.902481 0.902481i 0.0931690 0.995650i \(-0.470300\pi\)
−0.995650 + 0.0931690i \(0.970300\pi\)
\(954\) 0 0
\(955\) −18058.9 12323.3i −0.611907 0.417562i
\(956\) 0 0
\(957\) −30019.3 + 30019.3i −1.01399 + 1.01399i
\(958\) 0 0
\(959\) 15338.9 0.516496
\(960\) 0 0
\(961\) 2420.66 0.0812548
\(962\) 0 0
\(963\) −9447.56 + 9447.56i −0.316141 + 0.316141i
\(964\) 0 0
\(965\) 41466.9 7828.19i 1.38328 0.261138i
\(966\) 0 0
\(967\) −17836.0 17836.0i −0.593141 0.593141i 0.345338 0.938478i \(-0.387764\pi\)
−0.938478 + 0.345338i \(0.887764\pi\)
\(968\) 0 0
\(969\) 32095.8i 1.06405i
\(970\) 0 0
\(971\) 15380.8i 0.508335i 0.967160 + 0.254167i \(0.0818014\pi\)
−0.967160 + 0.254167i \(0.918199\pi\)
\(972\) 0 0
\(973\) −34790.9 34790.9i −1.14629 1.14629i
\(974\) 0 0
\(975\) −14548.4 37159.1i −0.477869 1.22056i
\(976\) 0 0
\(977\) 15851.5 15851.5i 0.519074 0.519074i −0.398217 0.917291i \(-0.630371\pi\)
0.917291 + 0.398217i \(0.130371\pi\)
\(978\) 0 0
\(979\) −11251.2 −0.367303
\(980\) 0 0
\(981\) −1500.75 −0.0488434
\(982\) 0 0
\(983\) 19569.0 19569.0i 0.634948 0.634948i −0.314357 0.949305i \(-0.601789\pi\)
0.949305 + 0.314357i \(0.101789\pi\)
\(984\) 0 0
\(985\) −5825.06 30856.0i −0.188428 0.998127i
\(986\) 0 0
\(987\) −60406.5 60406.5i −1.94809 1.94809i
\(988\) 0 0
\(989\) 1312.05i 0.0421849i
\(990\) 0 0
\(991\) 57385.1i 1.83945i 0.392559 + 0.919727i \(0.371590\pi\)
−0.392559 + 0.919727i \(0.628410\pi\)
\(992\) 0 0
\(993\) 36271.8 + 36271.8i 1.15917 + 1.15917i
\(994\) 0 0
\(995\) 16102.0 23596.3i 0.513033 0.751813i
\(996\) 0 0
\(997\) −11684.6 + 11684.6i −0.371168 + 0.371168i −0.867902 0.496735i \(-0.834532\pi\)
0.496735 + 0.867902i \(0.334532\pi\)
\(998\) 0 0
\(999\) −29601.7 −0.937493
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.4.n.g.63.1 8
4.3 odd 2 320.4.n.h.63.4 8
5.2 odd 4 320.4.n.h.127.4 8
8.3 odd 2 160.4.n.d.63.1 8
8.5 even 2 160.4.n.e.63.4 yes 8
20.7 even 4 inner 320.4.n.g.127.1 8
40.27 even 4 160.4.n.e.127.4 yes 8
40.37 odd 4 160.4.n.d.127.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.4.n.d.63.1 8 8.3 odd 2
160.4.n.d.127.1 yes 8 40.37 odd 4
160.4.n.e.63.4 yes 8 8.5 even 2
160.4.n.e.127.4 yes 8 40.27 even 4
320.4.n.g.63.1 8 1.1 even 1 trivial
320.4.n.g.127.1 8 20.7 even 4 inner
320.4.n.h.63.4 8 4.3 odd 2
320.4.n.h.127.4 8 5.2 odd 4