L(s) = 1 | + (−4.50 + 4.50i)3-s + (6.30 − 9.23i)5-s + (19.0 + 19.0i)7-s − 13.6i·9-s − 24.0i·11-s + (−35.4 − 35.4i)13-s + (13.2 + 70.0i)15-s + (51.7 − 51.7i)17-s + 68.8·19-s − 171.·21-s + (63.6 − 63.6i)23-s + (−45.5 − 116. i)25-s + (−60.3 − 60.3i)27-s + 276. i·29-s + 165. i·31-s + ⋯ |
L(s) = 1 | + (−0.867 + 0.867i)3-s + (0.563 − 0.826i)5-s + (1.02 + 1.02i)7-s − 0.503i·9-s − 0.659i·11-s + (−0.755 − 0.755i)13-s + (0.227 + 1.20i)15-s + (0.738 − 0.738i)17-s + 0.831·19-s − 1.78·21-s + (0.577 − 0.577i)23-s + (−0.364 − 0.931i)25-s + (−0.430 − 0.430i)27-s + 1.77i·29-s + 0.958i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.913 - 0.406i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.913 - 0.406i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.705693426\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.705693426\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-6.30 + 9.23i)T \) |
good | 3 | \( 1 + (4.50 - 4.50i)T - 27iT^{2} \) |
| 7 | \( 1 + (-19.0 - 19.0i)T + 343iT^{2} \) |
| 11 | \( 1 + 24.0iT - 1.33e3T^{2} \) |
| 13 | \( 1 + (35.4 + 35.4i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + (-51.7 + 51.7i)T - 4.91e3iT^{2} \) |
| 19 | \( 1 - 68.8T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-63.6 + 63.6i)T - 1.21e4iT^{2} \) |
| 29 | \( 1 - 276. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 165. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-245. + 245. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 - 255.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (10.3 - 10.3i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + (-352. - 352. i)T + 1.03e5iT^{2} \) |
| 53 | \( 1 + (-275. - 275. i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 - 245.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 1.64T + 2.26e5T^{2} \) |
| 67 | \( 1 + (-544. - 544. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 - 127. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (786. + 786. i)T + 3.89e5iT^{2} \) |
| 79 | \( 1 - 111.T + 4.93e5T^{2} \) |
| 83 | \( 1 + (650. - 650. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + 467. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + (-695. + 695. i)T - 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22065203837828673437889606271, −10.42530998037637793392237868919, −9.400420524762099224830124375518, −8.681585686919549330501454418042, −7.54308621155251560065996525924, −5.66353019795318216887426214243, −5.39412379019940731483826976329, −4.61098757314837825748197202823, −2.72604492737869838093028411893, −0.960246755297020521937782363200,
1.01953024293096630154431601362, 2.15693127226471530534225131711, 4.05876493053585308572135264652, 5.34580348783526100045464559329, 6.35945339471144457643839123209, 7.32490505015519658442451269464, 7.71654149470095949922745422626, 9.595333374145627214716829384452, 10.28317966218143920886879997430, 11.47580235330703351817251333922