Properties

Label 320.4.n.c.63.1
Level $320$
Weight $4$
Character 320.63
Analytic conductor $18.881$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,4,Mod(63,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.63"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 320.n (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.8806112018\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 63.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 320.63
Dual form 320.4.n.c.127.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 11.0000i) q^{5} +27.0000i q^{9} +(37.0000 + 37.0000i) q^{13} +(99.0000 - 99.0000i) q^{17} +(-117.000 - 44.0000i) q^{25} -284.000i q^{29} +(91.0000 - 91.0000i) q^{37} +472.000 q^{41} +(297.000 + 54.0000i) q^{45} -343.000i q^{49} +(27.0000 + 27.0000i) q^{53} +468.000 q^{61} +(481.000 - 333.000i) q^{65} +(253.000 + 253.000i) q^{73} -729.000 q^{81} +(-891.000 - 1287.00i) q^{85} -176.000i q^{89} +(-611.000 + 611.000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} + 74 q^{13} + 198 q^{17} - 234 q^{25} + 182 q^{37} + 944 q^{41} + 594 q^{45} + 54 q^{53} + 936 q^{61} + 962 q^{65} + 506 q^{73} - 1458 q^{81} - 1782 q^{85} - 1222 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(4\) 0 0
\(5\) 2.00000 11.0000i 0.178885 0.983870i
\(6\) 0 0
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 0 0
\(9\) 27.0000i 1.00000i
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 37.0000 + 37.0000i 0.789381 + 0.789381i 0.981393 0.192012i \(-0.0615011\pi\)
−0.192012 + 0.981393i \(0.561501\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 99.0000 99.0000i 1.41241 1.41241i 0.670540 0.741874i \(-0.266063\pi\)
0.741874 0.670540i \(-0.233937\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) 0 0
\(25\) −117.000 44.0000i −0.936000 0.352000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 284.000i 1.81853i −0.416214 0.909267i \(-0.636643\pi\)
0.416214 0.909267i \(-0.363357\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 91.0000 91.0000i 0.404333 0.404333i −0.475424 0.879757i \(-0.657705\pi\)
0.879757 + 0.475424i \(0.157705\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 472.000 1.79790 0.898951 0.438048i \(-0.144330\pi\)
0.898951 + 0.438048i \(0.144330\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) 297.000 + 54.0000i 0.983870 + 0.178885i
\(46\) 0 0
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 0 0
\(49\) 343.000i 1.00000i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 27.0000 + 27.0000i 0.0699761 + 0.0699761i 0.741229 0.671253i \(-0.234243\pi\)
−0.671253 + 0.741229i \(0.734243\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 468.000 0.982316 0.491158 0.871071i \(-0.336574\pi\)
0.491158 + 0.871071i \(0.336574\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 481.000 333.000i 0.917857 0.635439i
\(66\) 0 0
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 253.000 + 253.000i 0.405636 + 0.405636i 0.880214 0.474578i \(-0.157399\pi\)
−0.474578 + 0.880214i \(0.657399\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −729.000 −1.00000
\(82\) 0 0
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) −891.000 1287.00i −1.13697 1.64229i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 176.000i 0.209618i −0.994492 0.104809i \(-0.966577\pi\)
0.994492 0.104809i \(-0.0334231\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −611.000 + 611.000i −0.639563 + 0.639563i −0.950448 0.310884i \(-0.899375\pi\)
0.310884 + 0.950448i \(0.399375\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 598.000 0.589141 0.294570 0.955630i \(-0.404823\pi\)
0.294570 + 0.955630i \(0.404823\pi\)
\(102\) 0 0
\(103\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 0 0
\(109\) 1746.00i 1.53428i 0.641480 + 0.767140i \(0.278321\pi\)
−0.641480 + 0.767140i \(0.721679\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −337.000 337.000i −0.280551 0.280551i 0.552778 0.833329i \(-0.313568\pi\)
−0.833329 + 0.552778i \(0.813568\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −999.000 + 999.000i −0.789381 + 0.789381i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1331.00 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −718.000 + 1199.00i −0.513759 + 0.857935i
\(126\) 0 0
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2191.00 + 2191.00i −1.36635 + 1.36635i −0.500766 + 0.865583i \(0.666948\pi\)
−0.865583 + 0.500766i \(0.833052\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −3124.00 568.000i −1.78920 0.325309i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3514.00i 1.93207i −0.258415 0.966034i \(-0.583200\pi\)
0.258415 0.966034i \(-0.416800\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 2673.00 + 2673.00i 1.41241 + 1.41241i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1819.00 + 1819.00i −0.924662 + 0.924662i −0.997354 0.0726920i \(-0.976841\pi\)
0.0726920 + 0.997354i \(0.476841\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) 0 0
\(169\) 541.000i 0.246245i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3047.00 + 3047.00i 1.33907 + 1.33907i 0.896962 + 0.442108i \(0.145769\pi\)
0.442108 + 0.896962i \(0.354231\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −3942.00 −1.61882 −0.809410 0.587243i \(-0.800213\pi\)
−0.809410 + 0.587243i \(0.800213\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −819.000 1183.00i −0.325482 0.470140i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) −2717.00 2717.00i −1.01334 1.01334i −0.999910 0.0134266i \(-0.995726\pi\)
−0.0134266 0.999910i \(-0.504274\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3289.00 + 3289.00i −1.18950 + 1.18950i −0.212295 + 0.977206i \(0.568094\pi\)
−0.977206 + 0.212295i \(0.931906\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 944.000 5192.00i 0.321619 1.76890i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7326.00 2.22986
\(222\) 0 0
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) 0 0
\(225\) 1188.00 3159.00i 0.352000 0.936000i
\(226\) 0 0
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 2684.00i 0.774514i −0.921972 0.387257i \(-0.873423\pi\)
0.921972 0.387257i \(-0.126577\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3843.00 + 3843.00i 1.08053 + 1.08053i 0.996460 + 0.0840693i \(0.0267917\pi\)
0.0840693 + 0.996460i \(0.473208\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 5272.00 1.40913 0.704563 0.709641i \(-0.251143\pi\)
0.704563 + 0.709641i \(0.251143\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3773.00 686.000i −0.983870 0.178885i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3281.00 + 3281.00i −0.796355 + 0.796355i −0.982519 0.186164i \(-0.940394\pi\)
0.186164 + 0.982519i \(0.440394\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 7668.00 1.81853
\(262\) 0 0
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 0 0
\(265\) 351.000 243.000i 0.0813651 0.0563297i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3406.00i 0.771998i 0.922499 + 0.385999i \(0.126143\pi\)
−0.922499 + 0.385999i \(0.873857\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5221.00 5221.00i 1.13249 1.13249i 0.142727 0.989762i \(-0.454413\pi\)
0.989762 0.142727i \(-0.0455871\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5792.00 1.22961 0.614807 0.788677i \(-0.289234\pi\)
0.614807 + 0.788677i \(0.289234\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 14689.0i 2.98982i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2983.00 2983.00i −0.594774 0.594774i 0.344143 0.938917i \(-0.388169\pi\)
−0.938917 + 0.344143i \(0.888169\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 936.000 5148.00i 0.175722 0.966471i
\(306\) 0 0
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −937.000 937.000i −0.169209 0.169209i 0.617423 0.786632i \(-0.288177\pi\)
−0.786632 + 0.617423i \(0.788177\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2799.00 + 2799.00i −0.495923 + 0.495923i −0.910166 0.414243i \(-0.864046\pi\)
0.414243 + 0.910166i \(0.364046\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −2701.00 5957.00i −0.460999 1.01672i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 2457.00 + 2457.00i 0.404333 + 0.404333i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −6391.00 + 6391.00i −1.03306 + 1.03306i −0.0336216 + 0.999435i \(0.510704\pi\)
−0.999435 + 0.0336216i \(0.989296\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(348\) 0 0
\(349\) 8964.00i 1.37488i −0.726243 0.687438i \(-0.758735\pi\)
0.726243 0.687438i \(-0.241265\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8073.00 + 8073.00i 1.21723 + 1.21723i 0.968598 + 0.248633i \(0.0799813\pi\)
0.248633 + 0.968598i \(0.420019\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −6859.00 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3289.00 2277.00i 0.471655 0.326530i
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) 12744.0i 1.79790i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 9647.00 + 9647.00i 1.33915 + 1.33915i 0.896884 + 0.442265i \(0.145825\pi\)
0.442265 + 0.896884i \(0.354175\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 10508.0 10508.0i 1.43552 1.43552i
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 374.000i 0.0487469i −0.999703 0.0243735i \(-0.992241\pi\)
0.999703 0.0243735i \(-0.00775908\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −11089.0 + 11089.0i −1.40187 + 1.40187i −0.607699 + 0.794168i \(0.707907\pi\)
−0.794168 + 0.607699i \(0.792093\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2398.00 −0.298629 −0.149315 0.988790i \(-0.547707\pi\)
−0.149315 + 0.988790i \(0.547707\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −1458.00 + 8019.00i −0.178885 + 0.983870i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 7146.00i 0.863929i −0.901891 0.431964i \(-0.857821\pi\)
0.901891 0.431964i \(-0.142179\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −13412.0 −1.55264 −0.776319 0.630340i \(-0.782916\pi\)
−0.776319 + 0.630340i \(0.782916\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −15939.0 + 7227.00i −1.81919 + 0.824849i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) −11107.0 11107.0i −1.23272 1.23272i −0.962914 0.269807i \(-0.913040\pi\)
−0.269807 0.962914i \(-0.586960\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 9261.00 1.00000
\(442\) 0 0
\(443\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 0 0
\(445\) −1936.00 352.000i −0.206236 0.0374975i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16114.0i 1.69369i 0.531840 + 0.846845i \(0.321501\pi\)
−0.531840 + 0.846845i \(0.678499\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −13481.0 + 13481.0i −1.37990 + 1.37990i −0.535132 + 0.844768i \(0.679738\pi\)
−0.844768 + 0.535132i \(0.820262\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2318.00 0.234187 0.117093 0.993121i \(-0.462642\pi\)
0.117093 + 0.993121i \(0.462642\pi\)
\(462\) 0 0
\(463\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −729.000 + 729.000i −0.0699761 + 0.0699761i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 6734.00 0.638345
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5499.00 + 7943.00i 0.514839 + 0.743656i
\(486\) 0 0
\(487\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) −28116.0 28116.0i −2.56852 2.56852i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) 1196.00 6578.00i 0.105389 0.579638i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 17996.0i 1.56711i 0.621323 + 0.783555i \(0.286596\pi\)
−0.621323 + 0.783555i \(0.713404\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −23738.0 −1.99612 −0.998062 0.0622265i \(-0.980180\pi\)
−0.998062 + 0.0622265i \(0.980180\pi\)
\(522\) 0 0
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 12167.0i 1.00000i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 17464.0 + 17464.0i 1.41923 + 1.41923i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −5922.00 −0.470622 −0.235311 0.971920i \(-0.575611\pi\)
−0.235311 + 0.971920i \(0.575611\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 19206.0 + 3492.00i 1.50953 + 0.274460i
\(546\) 0 0
\(547\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(548\) 0 0
\(549\) 12636.0i 0.982316i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16731.0 16731.0i 1.27274 1.27274i 0.328093 0.944646i \(-0.393594\pi\)
0.944646 0.328093i \(-0.106406\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) 0 0
\(565\) −4381.00 + 3033.00i −0.326212 + 0.225839i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 26806.0i 1.97498i −0.157669 0.987492i \(-0.550398\pi\)
0.157669 0.987492i \(-0.449602\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 15479.0 15479.0i 1.11681 1.11681i 0.124603 0.992207i \(-0.460234\pi\)
0.992207 0.124603i \(-0.0397657\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 8991.00 + 12987.0i 0.635439 + 0.917857i
\(586\) 0 0
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4433.00 + 4433.00i 0.306984 + 0.306984i 0.843738 0.536755i \(-0.180350\pi\)
−0.536755 + 0.843738i \(0.680350\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −24048.0 −1.63218 −0.816089 0.577927i \(-0.803862\pi\)
−0.816089 + 0.577927i \(0.803862\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2662.00 14641.0i 0.178885 0.983870i
\(606\) 0 0
\(607\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 1837.00 + 1837.00i 0.121037 + 0.121037i 0.765031 0.643994i \(-0.222724\pi\)
−0.643994 + 0.765031i \(0.722724\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5499.00 5499.00i 0.358803 0.358803i −0.504569 0.863372i \(-0.668348\pi\)
0.863372 + 0.504569i \(0.168348\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 11753.0 + 10296.0i 0.752192 + 0.658944i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 18018.0i 1.14217i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 12691.0 12691.0i 0.789381 0.789381i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14872.0 0.916394 0.458197 0.888851i \(-0.348495\pi\)
0.458197 + 0.888851i \(0.348495\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −16173.0 16173.0i −0.969217 0.969217i 0.0303236 0.999540i \(-0.490346\pi\)
−0.999540 + 0.0303236i \(0.990346\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −6831.00 + 6831.00i −0.405636 + 0.405636i
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 22068.0 1.29856 0.649278 0.760551i \(-0.275071\pi\)
0.649278 + 0.760551i \(0.275071\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −19547.0 19547.0i −1.11959 1.11959i −0.991802 0.127784i \(-0.959214\pi\)
−0.127784 0.991802i \(-0.540786\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 15471.0 15471.0i 0.878285 0.878285i −0.115072 0.993357i \(-0.536710\pi\)
0.993357 + 0.115072i \(0.0367100\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(684\) 0 0
\(685\) 19719.0 + 28483.0i 1.09989 + 1.58873i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1998.00i 0.110476i
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 46728.0 46728.0i 2.53938 2.53938i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −31252.0 −1.68384 −0.841920 0.539602i \(-0.818575\pi\)
−0.841920 + 0.539602i \(0.818575\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 8404.00i 0.445161i −0.974914 0.222580i \(-0.928552\pi\)
0.974914 0.222580i \(-0.0714479\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −12496.0 + 33228.0i −0.640124 + 1.70215i
\(726\) 0 0
\(727\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 0 0
\(729\) 19683.0i 1.00000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −14993.0 14993.0i −0.755497 0.755497i 0.220003 0.975499i \(-0.429393\pi\)
−0.975499 + 0.220003i \(0.929393\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) −38654.0 7028.00i −1.90090 0.345619i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 28781.0 28781.0i 1.38185 1.38185i 0.540527 0.841327i \(-0.318225\pi\)
0.841327 0.540527i \(-0.181775\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 31882.0 1.51869 0.759344 0.650689i \(-0.225520\pi\)
0.759344 + 0.650689i \(0.225520\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 34749.0 24057.0i 1.64229 1.13697i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 41544.0i 1.94813i 0.226260 + 0.974067i \(0.427350\pi\)
−0.226260 + 0.974067i \(0.572650\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 28197.0 + 28197.0i 1.31200 + 1.31200i 0.919940 + 0.392060i \(0.128237\pi\)
0.392060 + 0.919940i \(0.371763\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 16371.0 + 23647.0i 0.744339 + 1.07516i
\(786\) 0 0
\(787\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 17316.0 + 17316.0i 0.775421 + 0.775421i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −12839.0 + 12839.0i −0.570616 + 0.570616i −0.932300 0.361685i \(-0.882202\pi\)
0.361685 + 0.932300i \(0.382202\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 4752.00 0.209618
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 39704.0i 1.72549i 0.505643 + 0.862743i \(0.331255\pi\)
−0.505643 + 0.862743i \(0.668745\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −47012.0 −1.99845 −0.999227 0.0393212i \(-0.987480\pi\)
−0.999227 + 0.0393212i \(0.987480\pi\)
\(822\) 0 0
\(823\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) 23166.0i 0.970553i 0.874361 + 0.485276i \(0.161281\pi\)
−0.874361 + 0.485276i \(0.838719\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −33957.0 33957.0i −1.41241 1.41241i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −56267.0 −2.30706
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5951.00 + 1082.00i 0.242273 + 0.0440496i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −32923.0 32923.0i −1.32153 1.32153i −0.912541 0.408986i \(-0.865883\pi\)
−0.408986 0.912541i \(-0.634117\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12969.0 12969.0i 0.516934 0.516934i −0.399708 0.916642i \(-0.630889\pi\)
0.916642 + 0.399708i \(0.130889\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) 39611.0 27423.0i 1.55701 1.07793i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −16497.0 16497.0i −0.639563 0.639563i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −36179.0 + 36179.0i −1.39302 + 1.39302i −0.574550 + 0.818470i \(0.694823\pi\)
−0.818470 + 0.574550i \(0.805177\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −51808.0 −1.98122 −0.990611 0.136714i \(-0.956346\pi\)
−0.990611 + 0.136714i \(0.956346\pi\)
\(882\) 0 0
\(883\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 5346.00 0.197670
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7884.00 + 43362.0i −0.289583 + 1.59271i
\(906\) 0 0
\(907\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) 0 0
\(909\) 16146.0i 0.589141i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −14651.0 + 6643.00i −0.520780 + 0.236130i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 30866.0i 1.09008i −0.838411 0.545038i \(-0.816515\pi\)
0.838411 0.545038i \(-0.183485\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −38141.0 + 38141.0i −1.32979 + 1.32979i −0.424238 + 0.905551i \(0.639458\pi\)
−0.905551 + 0.424238i \(0.860542\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 31378.0 1.08703 0.543514 0.839400i \(-0.317093\pi\)
0.543514 + 0.839400i \(0.317093\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(948\) 0 0
\(949\) 18722.0i 0.640402i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 20623.0 + 20623.0i 0.700991 + 0.700991i 0.964623 0.263632i \(-0.0849205\pi\)
−0.263632 + 0.964623i \(0.584921\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 29791.0 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −35321.0 + 24453.0i −1.17826 + 0.815720i
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −39771.0 + 39771.0i −1.30234 + 1.30234i −0.375531 + 0.926810i \(0.622540\pi\)
−0.926810 + 0.375531i \(0.877460\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −47142.0 −1.53428
\(982\) 0 0
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 29601.0 + 42757.0i 0.957529 + 1.38310i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 9361.00 9361.00i 0.297358 0.297358i −0.542620 0.839978i \(-0.682568\pi\)
0.839978 + 0.542620i \(0.182568\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.4.n.c.63.1 2
4.3 odd 2 CM 320.4.n.c.63.1 2
5.2 odd 4 inner 320.4.n.c.127.1 2
8.3 odd 2 20.4.e.a.3.1 2
8.5 even 2 20.4.e.a.3.1 2
20.7 even 4 inner 320.4.n.c.127.1 2
24.5 odd 2 180.4.k.a.163.1 2
24.11 even 2 180.4.k.a.163.1 2
40.3 even 4 100.4.e.a.7.1 2
40.13 odd 4 100.4.e.a.7.1 2
40.19 odd 2 100.4.e.a.43.1 2
40.27 even 4 20.4.e.a.7.1 yes 2
40.29 even 2 100.4.e.a.43.1 2
40.37 odd 4 20.4.e.a.7.1 yes 2
120.77 even 4 180.4.k.a.127.1 2
120.107 odd 4 180.4.k.a.127.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.4.e.a.3.1 2 8.3 odd 2
20.4.e.a.3.1 2 8.5 even 2
20.4.e.a.7.1 yes 2 40.27 even 4
20.4.e.a.7.1 yes 2 40.37 odd 4
100.4.e.a.7.1 2 40.3 even 4
100.4.e.a.7.1 2 40.13 odd 4
100.4.e.a.43.1 2 40.19 odd 2
100.4.e.a.43.1 2 40.29 even 2
180.4.k.a.127.1 2 120.77 even 4
180.4.k.a.127.1 2 120.107 odd 4
180.4.k.a.163.1 2 24.5 odd 2
180.4.k.a.163.1 2 24.11 even 2
320.4.n.c.63.1 2 1.1 even 1 trivial
320.4.n.c.63.1 2 4.3 odd 2 CM
320.4.n.c.127.1 2 5.2 odd 4 inner
320.4.n.c.127.1 2 20.7 even 4 inner