Properties

Label 2-320-20.3-c3-0-22
Degree $2$
Conductor $320$
Sign $0.742 + 0.669i$
Analytic cond. $18.8806$
Root an. cond. $4.34518$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2 − 11i)5-s + 27i·9-s + (37 + 37i)13-s + (99 − 99i)17-s + (−117 − 44i)25-s − 284i·29-s + (91 − 91i)37-s + 472·41-s + (297 + 54i)45-s − 343i·49-s + (27 + 27i)53-s + 468·61-s + (481 − 333i)65-s + (253 + 253i)73-s − 729·81-s + ⋯
L(s)  = 1  + (0.178 − 0.983i)5-s + i·9-s + (0.789 + 0.789i)13-s + (1.41 − 1.41i)17-s + (−0.936 − 0.351i)25-s − 1.81i·29-s + (0.404 − 0.404i)37-s + 1.79·41-s + (0.983 + 0.178i)45-s i·49-s + (0.0699 + 0.0699i)53-s + 0.982·61-s + (0.917 − 0.635i)65-s + (0.405 + 0.405i)73-s − 0.999·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.742 + 0.669i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.742 + 0.669i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(320\)    =    \(2^{6} \cdot 5\)
Sign: $0.742 + 0.669i$
Analytic conductor: \(18.8806\)
Root analytic conductor: \(4.34518\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{320} (63, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 320,\ (\ :3/2),\ 0.742 + 0.669i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.984691602\)
\(L(\frac12)\) \(\approx\) \(1.984691602\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (-2 + 11i)T \)
good3 \( 1 - 27iT^{2} \)
7 \( 1 + 343iT^{2} \)
11 \( 1 - 1.33e3T^{2} \)
13 \( 1 + (-37 - 37i)T + 2.19e3iT^{2} \)
17 \( 1 + (-99 + 99i)T - 4.91e3iT^{2} \)
19 \( 1 + 6.85e3T^{2} \)
23 \( 1 - 1.21e4iT^{2} \)
29 \( 1 + 284iT - 2.43e4T^{2} \)
31 \( 1 - 2.97e4T^{2} \)
37 \( 1 + (-91 + 91i)T - 5.06e4iT^{2} \)
41 \( 1 - 472T + 6.89e4T^{2} \)
43 \( 1 - 7.95e4iT^{2} \)
47 \( 1 + 1.03e5iT^{2} \)
53 \( 1 + (-27 - 27i)T + 1.48e5iT^{2} \)
59 \( 1 + 2.05e5T^{2} \)
61 \( 1 - 468T + 2.26e5T^{2} \)
67 \( 1 + 3.00e5iT^{2} \)
71 \( 1 - 3.57e5T^{2} \)
73 \( 1 + (-253 - 253i)T + 3.89e5iT^{2} \)
79 \( 1 + 4.93e5T^{2} \)
83 \( 1 - 5.71e5iT^{2} \)
89 \( 1 + 176iT - 7.04e5T^{2} \)
97 \( 1 + (611 - 611i)T - 9.12e5iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.26734741273300891822193368054, −9.987823816311971839973884287537, −9.282214400625587334733670394429, −8.221563128706653465983801246775, −7.45376523736800120752610399821, −5.97282510828134802573881404735, −5.08739688346561267313111985571, −4.04813940799823796442206841176, −2.32425013519407610496182098717, −0.880545873266245522058726540880, 1.22570856556852482188672804371, 3.05328065203054879033441404767, 3.80975708899916515805137989711, 5.66847457086027759892950313476, 6.31856337765354420127554316574, 7.43929838839368729666204624753, 8.435944481166980822423267803535, 9.584976507066331795132341414539, 10.46502509883899556893388036471, 11.11275981506197055708958060146

Graph of the $Z$-function along the critical line