Properties

Label 32.30.a.b
Level $32$
Weight $30$
Character orbit 32.a
Self dual yes
Analytic conductor $170.490$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [32,30,Mod(1,32)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("32.1"); S:= CuspForms(chi, 30); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(32, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 30, names="a")
 
Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 30 \)
Character orbit: \([\chi]\) \(=\) 32.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(170.489735626\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} - 13837273804 x^{4} + 292564574486272 x^{3} + \cdots + 15\!\cdots\!73 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{74}\cdot 3^{10}\cdot 5^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + ( - \beta_{2} + 3386618830) q^{5} + (\beta_{4} - 108698 \beta_1) q^{7} + (887 \beta_{3} + 6435 \beta_{2} + 51788827626093) q^{9} + (\beta_{5} - 159 \beta_{4} + 44717110 \beta_1) q^{11}+ \cdots + (9769221509760 \beta_{5} + \cdots + 13\!\cdots\!03 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 20319712980 q^{5} + 310732965756558 q^{9} - 12\!\cdots\!32 q^{13} - 24\!\cdots\!96 q^{17} - 78\!\cdots\!56 q^{21} - 45\!\cdots\!50 q^{25} + 94\!\cdots\!52 q^{29} + 32\!\cdots\!32 q^{33} - 23\!\cdots\!28 q^{37}+ \cdots - 23\!\cdots\!52 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2 x^{5} - 13837273804 x^{4} + 292564574486272 x^{3} + \cdots + 15\!\cdots\!73 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 23\!\cdots\!08 \nu^{5} + \cdots - 17\!\cdots\!12 ) / 49\!\cdots\!43 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 90\!\cdots\!60 \nu^{5} + \cdots - 68\!\cdots\!40 ) / 14\!\cdots\!29 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 51\!\cdots\!20 \nu^{5} + \cdots + 36\!\cdots\!28 ) / 16\!\cdots\!81 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 38\!\cdots\!88 \nu^{5} + \cdots - 27\!\cdots\!24 ) / 36\!\cdots\!67 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 22\!\cdots\!08 \nu^{5} + \cdots + 16\!\cdots\!56 ) / 36\!\cdots\!67 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 5\beta_{3} - 261\beta_{2} + 368640\beta _1 + 23592960 ) / 70778880 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( - 1521 \beta_{5} + 20673 \beta_{4} + 20210560 \beta_{3} + 59923584 \beta_{2} + \cdots + 34\!\cdots\!40 ) / 754974720 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 19978569 \beta_{5} - 60655666023 \beta_{4} - 1844291021440 \beta_{3} - 36611021559168 \beta_{2} + \cdots - 16\!\cdots\!20 ) / 1132462080 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 4646158470087 \beta_{5} + \cdots + 92\!\cdots\!00 ) / 251658240 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 12\!\cdots\!50 \beta_{5} + \cdots - 14\!\cdots\!40 ) / 70778880 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−108290.
−71669.1
20394.4
83348.1
21616.0
54602.1
0 −1.56376e7 0 −5.35826e9 0 3.47372e12 0 1.75904e14 0
1.2 0 −8.95536e6 0 −1.80943e9 0 −2.14818e12 0 1.15682e13 0
1.3 0 −6.04355e6 0 1.73275e10 0 6.92451e11 0 −3.21058e13 0
1.4 0 6.04355e6 0 1.73275e10 0 −6.92451e11 0 −3.21058e13 0
1.5 0 8.95536e6 0 −1.80943e9 0 2.14818e12 0 1.15682e13 0
1.6 0 1.56376e7 0 −5.35826e9 0 −3.47372e12 0 1.75904e14 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 32.30.a.b 6
4.b odd 2 1 inner 32.30.a.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
32.30.a.b 6 1.a even 1 1 trivial
32.30.a.b 6 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} - 361257614972928 T_{3}^{4} + \cdots - 71\!\cdots\!00 \) acting on \(S_{30}^{\mathrm{new}}(\Gamma_0(32))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots - 71\!\cdots\!00 \) Copy content Toggle raw display
$5$ \( (T^{3} + \cdots - 16\!\cdots\!00)^{2} \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots - 26\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 61\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( (T^{3} + \cdots - 63\!\cdots\!52)^{2} \) Copy content Toggle raw display
$17$ \( (T^{3} + \cdots + 33\!\cdots\!88)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 59\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 82\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{3} + \cdots + 53\!\cdots\!00)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 27\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( (T^{3} + \cdots + 49\!\cdots\!80)^{2} \) Copy content Toggle raw display
$41$ \( (T^{3} + \cdots + 65\!\cdots\!00)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 17\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 56\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( (T^{3} + \cdots - 26\!\cdots\!44)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T^{3} + \cdots - 23\!\cdots\!00)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 44\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 50\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T^{3} + \cdots - 18\!\cdots\!76)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 32\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 26\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{3} + \cdots - 55\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( (T^{3} + \cdots - 43\!\cdots\!12)^{2} \) Copy content Toggle raw display
show more
show less