Properties

Label 32.30.a
Level $32$
Weight $30$
Character orbit 32.a
Rep. character $\chi_{32}(1,\cdot)$
Character field $\Q$
Dimension $29$
Newform subspaces $5$
Sturm bound $120$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 30 \)
Character orbit: \([\chi]\) \(=\) 32.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(120\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{30}(\Gamma_0(32))\).

Total New Old
Modular forms 120 29 91
Cusp forms 112 29 83
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(59\)\(14\)\(45\)\(55\)\(14\)\(41\)\(4\)\(0\)\(4\)
\(-\)\(61\)\(15\)\(46\)\(57\)\(15\)\(42\)\(4\)\(0\)\(4\)

Trace form

\( 29 q - 8701963882 q^{5} + 751629454372313 q^{9} + 42\!\cdots\!70 q^{13} + 64\!\cdots\!90 q^{17} - 35\!\cdots\!40 q^{21} + 10\!\cdots\!23 q^{25} + 20\!\cdots\!46 q^{29} + 14\!\cdots\!04 q^{33} - 12\!\cdots\!98 q^{37}+ \cdots - 10\!\cdots\!18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{30}^{\mathrm{new}}(\Gamma_0(32))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
32.30.a.a 32.a 1.a $1$ $170.490$ \(\Q\) \(\Q(\sqrt{-1}) \) 32.30.a.a \(0\) \(0\) \(-21027633202\) \(0\) $+$ $N(\mathrm{U}(1))$ \(q-21027633202q^{5}-3^{29}q^{9}-6381221746069194q^{13}+\cdots\)
32.30.a.b 32.a 1.a $6$ $170.490$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 32.30.a.b \(0\) \(0\) \(20319712980\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(3386618830-\beta _{2})q^{5}+\cdots\)
32.30.a.c 32.a 1.a $7$ $170.490$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 32.30.a.c \(0\) \(-11756888\) \(-1328883646\) \(-26\!\cdots\!56\) $+$ $\mathrm{SU}(2)$ \(q+(-1679555+\beta _{1})q^{3}+(-189840610+\cdots)q^{5}+\cdots\)
32.30.a.d 32.a 1.a $7$ $170.490$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 32.30.a.c \(0\) \(11756888\) \(-1328883646\) \(26\!\cdots\!56\) $-$ $\mathrm{SU}(2)$ \(q+(1679555-\beta _{1})q^{3}+(-189840610+\cdots)q^{5}+\cdots\)
32.30.a.e 32.a 1.a $8$ $170.490$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 32.30.a.e \(0\) \(0\) \(-5336276368\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{4}q^{3}+(-667034546+\beta _{1})q^{5}+\cdots\)

Decomposition of \(S_{30}^{\mathrm{old}}(\Gamma_0(32))\) into lower level spaces

\( S_{30}^{\mathrm{old}}(\Gamma_0(32)) \simeq \) \(S_{30}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{30}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 5}\)\(\oplus\)\(S_{30}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{30}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{30}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 2}\)