Defining parameters
| Level: | \( N \) | \(=\) | \( 32 = 2^{5} \) |
| Weight: | \( k \) | \(=\) | \( 30 \) |
| Character orbit: | \([\chi]\) | \(=\) | 32.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(120\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{30}(\Gamma_0(32))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 120 | 29 | 91 |
| Cusp forms | 112 | 29 | 83 |
| Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(59\) | \(14\) | \(45\) | \(55\) | \(14\) | \(41\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(61\) | \(15\) | \(46\) | \(57\) | \(15\) | \(42\) | \(4\) | \(0\) | \(4\) | |||
Trace form
Decomposition of \(S_{30}^{\mathrm{new}}(\Gamma_0(32))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | |||||||
| 32.30.a.a | $1$ | $170.490$ | \(\Q\) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(-21027633202\) | \(0\) | $+$ | \(q-21027633202q^{5}-3^{29}q^{9}-6381221746069194q^{13}+\cdots\) | |
| 32.30.a.b | $6$ | $170.490$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(0\) | \(20319712980\) | \(0\) | $+$ | \(q+\beta _{1}q^{3}+(3386618830-\beta _{2})q^{5}+\cdots\) | |
| 32.30.a.c | $7$ | $170.490$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(-11756888\) | \(-1328883646\) | \(-26\!\cdots\!56\) | $+$ | \(q+(-1679555+\beta _{1})q^{3}+(-189840610+\cdots)q^{5}+\cdots\) | |
| 32.30.a.d | $7$ | $170.490$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(11756888\) | \(-1328883646\) | \(26\!\cdots\!56\) | $-$ | \(q+(1679555-\beta _{1})q^{3}+(-189840610+\cdots)q^{5}+\cdots\) | |
| 32.30.a.e | $8$ | $170.490$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(0\) | \(-5336276368\) | \(0\) | $-$ | \(q-\beta _{4}q^{3}+(-667034546+\beta _{1})q^{5}+\cdots\) | |
Decomposition of \(S_{30}^{\mathrm{old}}(\Gamma_0(32))\) into lower level spaces
\( S_{30}^{\mathrm{old}}(\Gamma_0(32)) \simeq \) \(S_{30}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{30}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 5}\)\(\oplus\)\(S_{30}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{30}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{30}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 2}\)