Properties

Label 32.16.b.a.17.5
Level $32$
Weight $16$
Character 32.17
Analytic conductor $45.662$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [32,16,Mod(17,32)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("32.17"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(32, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 16, names="a")
 
Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 32.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.6619216320\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 7 x^{13} + 8071283 x^{12} - 48427607 x^{11} + 24279249501785 x^{10} - 121395803589361 x^{9} + \cdots + 29\!\cdots\!76 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{182}\cdot 3^{6}\cdot 5^{4}\cdot 31^{2} \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 17.5
Root \(0.500000 + 595.041i\) of defining polynomial
Character \(\chi\) \(=\) 32.17
Dual form 32.16.b.a.17.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2380.16i q^{3} -9943.39i q^{5} -1.24365e6 q^{7} +8.68373e6 q^{9} +6.55864e7i q^{11} -1.91929e8i q^{13} -2.36669e7 q^{15} +1.98739e9 q^{17} +8.13478e8i q^{19} +2.96009e9i q^{21} -8.30671e8 q^{23} +3.04187e10 q^{25} -5.48214e10i q^{27} +5.26318e10i q^{29} -2.31580e11 q^{31} +1.56106e11 q^{33} +1.23661e10i q^{35} -5.88641e11i q^{37} -4.56822e11 q^{39} +2.88417e11 q^{41} -1.77551e12i q^{43} -8.63457e10i q^{45} +6.45781e12 q^{47} -3.20090e12 q^{49} -4.73032e12i q^{51} -1.55187e13i q^{53} +6.52151e11 q^{55} +1.93621e12 q^{57} -1.28387e13i q^{59} -3.34293e13i q^{61} -1.07995e13 q^{63} -1.90843e12 q^{65} -8.71055e13i q^{67} +1.97713e12i q^{69} -1.73139e13 q^{71} +1.25837e14 q^{73} -7.24015e13i q^{75} -8.15665e13i q^{77} +4.05635e12 q^{79} -5.88183e12 q^{81} +2.09495e14i q^{83} -1.97614e13i q^{85} +1.25272e14 q^{87} -3.43643e14 q^{89} +2.38693e14i q^{91} +5.51198e14i q^{93} +8.08872e12 q^{95} -7.44295e14 q^{97} +5.69535e14i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 1647088 q^{7} - 57395630 q^{9} - 712135312 q^{15} + 728554812 q^{17} + 35548816080 q^{23} - 75899954794 q^{25} + 105758138816 q^{31} - 150458001384 q^{33} + 2251546247120 q^{39} - 53229185940 q^{41}+ \cdots - 672574291859236 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/32\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(31\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2380.16i − 0.628344i −0.949366 0.314172i \(-0.898273\pi\)
0.949366 0.314172i \(-0.101727\pi\)
\(4\) 0 0
\(5\) − 9943.39i − 0.0569193i −0.999595 0.0284596i \(-0.990940\pi\)
0.999595 0.0284596i \(-0.00906021\pi\)
\(6\) 0 0
\(7\) −1.24365e6 −0.570772 −0.285386 0.958413i \(-0.592122\pi\)
−0.285386 + 0.958413i \(0.592122\pi\)
\(8\) 0 0
\(9\) 8.68373e6 0.605184
\(10\) 0 0
\(11\) 6.55864e7i 1.01477i 0.861719 + 0.507386i \(0.169388\pi\)
−0.861719 + 0.507386i \(0.830612\pi\)
\(12\) 0 0
\(13\) − 1.91929e8i − 0.848332i −0.905585 0.424166i \(-0.860567\pi\)
0.905585 0.424166i \(-0.139433\pi\)
\(14\) 0 0
\(15\) −2.36669e7 −0.0357649
\(16\) 0 0
\(17\) 1.98739e9 1.17467 0.587336 0.809343i \(-0.300177\pi\)
0.587336 + 0.809343i \(0.300177\pi\)
\(18\) 0 0
\(19\) 8.13478e8i 0.208782i 0.994536 + 0.104391i \(0.0332894\pi\)
−0.994536 + 0.104391i \(0.966711\pi\)
\(20\) 0 0
\(21\) 2.96009e9i 0.358641i
\(22\) 0 0
\(23\) −8.30671e8 −0.0508710 −0.0254355 0.999676i \(-0.508097\pi\)
−0.0254355 + 0.999676i \(0.508097\pi\)
\(24\) 0 0
\(25\) 3.04187e10 0.996760
\(26\) 0 0
\(27\) − 5.48214e10i − 1.00861i
\(28\) 0 0
\(29\) 5.26318e10i 0.566582i 0.959034 + 0.283291i \(0.0914262\pi\)
−0.959034 + 0.283291i \(0.908574\pi\)
\(30\) 0 0
\(31\) −2.31580e11 −1.51178 −0.755889 0.654700i \(-0.772795\pi\)
−0.755889 + 0.654700i \(0.772795\pi\)
\(32\) 0 0
\(33\) 1.56106e11 0.637626
\(34\) 0 0
\(35\) 1.23661e10i 0.0324879i
\(36\) 0 0
\(37\) − 5.88641e11i − 1.01938i −0.860357 0.509691i \(-0.829760\pi\)
0.860357 0.509691i \(-0.170240\pi\)
\(38\) 0 0
\(39\) −4.56822e11 −0.533044
\(40\) 0 0
\(41\) 2.88417e11 0.231282 0.115641 0.993291i \(-0.463108\pi\)
0.115641 + 0.993291i \(0.463108\pi\)
\(42\) 0 0
\(43\) − 1.77551e12i − 0.996115i −0.867144 0.498057i \(-0.834047\pi\)
0.867144 0.498057i \(-0.165953\pi\)
\(44\) 0 0
\(45\) − 8.63457e10i − 0.0344466i
\(46\) 0 0
\(47\) 6.45781e12 1.85931 0.929654 0.368434i \(-0.120106\pi\)
0.929654 + 0.368434i \(0.120106\pi\)
\(48\) 0 0
\(49\) −3.20090e12 −0.674219
\(50\) 0 0
\(51\) − 4.73032e12i − 0.738098i
\(52\) 0 0
\(53\) − 1.55187e13i − 1.81463i −0.420454 0.907314i \(-0.638129\pi\)
0.420454 0.907314i \(-0.361871\pi\)
\(54\) 0 0
\(55\) 6.52151e11 0.0577601
\(56\) 0 0
\(57\) 1.93621e12 0.131187
\(58\) 0 0
\(59\) − 1.28387e13i − 0.671633i −0.941927 0.335816i \(-0.890988\pi\)
0.941927 0.335816i \(-0.109012\pi\)
\(60\) 0 0
\(61\) − 3.34293e13i − 1.36193i −0.732317 0.680963i \(-0.761561\pi\)
0.732317 0.680963i \(-0.238439\pi\)
\(62\) 0 0
\(63\) −1.07995e13 −0.345422
\(64\) 0 0
\(65\) −1.90843e12 −0.0482864
\(66\) 0 0
\(67\) − 8.71055e13i − 1.75584i −0.478808 0.877920i \(-0.658931\pi\)
0.478808 0.877920i \(-0.341069\pi\)
\(68\) 0 0
\(69\) 1.97713e12i 0.0319645i
\(70\) 0 0
\(71\) −1.73139e13 −0.225922 −0.112961 0.993599i \(-0.536034\pi\)
−0.112961 + 0.993599i \(0.536034\pi\)
\(72\) 0 0
\(73\) 1.25837e14 1.33318 0.666589 0.745425i \(-0.267753\pi\)
0.666589 + 0.745425i \(0.267753\pi\)
\(74\) 0 0
\(75\) − 7.24015e13i − 0.626308i
\(76\) 0 0
\(77\) − 8.15665e13i − 0.579204i
\(78\) 0 0
\(79\) 4.05635e12 0.0237647 0.0118824 0.999929i \(-0.496218\pi\)
0.0118824 + 0.999929i \(0.496218\pi\)
\(80\) 0 0
\(81\) −5.88183e12 −0.0285677
\(82\) 0 0
\(83\) 2.09495e14i 0.847400i 0.905803 + 0.423700i \(0.139269\pi\)
−0.905803 + 0.423700i \(0.860731\pi\)
\(84\) 0 0
\(85\) − 1.97614e13i − 0.0668615i
\(86\) 0 0
\(87\) 1.25272e14 0.356008
\(88\) 0 0
\(89\) −3.43643e14 −0.823536 −0.411768 0.911289i \(-0.635089\pi\)
−0.411768 + 0.911289i \(0.635089\pi\)
\(90\) 0 0
\(91\) 2.38693e14i 0.484204i
\(92\) 0 0
\(93\) 5.51198e14i 0.949916i
\(94\) 0 0
\(95\) 8.08872e12 0.0118837
\(96\) 0 0
\(97\) −7.44295e14 −0.935313 −0.467657 0.883910i \(-0.654902\pi\)
−0.467657 + 0.883910i \(0.654902\pi\)
\(98\) 0 0
\(99\) 5.69535e14i 0.614124i
\(100\) 0 0
\(101\) 5.21858e14i 0.484331i 0.970235 + 0.242165i \(0.0778576\pi\)
−0.970235 + 0.242165i \(0.922142\pi\)
\(102\) 0 0
\(103\) 3.05095e14 0.244431 0.122215 0.992504i \(-0.461000\pi\)
0.122215 + 0.992504i \(0.461000\pi\)
\(104\) 0 0
\(105\) 2.94333e13 0.0204136
\(106\) 0 0
\(107\) 1.74238e15i 1.04898i 0.851418 + 0.524488i \(0.175743\pi\)
−0.851418 + 0.524488i \(0.824257\pi\)
\(108\) 0 0
\(109\) 2.64214e15i 1.38439i 0.721712 + 0.692194i \(0.243356\pi\)
−0.721712 + 0.692194i \(0.756644\pi\)
\(110\) 0 0
\(111\) −1.40106e15 −0.640523
\(112\) 0 0
\(113\) 3.80929e15 1.52320 0.761598 0.648050i \(-0.224415\pi\)
0.761598 + 0.648050i \(0.224415\pi\)
\(114\) 0 0
\(115\) 8.25969e12i 0.00289554i
\(116\) 0 0
\(117\) − 1.66666e15i − 0.513397i
\(118\) 0 0
\(119\) −2.47162e15 −0.670470
\(120\) 0 0
\(121\) −1.24325e14 −0.0297625
\(122\) 0 0
\(123\) − 6.86478e14i − 0.145324i
\(124\) 0 0
\(125\) − 6.05913e14i − 0.113654i
\(126\) 0 0
\(127\) 3.11928e15 0.519430 0.259715 0.965685i \(-0.416371\pi\)
0.259715 + 0.965685i \(0.416371\pi\)
\(128\) 0 0
\(129\) −4.22600e15 −0.625902
\(130\) 0 0
\(131\) − 5.48452e15i − 0.723775i −0.932222 0.361887i \(-0.882132\pi\)
0.932222 0.361887i \(-0.117868\pi\)
\(132\) 0 0
\(133\) − 1.01168e15i − 0.119167i
\(134\) 0 0
\(135\) −5.45111e14 −0.0574092
\(136\) 0 0
\(137\) −5.52159e15 −0.520786 −0.260393 0.965503i \(-0.583852\pi\)
−0.260393 + 0.965503i \(0.583852\pi\)
\(138\) 0 0
\(139\) − 1.40813e16i − 1.19133i −0.803233 0.595665i \(-0.796889\pi\)
0.803233 0.595665i \(-0.203111\pi\)
\(140\) 0 0
\(141\) − 1.53706e16i − 1.16828i
\(142\) 0 0
\(143\) 1.25879e16 0.860863
\(144\) 0 0
\(145\) 5.23338e14 0.0322494
\(146\) 0 0
\(147\) 7.61866e15i 0.423641i
\(148\) 0 0
\(149\) − 3.53835e16i − 1.77789i −0.458018 0.888943i \(-0.651440\pi\)
0.458018 0.888943i \(-0.348560\pi\)
\(150\) 0 0
\(151\) 1.54452e16 0.702208 0.351104 0.936336i \(-0.385806\pi\)
0.351104 + 0.936336i \(0.385806\pi\)
\(152\) 0 0
\(153\) 1.72580e16 0.710893
\(154\) 0 0
\(155\) 2.30269e15i 0.0860493i
\(156\) 0 0
\(157\) 3.86897e16i 1.31325i 0.754216 + 0.656627i \(0.228017\pi\)
−0.754216 + 0.656627i \(0.771983\pi\)
\(158\) 0 0
\(159\) −3.69371e16 −1.14021
\(160\) 0 0
\(161\) 1.03306e15 0.0290358
\(162\) 0 0
\(163\) − 4.32097e16i − 1.10707i −0.832827 0.553534i \(-0.813279\pi\)
0.832827 0.553534i \(-0.186721\pi\)
\(164\) 0 0
\(165\) − 1.55222e15i − 0.0362932i
\(166\) 0 0
\(167\) 3.46562e15 0.0740299 0.0370149 0.999315i \(-0.488215\pi\)
0.0370149 + 0.999315i \(0.488215\pi\)
\(168\) 0 0
\(169\) 1.43491e16 0.280333
\(170\) 0 0
\(171\) 7.06402e15i 0.126352i
\(172\) 0 0
\(173\) 7.03681e16i 1.15353i 0.816909 + 0.576766i \(0.195686\pi\)
−0.816909 + 0.576766i \(0.804314\pi\)
\(174\) 0 0
\(175\) −3.78302e16 −0.568923
\(176\) 0 0
\(177\) −3.05583e16 −0.422016
\(178\) 0 0
\(179\) 1.11332e17i 1.41326i 0.707584 + 0.706629i \(0.249785\pi\)
−0.707584 + 0.706629i \(0.750215\pi\)
\(180\) 0 0
\(181\) − 1.29611e16i − 0.151374i −0.997132 0.0756871i \(-0.975885\pi\)
0.997132 0.0756871i \(-0.0241150\pi\)
\(182\) 0 0
\(183\) −7.95672e16 −0.855758
\(184\) 0 0
\(185\) −5.85308e15 −0.0580225
\(186\) 0 0
\(187\) 1.30346e17i 1.19202i
\(188\) 0 0
\(189\) 6.81786e16i 0.575685i
\(190\) 0 0
\(191\) 1.61349e17 1.25897 0.629485 0.777013i \(-0.283266\pi\)
0.629485 + 0.777013i \(0.283266\pi\)
\(192\) 0 0
\(193\) 3.53401e16 0.255028 0.127514 0.991837i \(-0.459300\pi\)
0.127514 + 0.991837i \(0.459300\pi\)
\(194\) 0 0
\(195\) 4.54236e15i 0.0303405i
\(196\) 0 0
\(197\) 5.78781e16i 0.358111i 0.983839 + 0.179056i \(0.0573042\pi\)
−0.983839 + 0.179056i \(0.942696\pi\)
\(198\) 0 0
\(199\) 1.30039e17 0.745894 0.372947 0.927853i \(-0.378347\pi\)
0.372947 + 0.927853i \(0.378347\pi\)
\(200\) 0 0
\(201\) −2.07325e17 −1.10327
\(202\) 0 0
\(203\) − 6.54554e16i − 0.323389i
\(204\) 0 0
\(205\) − 2.86784e15i − 0.0131644i
\(206\) 0 0
\(207\) −7.21333e15 −0.0307863
\(208\) 0 0
\(209\) −5.33530e16 −0.211866
\(210\) 0 0
\(211\) 4.82411e16i 0.178361i 0.996016 + 0.0891803i \(0.0284247\pi\)
−0.996016 + 0.0891803i \(0.971575\pi\)
\(212\) 0 0
\(213\) 4.12100e16i 0.141957i
\(214\) 0 0
\(215\) −1.76546e16 −0.0566981
\(216\) 0 0
\(217\) 2.88004e17 0.862881
\(218\) 0 0
\(219\) − 2.99514e17i − 0.837694i
\(220\) 0 0
\(221\) − 3.81438e17i − 0.996512i
\(222\) 0 0
\(223\) −5.47989e17 −1.33809 −0.669045 0.743222i \(-0.733297\pi\)
−0.669045 + 0.743222i \(0.733297\pi\)
\(224\) 0 0
\(225\) 2.64148e17 0.603224
\(226\) 0 0
\(227\) − 3.57860e17i − 0.764750i −0.924007 0.382375i \(-0.875106\pi\)
0.924007 0.382375i \(-0.124894\pi\)
\(228\) 0 0
\(229\) − 5.19138e17i − 1.03876i −0.854542 0.519381i \(-0.826162\pi\)
0.854542 0.519381i \(-0.173838\pi\)
\(230\) 0 0
\(231\) −1.94141e17 −0.363939
\(232\) 0 0
\(233\) −2.40828e17 −0.423192 −0.211596 0.977357i \(-0.567866\pi\)
−0.211596 + 0.977357i \(0.567866\pi\)
\(234\) 0 0
\(235\) − 6.42125e16i − 0.105830i
\(236\) 0 0
\(237\) − 9.65478e15i − 0.0149324i
\(238\) 0 0
\(239\) 6.71814e17 0.975584 0.487792 0.872960i \(-0.337802\pi\)
0.487792 + 0.872960i \(0.337802\pi\)
\(240\) 0 0
\(241\) 5.56278e17 0.758864 0.379432 0.925220i \(-0.376119\pi\)
0.379432 + 0.925220i \(0.376119\pi\)
\(242\) 0 0
\(243\) − 7.72628e17i − 0.990657i
\(244\) 0 0
\(245\) 3.18278e16i 0.0383761i
\(246\) 0 0
\(247\) 1.56130e17 0.177117
\(248\) 0 0
\(249\) 4.98633e17 0.532458
\(250\) 0 0
\(251\) 1.15081e17i 0.115731i 0.998324 + 0.0578654i \(0.0184294\pi\)
−0.998324 + 0.0578654i \(0.981571\pi\)
\(252\) 0 0
\(253\) − 5.44807e16i − 0.0516225i
\(254\) 0 0
\(255\) −4.70354e16 −0.0420120
\(256\) 0 0
\(257\) −2.14601e18 −1.80773 −0.903864 0.427819i \(-0.859282\pi\)
−0.903864 + 0.427819i \(0.859282\pi\)
\(258\) 0 0
\(259\) 7.32063e17i 0.581835i
\(260\) 0 0
\(261\) 4.57040e17i 0.342887i
\(262\) 0 0
\(263\) 2.26162e18 1.60233 0.801164 0.598444i \(-0.204214\pi\)
0.801164 + 0.598444i \(0.204214\pi\)
\(264\) 0 0
\(265\) −1.54309e17 −0.103287
\(266\) 0 0
\(267\) 8.17927e17i 0.517464i
\(268\) 0 0
\(269\) − 9.71587e17i − 0.581218i −0.956842 0.290609i \(-0.906142\pi\)
0.956842 0.290609i \(-0.0938580\pi\)
\(270\) 0 0
\(271\) −1.94678e18 −1.10166 −0.550828 0.834619i \(-0.685688\pi\)
−0.550828 + 0.834619i \(0.685688\pi\)
\(272\) 0 0
\(273\) 5.68127e17 0.304246
\(274\) 0 0
\(275\) 1.99505e18i 1.01148i
\(276\) 0 0
\(277\) 3.11603e18i 1.49625i 0.663560 + 0.748123i \(0.269045\pi\)
−0.663560 + 0.748123i \(0.730955\pi\)
\(278\) 0 0
\(279\) −2.01098e18 −0.914905
\(280\) 0 0
\(281\) −1.24836e18 −0.538323 −0.269161 0.963095i \(-0.586747\pi\)
−0.269161 + 0.963095i \(0.586747\pi\)
\(282\) 0 0
\(283\) 1.29236e16i 0.00528429i 0.999997 + 0.00264215i \(0.000841022\pi\)
−0.999997 + 0.00264215i \(0.999159\pi\)
\(284\) 0 0
\(285\) − 1.92525e16i − 0.00746707i
\(286\) 0 0
\(287\) −3.58689e17 −0.132009
\(288\) 0 0
\(289\) 1.08731e18 0.379855
\(290\) 0 0
\(291\) 1.77154e18i 0.587698i
\(292\) 0 0
\(293\) 2.74547e18i 0.865186i 0.901589 + 0.432593i \(0.142401\pi\)
−0.901589 + 0.432593i \(0.857599\pi\)
\(294\) 0 0
\(295\) −1.27660e17 −0.0382288
\(296\) 0 0
\(297\) 3.59554e18 1.02351
\(298\) 0 0
\(299\) 1.59430e17i 0.0431555i
\(300\) 0 0
\(301\) 2.20811e18i 0.568555i
\(302\) 0 0
\(303\) 1.24211e18 0.304326
\(304\) 0 0
\(305\) −3.32401e17 −0.0775199
\(306\) 0 0
\(307\) − 4.87988e18i − 1.08361i −0.840506 0.541803i \(-0.817742\pi\)
0.840506 0.541803i \(-0.182258\pi\)
\(308\) 0 0
\(309\) − 7.26176e17i − 0.153587i
\(310\) 0 0
\(311\) 5.97100e17 0.120322 0.0601609 0.998189i \(-0.480839\pi\)
0.0601609 + 0.998189i \(0.480839\pi\)
\(312\) 0 0
\(313\) −1.48478e18 −0.285153 −0.142577 0.989784i \(-0.545539\pi\)
−0.142577 + 0.989784i \(0.545539\pi\)
\(314\) 0 0
\(315\) 1.07384e17i 0.0196612i
\(316\) 0 0
\(317\) − 4.83677e18i − 0.844521i −0.906474 0.422261i \(-0.861237\pi\)
0.906474 0.422261i \(-0.138763\pi\)
\(318\) 0 0
\(319\) −3.45193e18 −0.574952
\(320\) 0 0
\(321\) 4.14716e18 0.659118
\(322\) 0 0
\(323\) 1.61670e18i 0.245251i
\(324\) 0 0
\(325\) − 5.83823e18i − 0.845583i
\(326\) 0 0
\(327\) 6.28873e18 0.869871
\(328\) 0 0
\(329\) −8.03125e18 −1.06124
\(330\) 0 0
\(331\) 1.17425e18i 0.148270i 0.997248 + 0.0741348i \(0.0236195\pi\)
−0.997248 + 0.0741348i \(0.976380\pi\)
\(332\) 0 0
\(333\) − 5.11160e18i − 0.616915i
\(334\) 0 0
\(335\) −8.66124e17 −0.0999411
\(336\) 0 0
\(337\) −6.61936e18 −0.730452 −0.365226 0.930919i \(-0.619008\pi\)
−0.365226 + 0.930919i \(0.619008\pi\)
\(338\) 0 0
\(339\) − 9.06673e18i − 0.957090i
\(340\) 0 0
\(341\) − 1.51885e19i − 1.53411i
\(342\) 0 0
\(343\) 9.88510e18 0.955598
\(344\) 0 0
\(345\) 1.96594e16 0.00181939
\(346\) 0 0
\(347\) − 1.48938e19i − 1.31988i −0.751318 0.659941i \(-0.770581\pi\)
0.751318 0.659941i \(-0.229419\pi\)
\(348\) 0 0
\(349\) 1.42663e19i 1.21093i 0.795871 + 0.605466i \(0.207013\pi\)
−0.795871 + 0.605466i \(0.792987\pi\)
\(350\) 0 0
\(351\) −1.05218e19 −0.855634
\(352\) 0 0
\(353\) 4.56762e18 0.355942 0.177971 0.984036i \(-0.443047\pi\)
0.177971 + 0.984036i \(0.443047\pi\)
\(354\) 0 0
\(355\) 1.72159e17i 0.0128593i
\(356\) 0 0
\(357\) 5.88286e18i 0.421286i
\(358\) 0 0
\(359\) 1.36834e19 0.939692 0.469846 0.882749i \(-0.344310\pi\)
0.469846 + 0.882749i \(0.344310\pi\)
\(360\) 0 0
\(361\) 1.45194e19 0.956410
\(362\) 0 0
\(363\) 2.95914e17i 0.0187011i
\(364\) 0 0
\(365\) − 1.25125e18i − 0.0758836i
\(366\) 0 0
\(367\) −1.90250e19 −1.10747 −0.553733 0.832694i \(-0.686797\pi\)
−0.553733 + 0.832694i \(0.686797\pi\)
\(368\) 0 0
\(369\) 2.50453e18 0.139968
\(370\) 0 0
\(371\) 1.92999e19i 1.03574i
\(372\) 0 0
\(373\) 2.25771e18i 0.116373i 0.998306 + 0.0581865i \(0.0185318\pi\)
−0.998306 + 0.0581865i \(0.981468\pi\)
\(374\) 0 0
\(375\) −1.44217e18 −0.0714138
\(376\) 0 0
\(377\) 1.01016e19 0.480650
\(378\) 0 0
\(379\) 2.46190e19i 1.12584i 0.826511 + 0.562920i \(0.190322\pi\)
−0.826511 + 0.562920i \(0.809678\pi\)
\(380\) 0 0
\(381\) − 7.42440e18i − 0.326380i
\(382\) 0 0
\(383\) −1.64962e19 −0.697257 −0.348629 0.937261i \(-0.613353\pi\)
−0.348629 + 0.937261i \(0.613353\pi\)
\(384\) 0 0
\(385\) −8.11047e17 −0.0329678
\(386\) 0 0
\(387\) − 1.54180e19i − 0.602833i
\(388\) 0 0
\(389\) 2.02343e19i 0.761143i 0.924751 + 0.380572i \(0.124273\pi\)
−0.924751 + 0.380572i \(0.875727\pi\)
\(390\) 0 0
\(391\) −1.65087e18 −0.0597568
\(392\) 0 0
\(393\) −1.30540e19 −0.454779
\(394\) 0 0
\(395\) − 4.03339e16i − 0.00135267i
\(396\) 0 0
\(397\) 4.94869e19i 1.59795i 0.601367 + 0.798973i \(0.294623\pi\)
−0.601367 + 0.798973i \(0.705377\pi\)
\(398\) 0 0
\(399\) −2.40796e18 −0.0748779
\(400\) 0 0
\(401\) −2.17764e19 −0.652234 −0.326117 0.945329i \(-0.605740\pi\)
−0.326117 + 0.945329i \(0.605740\pi\)
\(402\) 0 0
\(403\) 4.44469e19i 1.28249i
\(404\) 0 0
\(405\) 5.84853e16i 0.00162605i
\(406\) 0 0
\(407\) 3.86068e19 1.03444
\(408\) 0 0
\(409\) −3.84378e19 −0.992735 −0.496368 0.868112i \(-0.665333\pi\)
−0.496368 + 0.868112i \(0.665333\pi\)
\(410\) 0 0
\(411\) 1.31423e19i 0.327233i
\(412\) 0 0
\(413\) 1.59669e19i 0.383349i
\(414\) 0 0
\(415\) 2.08309e18 0.0482334
\(416\) 0 0
\(417\) −3.35158e19 −0.748565
\(418\) 0 0
\(419\) − 4.27455e19i − 0.921053i −0.887646 0.460527i \(-0.847661\pi\)
0.887646 0.460527i \(-0.152339\pi\)
\(420\) 0 0
\(421\) − 5.62283e19i − 1.16907i −0.811370 0.584533i \(-0.801278\pi\)
0.811370 0.584533i \(-0.198722\pi\)
\(422\) 0 0
\(423\) 5.60779e19 1.12522
\(424\) 0 0
\(425\) 6.04539e19 1.17087
\(426\) 0 0
\(427\) 4.15743e19i 0.777350i
\(428\) 0 0
\(429\) − 2.99613e19i − 0.540918i
\(430\) 0 0
\(431\) −9.82364e19 −1.71275 −0.856373 0.516358i \(-0.827288\pi\)
−0.856373 + 0.516358i \(0.827288\pi\)
\(432\) 0 0
\(433\) 6.33031e19 1.06602 0.533010 0.846109i \(-0.321061\pi\)
0.533010 + 0.846109i \(0.321061\pi\)
\(434\) 0 0
\(435\) − 1.24563e18i − 0.0202637i
\(436\) 0 0
\(437\) − 6.75733e17i − 0.0106210i
\(438\) 0 0
\(439\) 9.36988e19 1.42315 0.711574 0.702611i \(-0.247982\pi\)
0.711574 + 0.702611i \(0.247982\pi\)
\(440\) 0 0
\(441\) −2.77957e19 −0.408027
\(442\) 0 0
\(443\) − 9.95376e19i − 1.41241i −0.708010 0.706203i \(-0.750407\pi\)
0.708010 0.706203i \(-0.249593\pi\)
\(444\) 0 0
\(445\) 3.41698e18i 0.0468751i
\(446\) 0 0
\(447\) −8.42185e19 −1.11712
\(448\) 0 0
\(449\) 6.08712e19 0.780844 0.390422 0.920636i \(-0.372329\pi\)
0.390422 + 0.920636i \(0.372329\pi\)
\(450\) 0 0
\(451\) 1.89162e19i 0.234698i
\(452\) 0 0
\(453\) − 3.67620e19i − 0.441228i
\(454\) 0 0
\(455\) 2.37341e18 0.0275605
\(456\) 0 0
\(457\) −5.20069e19 −0.584372 −0.292186 0.956362i \(-0.594383\pi\)
−0.292186 + 0.956362i \(0.594383\pi\)
\(458\) 0 0
\(459\) − 1.08952e20i − 1.18478i
\(460\) 0 0
\(461\) − 9.63171e19i − 1.01379i −0.862009 0.506893i \(-0.830794\pi\)
0.862009 0.506893i \(-0.169206\pi\)
\(462\) 0 0
\(463\) −7.66416e19 −0.780921 −0.390460 0.920620i \(-0.627684\pi\)
−0.390460 + 0.920620i \(0.627684\pi\)
\(464\) 0 0
\(465\) 5.48077e18 0.0540685
\(466\) 0 0
\(467\) − 1.17176e20i − 1.11934i −0.828714 0.559672i \(-0.810927\pi\)
0.828714 0.559672i \(-0.189073\pi\)
\(468\) 0 0
\(469\) 1.08329e20i 1.00218i
\(470\) 0 0
\(471\) 9.20879e19 0.825174
\(472\) 0 0
\(473\) 1.16449e20 1.01083
\(474\) 0 0
\(475\) 2.47449e19i 0.208106i
\(476\) 0 0
\(477\) − 1.34761e20i − 1.09818i
\(478\) 0 0
\(479\) −1.22565e20 −0.967944 −0.483972 0.875084i \(-0.660806\pi\)
−0.483972 + 0.875084i \(0.660806\pi\)
\(480\) 0 0
\(481\) −1.12977e20 −0.864775
\(482\) 0 0
\(483\) − 2.45886e18i − 0.0182444i
\(484\) 0 0
\(485\) 7.40081e18i 0.0532373i
\(486\) 0 0
\(487\) 1.18086e20 0.823628 0.411814 0.911268i \(-0.364895\pi\)
0.411814 + 0.911268i \(0.364895\pi\)
\(488\) 0 0
\(489\) −1.02846e20 −0.695619
\(490\) 0 0
\(491\) 1.58783e20i 1.04158i 0.853685 + 0.520789i \(0.174362\pi\)
−0.853685 + 0.520789i \(0.825638\pi\)
\(492\) 0 0
\(493\) 1.04600e20i 0.665548i
\(494\) 0 0
\(495\) 5.66310e18 0.0349555
\(496\) 0 0
\(497\) 2.15325e19 0.128950
\(498\) 0 0
\(499\) 2.07261e20i 1.20438i 0.798353 + 0.602190i \(0.205705\pi\)
−0.798353 + 0.602190i \(0.794295\pi\)
\(500\) 0 0
\(501\) − 8.24873e18i − 0.0465162i
\(502\) 0 0
\(503\) 2.98541e20 1.63397 0.816984 0.576661i \(-0.195644\pi\)
0.816984 + 0.576661i \(0.195644\pi\)
\(504\) 0 0
\(505\) 5.18903e18 0.0275677
\(506\) 0 0
\(507\) − 3.41532e19i − 0.176146i
\(508\) 0 0
\(509\) − 1.35908e20i − 0.680552i −0.940326 0.340276i \(-0.889479\pi\)
0.940326 0.340276i \(-0.110521\pi\)
\(510\) 0 0
\(511\) −1.56498e20 −0.760941
\(512\) 0 0
\(513\) 4.45960e19 0.210579
\(514\) 0 0
\(515\) − 3.03368e18i − 0.0139128i
\(516\) 0 0
\(517\) 4.23544e20i 1.88677i
\(518\) 0 0
\(519\) 1.67487e20 0.724815
\(520\) 0 0
\(521\) −4.87015e19 −0.204767 −0.102383 0.994745i \(-0.532647\pi\)
−0.102383 + 0.994745i \(0.532647\pi\)
\(522\) 0 0
\(523\) 3.31732e20i 1.35527i 0.735400 + 0.677633i \(0.236994\pi\)
−0.735400 + 0.677633i \(0.763006\pi\)
\(524\) 0 0
\(525\) 9.00420e19i 0.357479i
\(526\) 0 0
\(527\) −4.60240e20 −1.77584
\(528\) 0 0
\(529\) −2.65945e20 −0.997412
\(530\) 0 0
\(531\) − 1.11488e20i − 0.406462i
\(532\) 0 0
\(533\) − 5.53555e19i − 0.196204i
\(534\) 0 0
\(535\) 1.73252e19 0.0597070
\(536\) 0 0
\(537\) 2.64988e20 0.888012
\(538\) 0 0
\(539\) − 2.09935e20i − 0.684179i
\(540\) 0 0
\(541\) 5.67118e20i 1.79760i 0.438356 + 0.898801i \(0.355561\pi\)
−0.438356 + 0.898801i \(0.644439\pi\)
\(542\) 0 0
\(543\) −3.08495e19 −0.0951150
\(544\) 0 0
\(545\) 2.62719e19 0.0787983
\(546\) 0 0
\(547\) 2.33879e20i 0.682475i 0.939977 + 0.341238i \(0.110846\pi\)
−0.939977 + 0.341238i \(0.889154\pi\)
\(548\) 0 0
\(549\) − 2.90291e20i − 0.824217i
\(550\) 0 0
\(551\) −4.28147e19 −0.118292
\(552\) 0 0
\(553\) −5.04468e18 −0.0135642
\(554\) 0 0
\(555\) 1.39313e19i 0.0364581i
\(556\) 0 0
\(557\) − 2.53453e20i − 0.645630i −0.946462 0.322815i \(-0.895371\pi\)
0.946462 0.322815i \(-0.104629\pi\)
\(558\) 0 0
\(559\) −3.40772e20 −0.845036
\(560\) 0 0
\(561\) 3.10244e20 0.749001
\(562\) 0 0
\(563\) − 1.13398e20i − 0.266558i −0.991079 0.133279i \(-0.957449\pi\)
0.991079 0.133279i \(-0.0425507\pi\)
\(564\) 0 0
\(565\) − 3.78772e19i − 0.0866992i
\(566\) 0 0
\(567\) 7.31493e18 0.0163056
\(568\) 0 0
\(569\) −8.17119e19 −0.177396 −0.0886979 0.996059i \(-0.528271\pi\)
−0.0886979 + 0.996059i \(0.528271\pi\)
\(570\) 0 0
\(571\) − 2.75197e20i − 0.581933i −0.956733 0.290967i \(-0.906023\pi\)
0.956733 0.290967i \(-0.0939768\pi\)
\(572\) 0 0
\(573\) − 3.84036e20i − 0.791066i
\(574\) 0 0
\(575\) −2.52680e19 −0.0507062
\(576\) 0 0
\(577\) 3.55434e20 0.694929 0.347465 0.937693i \(-0.387043\pi\)
0.347465 + 0.937693i \(0.387043\pi\)
\(578\) 0 0
\(579\) − 8.41153e19i − 0.160245i
\(580\) 0 0
\(581\) − 2.60539e20i − 0.483672i
\(582\) 0 0
\(583\) 1.01782e21 1.84143
\(584\) 0 0
\(585\) −1.65723e19 −0.0292222
\(586\) 0 0
\(587\) − 1.74771e20i − 0.300388i −0.988657 0.150194i \(-0.952010\pi\)
0.988657 0.150194i \(-0.0479899\pi\)
\(588\) 0 0
\(589\) − 1.88385e20i − 0.315632i
\(590\) 0 0
\(591\) 1.37759e20 0.225017
\(592\) 0 0
\(593\) −5.71741e20 −0.910519 −0.455260 0.890359i \(-0.650454\pi\)
−0.455260 + 0.890359i \(0.650454\pi\)
\(594\) 0 0
\(595\) 2.45763e19i 0.0381627i
\(596\) 0 0
\(597\) − 3.09515e20i − 0.468678i
\(598\) 0 0
\(599\) 1.14459e21 1.69024 0.845119 0.534578i \(-0.179529\pi\)
0.845119 + 0.534578i \(0.179529\pi\)
\(600\) 0 0
\(601\) −7.89436e20 −1.13699 −0.568497 0.822685i \(-0.692475\pi\)
−0.568497 + 0.822685i \(0.692475\pi\)
\(602\) 0 0
\(603\) − 7.56401e20i − 1.06261i
\(604\) 0 0
\(605\) 1.23621e18i 0.00169406i
\(606\) 0 0
\(607\) −1.43171e21 −1.91399 −0.956994 0.290108i \(-0.906309\pi\)
−0.956994 + 0.290108i \(0.906309\pi\)
\(608\) 0 0
\(609\) −1.55795e20 −0.203200
\(610\) 0 0
\(611\) − 1.23944e21i − 1.57731i
\(612\) 0 0
\(613\) 2.16151e20i 0.268413i 0.990953 + 0.134207i \(0.0428486\pi\)
−0.990953 + 0.134207i \(0.957151\pi\)
\(614\) 0 0
\(615\) −6.82592e18 −0.00827176
\(616\) 0 0
\(617\) 4.00200e20 0.473302 0.236651 0.971595i \(-0.423950\pi\)
0.236651 + 0.971595i \(0.423950\pi\)
\(618\) 0 0
\(619\) 1.50880e21i 1.74162i 0.491623 + 0.870808i \(0.336404\pi\)
−0.491623 + 0.870808i \(0.663596\pi\)
\(620\) 0 0
\(621\) 4.55386e19i 0.0513089i
\(622\) 0 0
\(623\) 4.27372e20 0.470052
\(624\) 0 0
\(625\) 9.22280e20 0.990291
\(626\) 0 0
\(627\) 1.26989e20i 0.133125i
\(628\) 0 0
\(629\) − 1.16986e21i − 1.19744i
\(630\) 0 0
\(631\) −1.14570e21 −1.14512 −0.572558 0.819864i \(-0.694049\pi\)
−0.572558 + 0.819864i \(0.694049\pi\)
\(632\) 0 0
\(633\) 1.14822e20 0.112072
\(634\) 0 0
\(635\) − 3.10162e19i − 0.0295656i
\(636\) 0 0
\(637\) 6.14345e20i 0.571962i
\(638\) 0 0
\(639\) −1.50350e20 −0.136724
\(640\) 0 0
\(641\) −9.28279e20 −0.824600 −0.412300 0.911048i \(-0.635274\pi\)
−0.412300 + 0.911048i \(0.635274\pi\)
\(642\) 0 0
\(643\) 1.38224e21i 1.19950i 0.800188 + 0.599749i \(0.204733\pi\)
−0.800188 + 0.599749i \(0.795267\pi\)
\(644\) 0 0
\(645\) 4.20208e19i 0.0356259i
\(646\) 0 0
\(647\) −4.33047e20 −0.358718 −0.179359 0.983784i \(-0.557402\pi\)
−0.179359 + 0.983784i \(0.557402\pi\)
\(648\) 0 0
\(649\) 8.42046e20 0.681554
\(650\) 0 0
\(651\) − 6.85497e20i − 0.542186i
\(652\) 0 0
\(653\) 1.49679e21i 1.15694i 0.815702 + 0.578472i \(0.196351\pi\)
−0.815702 + 0.578472i \(0.803649\pi\)
\(654\) 0 0
\(655\) −5.45347e19 −0.0411967
\(656\) 0 0
\(657\) 1.09274e21 0.806819
\(658\) 0 0
\(659\) 1.32459e21i 0.955961i 0.878370 + 0.477981i \(0.158631\pi\)
−0.878370 + 0.477981i \(0.841369\pi\)
\(660\) 0 0
\(661\) 2.40747e21i 1.69844i 0.528042 + 0.849218i \(0.322926\pi\)
−0.528042 + 0.849218i \(0.677074\pi\)
\(662\) 0 0
\(663\) −9.07886e20 −0.626152
\(664\) 0 0
\(665\) −1.00595e19 −0.00678290
\(666\) 0 0
\(667\) − 4.37197e19i − 0.0288226i
\(668\) 0 0
\(669\) 1.30430e21i 0.840780i
\(670\) 0 0
\(671\) 2.19251e21 1.38205
\(672\) 0 0
\(673\) 2.34745e19 0.0144705 0.00723524 0.999974i \(-0.497697\pi\)
0.00723524 + 0.999974i \(0.497697\pi\)
\(674\) 0 0
\(675\) − 1.66760e21i − 1.00534i
\(676\) 0 0
\(677\) − 1.10436e21i − 0.651171i −0.945513 0.325586i \(-0.894439\pi\)
0.945513 0.325586i \(-0.105561\pi\)
\(678\) 0 0
\(679\) 9.25642e20 0.533850
\(680\) 0 0
\(681\) −8.51766e20 −0.480526
\(682\) 0 0
\(683\) 1.38917e21i 0.766658i 0.923612 + 0.383329i \(0.125222\pi\)
−0.923612 + 0.383329i \(0.874778\pi\)
\(684\) 0 0
\(685\) 5.49033e19i 0.0296428i
\(686\) 0 0
\(687\) −1.23563e21 −0.652700
\(688\) 0 0
\(689\) −2.97850e21 −1.53941
\(690\) 0 0
\(691\) 2.53593e21i 1.28248i 0.767338 + 0.641242i \(0.221581\pi\)
−0.767338 + 0.641242i \(0.778419\pi\)
\(692\) 0 0
\(693\) − 7.08301e20i − 0.350525i
\(694\) 0 0
\(695\) −1.40016e20 −0.0678096
\(696\) 0 0
\(697\) 5.73197e20 0.271680
\(698\) 0 0
\(699\) 5.73209e20i 0.265910i
\(700\) 0 0
\(701\) − 2.17192e21i − 0.986185i −0.869977 0.493093i \(-0.835866\pi\)
0.869977 0.493093i \(-0.164134\pi\)
\(702\) 0 0
\(703\) 4.78846e20 0.212829
\(704\) 0 0
\(705\) −1.52836e20 −0.0664979
\(706\) 0 0
\(707\) − 6.49008e20i − 0.276442i
\(708\) 0 0
\(709\) 5.09501e20i 0.212470i 0.994341 + 0.106235i \(0.0338797\pi\)
−0.994341 + 0.106235i \(0.966120\pi\)
\(710\) 0 0
\(711\) 3.52243e19 0.0143820
\(712\) 0 0
\(713\) 1.92367e20 0.0769057
\(714\) 0 0
\(715\) − 1.25167e20i − 0.0489997i
\(716\) 0 0
\(717\) − 1.59903e21i − 0.613002i
\(718\) 0 0
\(719\) 1.66156e21 0.623804 0.311902 0.950114i \(-0.399034\pi\)
0.311902 + 0.950114i \(0.399034\pi\)
\(720\) 0 0
\(721\) −3.79431e20 −0.139514
\(722\) 0 0
\(723\) − 1.32403e21i − 0.476828i
\(724\) 0 0
\(725\) 1.60099e21i 0.564746i
\(726\) 0 0
\(727\) −1.87981e21 −0.649539 −0.324769 0.945793i \(-0.605287\pi\)
−0.324769 + 0.945793i \(0.605287\pi\)
\(728\) 0 0
\(729\) −1.92338e21 −0.651041
\(730\) 0 0
\(731\) − 3.52863e21i − 1.17011i
\(732\) 0 0
\(733\) − 2.94480e21i − 0.956701i −0.878169 0.478351i \(-0.841235\pi\)
0.878169 0.478351i \(-0.158765\pi\)
\(734\) 0 0
\(735\) 7.57552e19 0.0241134
\(736\) 0 0
\(737\) 5.71294e21 1.78178
\(738\) 0 0
\(739\) − 5.74402e21i − 1.75543i −0.479187 0.877713i \(-0.659068\pi\)
0.479187 0.877713i \(-0.340932\pi\)
\(740\) 0 0
\(741\) − 3.71615e20i − 0.111290i
\(742\) 0 0
\(743\) −2.12554e21 −0.623810 −0.311905 0.950113i \(-0.600967\pi\)
−0.311905 + 0.950113i \(0.600967\pi\)
\(744\) 0 0
\(745\) −3.51832e20 −0.101196
\(746\) 0 0
\(747\) 1.81920e21i 0.512833i
\(748\) 0 0
\(749\) − 2.16692e21i − 0.598726i
\(750\) 0 0
\(751\) 5.41638e21 1.46693 0.733465 0.679727i \(-0.237902\pi\)
0.733465 + 0.679727i \(0.237902\pi\)
\(752\) 0 0
\(753\) 2.73910e20 0.0727187
\(754\) 0 0
\(755\) − 1.53577e20i − 0.0399692i
\(756\) 0 0
\(757\) 1.53010e21i 0.390392i 0.980764 + 0.195196i \(0.0625342\pi\)
−0.980764 + 0.195196i \(0.937466\pi\)
\(758\) 0 0
\(759\) −1.29673e20 −0.0324367
\(760\) 0 0
\(761\) 4.57526e21 1.12210 0.561049 0.827782i \(-0.310398\pi\)
0.561049 + 0.827782i \(0.310398\pi\)
\(762\) 0 0
\(763\) − 3.28590e21i − 0.790170i
\(764\) 0 0
\(765\) − 1.71603e20i − 0.0404635i
\(766\) 0 0
\(767\) −2.46412e21 −0.569767
\(768\) 0 0
\(769\) −1.36697e21 −0.309965 −0.154983 0.987917i \(-0.549532\pi\)
−0.154983 + 0.987917i \(0.549532\pi\)
\(770\) 0 0
\(771\) 5.10785e21i 1.13587i
\(772\) 0 0
\(773\) 7.87361e20i 0.171723i 0.996307 + 0.0858614i \(0.0273642\pi\)
−0.996307 + 0.0858614i \(0.972636\pi\)
\(774\) 0 0
\(775\) −7.04436e21 −1.50688
\(776\) 0 0
\(777\) 1.74243e21 0.365592
\(778\) 0 0
\(779\) 2.34620e20i 0.0482875i
\(780\) 0 0
\(781\) − 1.13556e21i − 0.229259i
\(782\) 0 0
\(783\) 2.88535e21 0.571459
\(784\) 0 0
\(785\) 3.84707e20 0.0747494
\(786\) 0 0
\(787\) − 3.99883e21i − 0.762294i −0.924514 0.381147i \(-0.875529\pi\)
0.924514 0.381147i \(-0.124471\pi\)
\(788\) 0 0
\(789\) − 5.38302e21i − 1.00681i
\(790\) 0 0
\(791\) −4.73742e21 −0.869397
\(792\) 0 0
\(793\) −6.41606e21 −1.15537
\(794\) 0 0
\(795\) 3.67280e20i 0.0648999i
\(796\) 0 0
\(797\) 5.29831e21i 0.918756i 0.888241 + 0.459378i \(0.151928\pi\)
−0.888241 + 0.459378i \(0.848072\pi\)
\(798\) 0 0
\(799\) 1.28342e22 2.18408
\(800\) 0 0
\(801\) −2.98411e21 −0.498391
\(802\) 0 0
\(803\) 8.25322e21i 1.35287i
\(804\) 0 0
\(805\) − 1.02722e19i − 0.00165269i
\(806\) 0 0
\(807\) −2.31253e21 −0.365205
\(808\) 0 0
\(809\) −8.17463e21 −1.26723 −0.633613 0.773650i \(-0.718429\pi\)
−0.633613 + 0.773650i \(0.718429\pi\)
\(810\) 0 0
\(811\) 6.50807e21i 0.990367i 0.868788 + 0.495183i \(0.164899\pi\)
−0.868788 + 0.495183i \(0.835101\pi\)
\(812\) 0 0
\(813\) 4.63364e21i 0.692219i
\(814\) 0 0
\(815\) −4.29650e20 −0.0630134
\(816\) 0 0
\(817\) 1.44434e21 0.207971
\(818\) 0 0
\(819\) 2.07274e21i 0.293033i
\(820\) 0 0
\(821\) 5.84596e21i 0.811488i 0.913987 + 0.405744i \(0.132988\pi\)
−0.913987 + 0.405744i \(0.867012\pi\)
\(822\) 0 0
\(823\) −1.50787e21 −0.205525 −0.102762 0.994706i \(-0.532768\pi\)
−0.102762 + 0.994706i \(0.532768\pi\)
\(824\) 0 0
\(825\) 4.74855e21 0.635560
\(826\) 0 0
\(827\) − 8.62150e20i − 0.113316i −0.998394 0.0566580i \(-0.981956\pi\)
0.998394 0.0566580i \(-0.0180445\pi\)
\(828\) 0 0
\(829\) 4.85501e20i 0.0626658i 0.999509 + 0.0313329i \(0.00997521\pi\)
−0.999509 + 0.0313329i \(0.990025\pi\)
\(830\) 0 0
\(831\) 7.41665e21 0.940157
\(832\) 0 0
\(833\) −6.36144e21 −0.791987
\(834\) 0 0
\(835\) − 3.44600e19i − 0.00421373i
\(836\) 0 0
\(837\) 1.26955e22i 1.52479i
\(838\) 0 0
\(839\) −4.54768e21 −0.536507 −0.268254 0.963348i \(-0.586446\pi\)
−0.268254 + 0.963348i \(0.586446\pi\)
\(840\) 0 0
\(841\) 5.85909e21 0.678985
\(842\) 0 0
\(843\) 2.97130e21i 0.338252i
\(844\) 0 0
\(845\) − 1.42679e20i − 0.0159564i
\(846\) 0 0
\(847\) 1.54617e20 0.0169876
\(848\) 0 0
\(849\) 3.07604e19 0.00332035
\(850\) 0 0
\(851\) 4.88967e20i 0.0518571i
\(852\) 0 0
\(853\) − 1.10589e22i − 1.15238i −0.817317 0.576188i \(-0.804540\pi\)
0.817317 0.576188i \(-0.195460\pi\)
\(854\) 0 0
\(855\) 7.02403e19 0.00719185
\(856\) 0 0
\(857\) 1.25141e22 1.25905 0.629526 0.776979i \(-0.283249\pi\)
0.629526 + 0.776979i \(0.283249\pi\)
\(858\) 0 0
\(859\) 8.74633e20i 0.0864723i 0.999065 + 0.0432362i \(0.0137668\pi\)
−0.999065 + 0.0432362i \(0.986233\pi\)
\(860\) 0 0
\(861\) 8.53738e20i 0.0829471i
\(862\) 0 0
\(863\) 7.93718e20 0.0757854 0.0378927 0.999282i \(-0.487935\pi\)
0.0378927 + 0.999282i \(0.487935\pi\)
\(864\) 0 0
\(865\) 6.99697e20 0.0656582
\(866\) 0 0
\(867\) − 2.58797e21i − 0.238680i
\(868\) 0 0
\(869\) 2.66042e20i 0.0241158i
\(870\) 0 0
\(871\) −1.67181e22 −1.48953
\(872\) 0 0
\(873\) −6.46326e21 −0.566037
\(874\) 0 0
\(875\) 7.53543e20i 0.0648706i
\(876\) 0 0
\(877\) − 4.20486e21i − 0.355840i −0.984045 0.177920i \(-0.943063\pi\)
0.984045 0.177920i \(-0.0569368\pi\)
\(878\) 0 0
\(879\) 6.53466e21 0.543634
\(880\) 0 0
\(881\) 1.10473e22 0.903519 0.451760 0.892140i \(-0.350797\pi\)
0.451760 + 0.892140i \(0.350797\pi\)
\(882\) 0 0
\(883\) − 4.28634e21i − 0.344653i −0.985040 0.172326i \(-0.944872\pi\)
0.985040 0.172326i \(-0.0551284\pi\)
\(884\) 0 0
\(885\) 3.03853e20i 0.0240208i
\(886\) 0 0
\(887\) −1.74633e22 −1.35737 −0.678686 0.734428i \(-0.737450\pi\)
−0.678686 + 0.734428i \(0.737450\pi\)
\(888\) 0 0
\(889\) −3.87929e21 −0.296476
\(890\) 0 0
\(891\) − 3.85768e20i − 0.0289897i
\(892\) 0 0
\(893\) 5.25328e21i 0.388191i
\(894\) 0 0
\(895\) 1.10702e21 0.0804416
\(896\) 0 0
\(897\) 3.79469e20 0.0271165
\(898\) 0 0
\(899\) − 1.21885e22i − 0.856546i
\(900\) 0 0
\(901\) − 3.08418e22i − 2.13159i
\(902\) 0 0
\(903\) 5.25566e21 0.357248
\(904\) 0 0
\(905\) −1.28877e20 −0.00861611
\(906\) 0 0
\(907\) − 2.71139e22i − 1.78294i −0.453077 0.891471i \(-0.649674\pi\)
0.453077 0.891471i \(-0.350326\pi\)
\(908\) 0 0
\(909\) 4.53167e21i 0.293109i
\(910\) 0 0
\(911\) 1.30962e22 0.833217 0.416609 0.909086i \(-0.363219\pi\)
0.416609 + 0.909086i \(0.363219\pi\)
\(912\) 0 0
\(913\) −1.37400e22 −0.859918
\(914\) 0 0
\(915\) 7.91168e20i 0.0487091i
\(916\) 0 0
\(917\) 6.82081e21i 0.413110i
\(918\) 0 0
\(919\) 2.44676e22 1.45789 0.728946 0.684571i \(-0.240010\pi\)
0.728946 + 0.684571i \(0.240010\pi\)
\(920\) 0 0
\(921\) −1.16149e22 −0.680877
\(922\) 0 0
\(923\) 3.32305e21i 0.191657i
\(924\) 0 0
\(925\) − 1.79057e22i − 1.01608i
\(926\) 0 0
\(927\) 2.64937e21 0.147926
\(928\) 0 0
\(929\) 1.99321e21 0.109506 0.0547528 0.998500i \(-0.482563\pi\)
0.0547528 + 0.998500i \(0.482563\pi\)
\(930\) 0 0
\(931\) − 2.60386e21i − 0.140765i
\(932\) 0 0
\(933\) − 1.42119e21i − 0.0756034i
\(934\) 0 0
\(935\) 1.29608e21 0.0678492
\(936\) 0 0
\(937\) 1.03535e22 0.533386 0.266693 0.963782i \(-0.414069\pi\)
0.266693 + 0.963782i \(0.414069\pi\)
\(938\) 0 0
\(939\) 3.53401e21i 0.179174i
\(940\) 0 0
\(941\) 8.05907e21i 0.402127i 0.979578 + 0.201063i \(0.0644397\pi\)
−0.979578 + 0.201063i \(0.935560\pi\)
\(942\) 0 0
\(943\) −2.39579e20 −0.0117655
\(944\) 0 0
\(945\) 6.77927e20 0.0327676
\(946\) 0 0
\(947\) 1.49168e22i 0.709663i 0.934930 + 0.354832i \(0.115462\pi\)
−0.934930 + 0.354832i \(0.884538\pi\)
\(948\) 0 0
\(949\) − 2.41519e22i − 1.13098i
\(950\) 0 0
\(951\) −1.15123e22 −0.530650
\(952\) 0 0
\(953\) −1.13867e22 −0.516654 −0.258327 0.966058i \(-0.583171\pi\)
−0.258327 + 0.966058i \(0.583171\pi\)
\(954\) 0 0
\(955\) − 1.60435e21i − 0.0716596i
\(956\) 0 0
\(957\) 8.21615e21i 0.361267i
\(958\) 0 0
\(959\) 6.86692e21 0.297250
\(960\) 0 0
\(961\) 3.01640e22 1.28547
\(962\) 0 0
\(963\) 1.51304e22i 0.634824i
\(964\) 0 0
\(965\) − 3.51401e20i − 0.0145160i
\(966\) 0 0
\(967\) 1.30131e21 0.0529274 0.0264637 0.999650i \(-0.491575\pi\)
0.0264637 + 0.999650i \(0.491575\pi\)
\(968\) 0 0
\(969\) 3.84801e21 0.154102
\(970\) 0 0
\(971\) 1.76428e22i 0.695703i 0.937550 + 0.347851i \(0.113089\pi\)
−0.937550 + 0.347851i \(0.886911\pi\)
\(972\) 0 0
\(973\) 1.75122e22i 0.679978i
\(974\) 0 0
\(975\) −1.38959e22 −0.531317
\(976\) 0 0
\(977\) −2.07355e22 −0.780740 −0.390370 0.920658i \(-0.627653\pi\)
−0.390370 + 0.920658i \(0.627653\pi\)
\(978\) 0 0
\(979\) − 2.25383e22i − 0.835702i
\(980\) 0 0
\(981\) 2.29437e22i 0.837810i
\(982\) 0 0
\(983\) −1.68619e22 −0.606393 −0.303196 0.952928i \(-0.598054\pi\)
−0.303196 + 0.952928i \(0.598054\pi\)
\(984\) 0 0
\(985\) 5.75505e20 0.0203834
\(986\) 0 0
\(987\) 1.91157e22i 0.666824i
\(988\) 0 0
\(989\) 1.47486e21i 0.0506734i
\(990\) 0 0
\(991\) −4.56273e21 −0.154409 −0.0772045 0.997015i \(-0.524599\pi\)
−0.0772045 + 0.997015i \(0.524599\pi\)
\(992\) 0 0
\(993\) 2.79492e21 0.0931643
\(994\) 0 0
\(995\) − 1.29303e21i − 0.0424557i
\(996\) 0 0
\(997\) 4.32033e22i 1.39734i 0.715442 + 0.698672i \(0.246225\pi\)
−0.715442 + 0.698672i \(0.753775\pi\)
\(998\) 0 0
\(999\) −3.22701e22 −1.02816
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 32.16.b.a.17.5 14
4.3 odd 2 8.16.b.a.5.7 14
8.3 odd 2 8.16.b.a.5.8 yes 14
8.5 even 2 inner 32.16.b.a.17.10 14
12.11 even 2 72.16.d.b.37.8 14
24.11 even 2 72.16.d.b.37.7 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.16.b.a.5.7 14 4.3 odd 2
8.16.b.a.5.8 yes 14 8.3 odd 2
32.16.b.a.17.5 14 1.1 even 1 trivial
32.16.b.a.17.10 14 8.5 even 2 inner
72.16.d.b.37.7 14 24.11 even 2
72.16.d.b.37.8 14 12.11 even 2