Properties

Label 32.16.b.a.17.2
Level $32$
Weight $16$
Character 32.17
Analytic conductor $45.662$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [32,16,Mod(17,32)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("32.17"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(32, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 16, names="a")
 
Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 32.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.6619216320\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 7 x^{13} + 8071283 x^{12} - 48427607 x^{11} + 24279249501785 x^{10} - 121395803589361 x^{9} + \cdots + 29\!\cdots\!76 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{182}\cdot 3^{6}\cdot 5^{4}\cdot 31^{2} \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 17.2
Root \(0.500000 + 1589.49i\) of defining polynomial
Character \(\chi\) \(=\) 32.17
Dual form 32.16.b.a.17.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6357.96i q^{3} -267219. i q^{5} -120583. q^{7} -2.60748e7 q^{9} +9.60941e7i q^{11} +1.64009e8i q^{13} -1.69897e9 q^{15} -1.25524e8 q^{17} +4.61207e9i q^{19} +7.66663e8i q^{21} -6.78047e9 q^{23} -4.08883e10 q^{25} +7.45526e10i q^{27} -7.66507e10i q^{29} -2.28582e10 q^{31} +6.10963e11 q^{33} +3.22221e10i q^{35} -8.61660e11i q^{37} +1.04276e12 q^{39} -3.52968e11 q^{41} +1.68998e12i q^{43} +6.96767e12i q^{45} -3.84783e12 q^{47} -4.73302e12 q^{49} +7.98078e11i q^{51} +9.03015e12i q^{53} +2.56782e13 q^{55} +2.93234e13 q^{57} +1.13978e13i q^{59} +3.96597e12i q^{61} +3.14418e12 q^{63} +4.38262e13 q^{65} +4.34443e13i q^{67} +4.31100e13i q^{69} +3.11414e13 q^{71} -8.34468e13 q^{73} +2.59966e14i q^{75} -1.15873e13i q^{77} -7.31635e12 q^{79} +9.98580e13 q^{81} -3.96179e14i q^{83} +3.35424e13i q^{85} -4.87342e14 q^{87} +9.54011e13 q^{89} -1.97767e13i q^{91} +1.45332e14i q^{93} +1.23243e15 q^{95} -1.16047e15 q^{97} -2.50563e15i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 1647088 q^{7} - 57395630 q^{9} - 712135312 q^{15} + 728554812 q^{17} + 35548816080 q^{23} - 75899954794 q^{25} + 105758138816 q^{31} - 150458001384 q^{33} + 2251546247120 q^{39} - 53229185940 q^{41}+ \cdots - 672574291859236 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/32\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(31\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 6357.96i − 1.67845i −0.543784 0.839225i \(-0.683009\pi\)
0.543784 0.839225i \(-0.316991\pi\)
\(4\) 0 0
\(5\) − 267219.i − 1.52965i −0.644238 0.764825i \(-0.722825\pi\)
0.644238 0.764825i \(-0.277175\pi\)
\(6\) 0 0
\(7\) −120583. −0.0553415 −0.0276708 0.999617i \(-0.508809\pi\)
−0.0276708 + 0.999617i \(0.508809\pi\)
\(8\) 0 0
\(9\) −2.60748e7 −1.81720
\(10\) 0 0
\(11\) 9.60941e7i 1.48680i 0.668849 + 0.743398i \(0.266787\pi\)
−0.668849 + 0.743398i \(0.733213\pi\)
\(12\) 0 0
\(13\) 1.64009e8i 0.724923i 0.931999 + 0.362461i \(0.118063\pi\)
−0.931999 + 0.362461i \(0.881937\pi\)
\(14\) 0 0
\(15\) −1.69897e9 −2.56744
\(16\) 0 0
\(17\) −1.25524e8 −0.0741926 −0.0370963 0.999312i \(-0.511811\pi\)
−0.0370963 + 0.999312i \(0.511811\pi\)
\(18\) 0 0
\(19\) 4.61207e9i 1.18371i 0.806046 + 0.591853i \(0.201603\pi\)
−0.806046 + 0.591853i \(0.798397\pi\)
\(20\) 0 0
\(21\) 7.66663e8i 0.0928880i
\(22\) 0 0
\(23\) −6.78047e9 −0.415242 −0.207621 0.978209i \(-0.566572\pi\)
−0.207621 + 0.978209i \(0.566572\pi\)
\(24\) 0 0
\(25\) −4.08883e10 −1.33983
\(26\) 0 0
\(27\) 7.45526e10i 1.37162i
\(28\) 0 0
\(29\) − 7.66507e10i − 0.825146i −0.910924 0.412573i \(-0.864630\pi\)
0.910924 0.412573i \(-0.135370\pi\)
\(30\) 0 0
\(31\) −2.28582e10 −0.149221 −0.0746104 0.997213i \(-0.523771\pi\)
−0.0746104 + 0.997213i \(0.523771\pi\)
\(32\) 0 0
\(33\) 6.10963e11 2.49551
\(34\) 0 0
\(35\) 3.22221e10i 0.0846532i
\(36\) 0 0
\(37\) − 8.61660e11i − 1.49219i −0.665841 0.746093i \(-0.731927\pi\)
0.665841 0.746093i \(-0.268073\pi\)
\(38\) 0 0
\(39\) 1.04276e12 1.21675
\(40\) 0 0
\(41\) −3.52968e11 −0.283045 −0.141523 0.989935i \(-0.545200\pi\)
−0.141523 + 0.989935i \(0.545200\pi\)
\(42\) 0 0
\(43\) 1.68998e12i 0.948132i 0.880489 + 0.474066i \(0.157214\pi\)
−0.880489 + 0.474066i \(0.842786\pi\)
\(44\) 0 0
\(45\) 6.96767e12i 2.77967i
\(46\) 0 0
\(47\) −3.84783e12 −1.10785 −0.553927 0.832565i \(-0.686871\pi\)
−0.553927 + 0.832565i \(0.686871\pi\)
\(48\) 0 0
\(49\) −4.73302e12 −0.996937
\(50\) 0 0
\(51\) 7.98078e11i 0.124529i
\(52\) 0 0
\(53\) 9.03015e12i 1.05591i 0.849273 + 0.527954i \(0.177041\pi\)
−0.849273 + 0.527954i \(0.822959\pi\)
\(54\) 0 0
\(55\) 2.56782e13 2.27428
\(56\) 0 0
\(57\) 2.93234e13 1.98679
\(58\) 0 0
\(59\) 1.13978e13i 0.596254i 0.954526 + 0.298127i \(0.0963620\pi\)
−0.954526 + 0.298127i \(0.903638\pi\)
\(60\) 0 0
\(61\) 3.96597e12i 0.161575i 0.996731 + 0.0807877i \(0.0257436\pi\)
−0.996731 + 0.0807877i \(0.974256\pi\)
\(62\) 0 0
\(63\) 3.14418e12 0.100566
\(64\) 0 0
\(65\) 4.38262e13 1.10888
\(66\) 0 0
\(67\) 4.34443e13i 0.875733i 0.899040 + 0.437866i \(0.144266\pi\)
−0.899040 + 0.437866i \(0.855734\pi\)
\(68\) 0 0
\(69\) 4.31100e13i 0.696963i
\(70\) 0 0
\(71\) 3.11414e13 0.406350 0.203175 0.979142i \(-0.434874\pi\)
0.203175 + 0.979142i \(0.434874\pi\)
\(72\) 0 0
\(73\) −8.34468e13 −0.884073 −0.442037 0.896997i \(-0.645744\pi\)
−0.442037 + 0.896997i \(0.645744\pi\)
\(74\) 0 0
\(75\) 2.59966e14i 2.24884i
\(76\) 0 0
\(77\) − 1.15873e13i − 0.0822816i
\(78\) 0 0
\(79\) −7.31635e12 −0.0428638 −0.0214319 0.999770i \(-0.506823\pi\)
−0.0214319 + 0.999770i \(0.506823\pi\)
\(80\) 0 0
\(81\) 9.98580e13 0.485004
\(82\) 0 0
\(83\) − 3.96179e14i − 1.60253i −0.598312 0.801263i \(-0.704162\pi\)
0.598312 0.801263i \(-0.295838\pi\)
\(84\) 0 0
\(85\) 3.35424e13i 0.113489i
\(86\) 0 0
\(87\) −4.87342e14 −1.38497
\(88\) 0 0
\(89\) 9.54011e13 0.228628 0.114314 0.993445i \(-0.463533\pi\)
0.114314 + 0.993445i \(0.463533\pi\)
\(90\) 0 0
\(91\) − 1.97767e13i − 0.0401183i
\(92\) 0 0
\(93\) 1.45332e14i 0.250460i
\(94\) 0 0
\(95\) 1.23243e15 1.81066
\(96\) 0 0
\(97\) −1.16047e15 −1.45830 −0.729150 0.684354i \(-0.760084\pi\)
−0.729150 + 0.684354i \(0.760084\pi\)
\(98\) 0 0
\(99\) − 2.50563e15i − 2.70180i
\(100\) 0 0
\(101\) − 2.07199e15i − 1.92299i −0.274818 0.961496i \(-0.588618\pi\)
0.274818 0.961496i \(-0.411382\pi\)
\(102\) 0 0
\(103\) −4.51671e14 −0.361862 −0.180931 0.983496i \(-0.557911\pi\)
−0.180931 + 0.983496i \(0.557911\pi\)
\(104\) 0 0
\(105\) 2.04867e14 0.142086
\(106\) 0 0
\(107\) 1.58456e15i 0.953962i 0.878914 + 0.476981i \(0.158269\pi\)
−0.878914 + 0.476981i \(0.841731\pi\)
\(108\) 0 0
\(109\) 1.34658e15i 0.705562i 0.935706 + 0.352781i \(0.114764\pi\)
−0.935706 + 0.352781i \(0.885236\pi\)
\(110\) 0 0
\(111\) −5.47840e15 −2.50456
\(112\) 0 0
\(113\) 1.52322e13 0.00609081 0.00304541 0.999995i \(-0.499031\pi\)
0.00304541 + 0.999995i \(0.499031\pi\)
\(114\) 0 0
\(115\) 1.81187e15i 0.635175i
\(116\) 0 0
\(117\) − 4.27649e15i − 1.31733i
\(118\) 0 0
\(119\) 1.51361e13 0.00410593
\(120\) 0 0
\(121\) −5.05683e15 −1.21056
\(122\) 0 0
\(123\) 2.24416e15i 0.475078i
\(124\) 0 0
\(125\) 2.77126e15i 0.519819i
\(126\) 0 0
\(127\) 7.11367e15 1.18458 0.592292 0.805724i \(-0.298223\pi\)
0.592292 + 0.805724i \(0.298223\pi\)
\(128\) 0 0
\(129\) 1.07448e16 1.59139
\(130\) 0 0
\(131\) − 6.33055e15i − 0.835424i −0.908580 0.417712i \(-0.862832\pi\)
0.908580 0.417712i \(-0.137168\pi\)
\(132\) 0 0
\(133\) − 5.56138e14i − 0.0655081i
\(134\) 0 0
\(135\) 1.99219e16 2.09810
\(136\) 0 0
\(137\) 1.26171e16 1.19002 0.595011 0.803718i \(-0.297148\pi\)
0.595011 + 0.803718i \(0.297148\pi\)
\(138\) 0 0
\(139\) − 3.53179e15i − 0.298802i −0.988777 0.149401i \(-0.952265\pi\)
0.988777 0.149401i \(-0.0477345\pi\)
\(140\) 0 0
\(141\) 2.44644e16i 1.85948i
\(142\) 0 0
\(143\) −1.57603e16 −1.07781
\(144\) 0 0
\(145\) −2.04825e16 −1.26219
\(146\) 0 0
\(147\) 3.00924e16i 1.67331i
\(148\) 0 0
\(149\) 5.94079e15i 0.298502i 0.988799 + 0.149251i \(0.0476862\pi\)
−0.988799 + 0.149251i \(0.952314\pi\)
\(150\) 0 0
\(151\) −2.55527e16 −1.16174 −0.580871 0.813995i \(-0.697288\pi\)
−0.580871 + 0.813995i \(0.697288\pi\)
\(152\) 0 0
\(153\) 3.27301e15 0.134822
\(154\) 0 0
\(155\) 6.10815e15i 0.228256i
\(156\) 0 0
\(157\) 5.29272e16i 1.79652i 0.439466 + 0.898259i \(0.355168\pi\)
−0.439466 + 0.898259i \(0.644832\pi\)
\(158\) 0 0
\(159\) 5.74133e16 1.77229
\(160\) 0 0
\(161\) 8.17610e14 0.0229801
\(162\) 0 0
\(163\) 2.94167e16i 0.753679i 0.926279 + 0.376840i \(0.122989\pi\)
−0.926279 + 0.376840i \(0.877011\pi\)
\(164\) 0 0
\(165\) − 1.63261e17i − 3.81726i
\(166\) 0 0
\(167\) −4.03066e16 −0.860999 −0.430500 0.902591i \(-0.641663\pi\)
−0.430500 + 0.902591i \(0.641663\pi\)
\(168\) 0 0
\(169\) 2.42871e16 0.474487
\(170\) 0 0
\(171\) − 1.20259e17i − 2.15102i
\(172\) 0 0
\(173\) 8.00780e16i 1.31271i 0.754454 + 0.656353i \(0.227902\pi\)
−0.754454 + 0.656353i \(0.772098\pi\)
\(174\) 0 0
\(175\) 4.93044e15 0.0741482
\(176\) 0 0
\(177\) 7.24669e16 1.00078
\(178\) 0 0
\(179\) 6.28967e16i 0.798418i 0.916860 + 0.399209i \(0.130715\pi\)
−0.916860 + 0.399209i \(0.869285\pi\)
\(180\) 0 0
\(181\) − 1.40644e17i − 1.64260i −0.570496 0.821300i \(-0.693249\pi\)
0.570496 0.821300i \(-0.306751\pi\)
\(182\) 0 0
\(183\) 2.52155e16 0.271196
\(184\) 0 0
\(185\) −2.30252e17 −2.28252
\(186\) 0 0
\(187\) − 1.20621e16i − 0.110309i
\(188\) 0 0
\(189\) − 8.98978e15i − 0.0759077i
\(190\) 0 0
\(191\) −2.42747e17 −1.89411 −0.947053 0.321076i \(-0.895955\pi\)
−0.947053 + 0.321076i \(0.895955\pi\)
\(192\) 0 0
\(193\) −8.44339e16 −0.609308 −0.304654 0.952463i \(-0.598541\pi\)
−0.304654 + 0.952463i \(0.598541\pi\)
\(194\) 0 0
\(195\) − 2.78645e17i − 1.86120i
\(196\) 0 0
\(197\) 1.91310e17i 1.18370i 0.806048 + 0.591850i \(0.201602\pi\)
−0.806048 + 0.591850i \(0.798398\pi\)
\(198\) 0 0
\(199\) −1.18533e16 −0.0679895 −0.0339948 0.999422i \(-0.510823\pi\)
−0.0339948 + 0.999422i \(0.510823\pi\)
\(200\) 0 0
\(201\) 2.76217e17 1.46987
\(202\) 0 0
\(203\) 9.24278e15i 0.0456649i
\(204\) 0 0
\(205\) 9.43197e16i 0.432960i
\(206\) 0 0
\(207\) 1.76799e17 0.754576
\(208\) 0 0
\(209\) −4.43193e17 −1.75993
\(210\) 0 0
\(211\) 9.00677e16i 0.333005i 0.986041 + 0.166502i \(0.0532474\pi\)
−0.986041 + 0.166502i \(0.946753\pi\)
\(212\) 0 0
\(213\) − 1.97996e17i − 0.682038i
\(214\) 0 0
\(215\) 4.51595e17 1.45031
\(216\) 0 0
\(217\) 2.75631e15 0.00825811
\(218\) 0 0
\(219\) 5.30551e17i 1.48387i
\(220\) 0 0
\(221\) − 2.05870e16i − 0.0537839i
\(222\) 0 0
\(223\) −4.15081e17 −1.01355 −0.506777 0.862077i \(-0.669163\pi\)
−0.506777 + 0.862077i \(0.669163\pi\)
\(224\) 0 0
\(225\) 1.06615e18 2.43473
\(226\) 0 0
\(227\) − 3.49083e17i − 0.745993i −0.927833 0.372996i \(-0.878330\pi\)
0.927833 0.372996i \(-0.121670\pi\)
\(228\) 0 0
\(229\) − 4.66508e15i − 0.00933453i −0.999989 0.00466727i \(-0.998514\pi\)
0.999989 0.00466727i \(-0.00148564\pi\)
\(230\) 0 0
\(231\) −7.36718e16 −0.138106
\(232\) 0 0
\(233\) 6.90379e17 1.21316 0.606580 0.795022i \(-0.292541\pi\)
0.606580 + 0.795022i \(0.292541\pi\)
\(234\) 0 0
\(235\) 1.02821e18i 1.69463i
\(236\) 0 0
\(237\) 4.65170e16i 0.0719448i
\(238\) 0 0
\(239\) 9.82227e17 1.42635 0.713177 0.700984i \(-0.247255\pi\)
0.713177 + 0.700984i \(0.247255\pi\)
\(240\) 0 0
\(241\) −6.25947e16 −0.0853906 −0.0426953 0.999088i \(-0.513594\pi\)
−0.0426953 + 0.999088i \(0.513594\pi\)
\(242\) 0 0
\(243\) 4.34855e17i 0.557567i
\(244\) 0 0
\(245\) 1.26475e18i 1.52497i
\(246\) 0 0
\(247\) −7.56419e17 −0.858095
\(248\) 0 0
\(249\) −2.51889e18 −2.68976
\(250\) 0 0
\(251\) − 8.66947e17i − 0.871846i −0.899984 0.435923i \(-0.856422\pi\)
0.899984 0.435923i \(-0.143578\pi\)
\(252\) 0 0
\(253\) − 6.51563e17i − 0.617380i
\(254\) 0 0
\(255\) 2.13261e17 0.190485
\(256\) 0 0
\(257\) −6.75670e17 −0.569162 −0.284581 0.958652i \(-0.591854\pi\)
−0.284581 + 0.958652i \(0.591854\pi\)
\(258\) 0 0
\(259\) 1.03902e17i 0.0825799i
\(260\) 0 0
\(261\) 1.99865e18i 1.49945i
\(262\) 0 0
\(263\) 4.36818e16 0.0309480 0.0154740 0.999880i \(-0.495074\pi\)
0.0154740 + 0.999880i \(0.495074\pi\)
\(264\) 0 0
\(265\) 2.41303e18 1.61517
\(266\) 0 0
\(267\) − 6.06557e17i − 0.383740i
\(268\) 0 0
\(269\) − 1.39181e18i − 0.832604i −0.909226 0.416302i \(-0.863326\pi\)
0.909226 0.416302i \(-0.136674\pi\)
\(270\) 0 0
\(271\) −1.21335e18 −0.686617 −0.343309 0.939223i \(-0.611548\pi\)
−0.343309 + 0.939223i \(0.611548\pi\)
\(272\) 0 0
\(273\) −1.25739e17 −0.0673366
\(274\) 0 0
\(275\) − 3.92913e18i − 1.99205i
\(276\) 0 0
\(277\) − 1.97331e18i − 0.947540i −0.880649 0.473770i \(-0.842893\pi\)
0.880649 0.473770i \(-0.157107\pi\)
\(278\) 0 0
\(279\) 5.96023e17 0.271164
\(280\) 0 0
\(281\) 2.31539e18 0.998449 0.499225 0.866473i \(-0.333618\pi\)
0.499225 + 0.866473i \(0.333618\pi\)
\(282\) 0 0
\(283\) − 2.72039e18i − 1.11233i −0.831073 0.556163i \(-0.812273\pi\)
0.831073 0.556163i \(-0.187727\pi\)
\(284\) 0 0
\(285\) − 7.83575e18i − 3.03910i
\(286\) 0 0
\(287\) 4.25620e16 0.0156642
\(288\) 0 0
\(289\) −2.84667e18 −0.994495
\(290\) 0 0
\(291\) 7.37824e18i 2.44768i
\(292\) 0 0
\(293\) 5.75600e18i 1.81390i 0.421237 + 0.906951i \(0.361596\pi\)
−0.421237 + 0.906951i \(0.638404\pi\)
\(294\) 0 0
\(295\) 3.04571e18 0.912061
\(296\) 0 0
\(297\) −7.16406e18 −2.03932
\(298\) 0 0
\(299\) − 1.11206e18i − 0.301018i
\(300\) 0 0
\(301\) − 2.03783e17i − 0.0524711i
\(302\) 0 0
\(303\) −1.31736e19 −3.22765
\(304\) 0 0
\(305\) 1.05978e18 0.247154
\(306\) 0 0
\(307\) 2.54727e18i 0.565636i 0.959174 + 0.282818i \(0.0912692\pi\)
−0.959174 + 0.282818i \(0.908731\pi\)
\(308\) 0 0
\(309\) 2.87171e18i 0.607368i
\(310\) 0 0
\(311\) 5.78305e17 0.116534 0.0582671 0.998301i \(-0.481442\pi\)
0.0582671 + 0.998301i \(0.481442\pi\)
\(312\) 0 0
\(313\) 2.11174e18 0.405562 0.202781 0.979224i \(-0.435002\pi\)
0.202781 + 0.979224i \(0.435002\pi\)
\(314\) 0 0
\(315\) − 8.40183e17i − 0.153831i
\(316\) 0 0
\(317\) − 6.00631e17i − 0.104873i −0.998624 0.0524364i \(-0.983301\pi\)
0.998624 0.0524364i \(-0.0166987\pi\)
\(318\) 0 0
\(319\) 7.36568e18 1.22682
\(320\) 0 0
\(321\) 1.00746e19 1.60118
\(322\) 0 0
\(323\) − 5.78926e17i − 0.0878222i
\(324\) 0 0
\(325\) − 6.70604e18i − 0.971272i
\(326\) 0 0
\(327\) 8.56153e18 1.18425
\(328\) 0 0
\(329\) 4.63984e17 0.0613103
\(330\) 0 0
\(331\) − 3.00162e18i − 0.379006i −0.981880 0.189503i \(-0.939312\pi\)
0.981880 0.189503i \(-0.0606877\pi\)
\(332\) 0 0
\(333\) 2.24676e19i 2.71159i
\(334\) 0 0
\(335\) 1.16091e19 1.33956
\(336\) 0 0
\(337\) 6.11724e16 0.00675042 0.00337521 0.999994i \(-0.498926\pi\)
0.00337521 + 0.999994i \(0.498926\pi\)
\(338\) 0 0
\(339\) − 9.68460e16i − 0.0102231i
\(340\) 0 0
\(341\) − 2.19654e18i − 0.221861i
\(342\) 0 0
\(343\) 1.14320e18 0.110514
\(344\) 0 0
\(345\) 1.15198e19 1.06611
\(346\) 0 0
\(347\) 8.50746e18i 0.753926i 0.926228 + 0.376963i \(0.123032\pi\)
−0.926228 + 0.376963i \(0.876968\pi\)
\(348\) 0 0
\(349\) 7.39145e17i 0.0627392i 0.999508 + 0.0313696i \(0.00998689\pi\)
−0.999508 + 0.0313696i \(0.990013\pi\)
\(350\) 0 0
\(351\) −1.22273e19 −0.994320
\(352\) 0 0
\(353\) −2.03790e19 −1.58808 −0.794042 0.607863i \(-0.792027\pi\)
−0.794042 + 0.607863i \(0.792027\pi\)
\(354\) 0 0
\(355\) − 8.32156e18i − 0.621573i
\(356\) 0 0
\(357\) − 9.62347e16i − 0.00689160i
\(358\) 0 0
\(359\) −6.59964e18 −0.453223 −0.226611 0.973985i \(-0.572765\pi\)
−0.226611 + 0.973985i \(0.572765\pi\)
\(360\) 0 0
\(361\) −6.09005e18 −0.401159
\(362\) 0 0
\(363\) 3.21511e19i 2.03187i
\(364\) 0 0
\(365\) 2.22986e19i 1.35232i
\(366\) 0 0
\(367\) −7.81363e18 −0.454839 −0.227419 0.973797i \(-0.573029\pi\)
−0.227419 + 0.973797i \(0.573029\pi\)
\(368\) 0 0
\(369\) 9.20355e18 0.514349
\(370\) 0 0
\(371\) − 1.08888e18i − 0.0584355i
\(372\) 0 0
\(373\) − 3.65402e19i − 1.88345i −0.336382 0.941726i \(-0.609203\pi\)
0.336382 0.941726i \(-0.390797\pi\)
\(374\) 0 0
\(375\) 1.76196e19 0.872491
\(376\) 0 0
\(377\) 1.25714e19 0.598167
\(378\) 0 0
\(379\) − 5.85785e18i − 0.267882i −0.990989 0.133941i \(-0.957237\pi\)
0.990989 0.133941i \(-0.0427633\pi\)
\(380\) 0 0
\(381\) − 4.52284e19i − 1.98826i
\(382\) 0 0
\(383\) −3.82207e19 −1.61550 −0.807752 0.589522i \(-0.799316\pi\)
−0.807752 + 0.589522i \(0.799316\pi\)
\(384\) 0 0
\(385\) −3.09635e18 −0.125862
\(386\) 0 0
\(387\) − 4.40659e19i − 1.72294i
\(388\) 0 0
\(389\) − 9.25088e18i − 0.347985i −0.984747 0.173993i \(-0.944333\pi\)
0.984747 0.173993i \(-0.0556669\pi\)
\(390\) 0 0
\(391\) 8.51113e17 0.0308078
\(392\) 0 0
\(393\) −4.02494e19 −1.40222
\(394\) 0 0
\(395\) 1.95507e18i 0.0655667i
\(396\) 0 0
\(397\) 5.20456e19i 1.68056i 0.542150 + 0.840282i \(0.317611\pi\)
−0.542150 + 0.840282i \(0.682389\pi\)
\(398\) 0 0
\(399\) −3.53590e18 −0.109952
\(400\) 0 0
\(401\) 3.31013e19 0.991430 0.495715 0.868485i \(-0.334906\pi\)
0.495715 + 0.868485i \(0.334906\pi\)
\(402\) 0 0
\(403\) − 3.74894e18i − 0.108174i
\(404\) 0 0
\(405\) − 2.66839e19i − 0.741886i
\(406\) 0 0
\(407\) 8.28005e19 2.21858
\(408\) 0 0
\(409\) −2.01464e19 −0.520323 −0.260162 0.965565i \(-0.583776\pi\)
−0.260162 + 0.965565i \(0.583776\pi\)
\(410\) 0 0
\(411\) − 8.02190e19i − 1.99739i
\(412\) 0 0
\(413\) − 1.37438e18i − 0.0329976i
\(414\) 0 0
\(415\) −1.05866e20 −2.45131
\(416\) 0 0
\(417\) −2.24550e19 −0.501524
\(418\) 0 0
\(419\) 6.19828e18i 0.133557i 0.997768 + 0.0667784i \(0.0212720\pi\)
−0.997768 + 0.0667784i \(0.978728\pi\)
\(420\) 0 0
\(421\) − 1.87462e19i − 0.389760i −0.980827 0.194880i \(-0.937568\pi\)
0.980827 0.194880i \(-0.0624317\pi\)
\(422\) 0 0
\(423\) 1.00331e20 2.01319
\(424\) 0 0
\(425\) 5.13247e18 0.0994053
\(426\) 0 0
\(427\) − 4.78228e17i − 0.00894183i
\(428\) 0 0
\(429\) 1.00203e20i 1.80905i
\(430\) 0 0
\(431\) −4.50478e19 −0.785405 −0.392702 0.919666i \(-0.628460\pi\)
−0.392702 + 0.919666i \(0.628460\pi\)
\(432\) 0 0
\(433\) −8.20647e19 −1.38197 −0.690983 0.722871i \(-0.742822\pi\)
−0.690983 + 0.722871i \(0.742822\pi\)
\(434\) 0 0
\(435\) 1.30227e20i 2.11851i
\(436\) 0 0
\(437\) − 3.12720e19i − 0.491524i
\(438\) 0 0
\(439\) −8.92387e19 −1.35541 −0.677703 0.735336i \(-0.737025\pi\)
−0.677703 + 0.735336i \(0.737025\pi\)
\(440\) 0 0
\(441\) 1.23412e20 1.81163
\(442\) 0 0
\(443\) 8.32102e19i 1.18072i 0.807138 + 0.590362i \(0.201015\pi\)
−0.807138 + 0.590362i \(0.798985\pi\)
\(444\) 0 0
\(445\) − 2.54930e19i − 0.349720i
\(446\) 0 0
\(447\) 3.77713e19 0.501020
\(448\) 0 0
\(449\) 6.70535e19 0.860150 0.430075 0.902793i \(-0.358487\pi\)
0.430075 + 0.902793i \(0.358487\pi\)
\(450\) 0 0
\(451\) − 3.39181e19i − 0.420831i
\(452\) 0 0
\(453\) 1.62463e20i 1.94993i
\(454\) 0 0
\(455\) −5.28470e18 −0.0613670
\(456\) 0 0
\(457\) 2.49692e19 0.280565 0.140282 0.990112i \(-0.455199\pi\)
0.140282 + 0.990112i \(0.455199\pi\)
\(458\) 0 0
\(459\) − 9.35815e18i − 0.101764i
\(460\) 0 0
\(461\) − 1.25078e20i − 1.31650i −0.752797 0.658252i \(-0.771296\pi\)
0.752797 0.658252i \(-0.228704\pi\)
\(462\) 0 0
\(463\) 2.00408e19 0.204201 0.102101 0.994774i \(-0.467444\pi\)
0.102101 + 0.994774i \(0.467444\pi\)
\(464\) 0 0
\(465\) 3.88354e19 0.383116
\(466\) 0 0
\(467\) 1.69751e20i 1.62157i 0.585344 + 0.810785i \(0.300960\pi\)
−0.585344 + 0.810785i \(0.699040\pi\)
\(468\) 0 0
\(469\) − 5.23865e18i − 0.0484644i
\(470\) 0 0
\(471\) 3.36509e20 3.01537
\(472\) 0 0
\(473\) −1.62397e20 −1.40968
\(474\) 0 0
\(475\) − 1.88580e20i − 1.58596i
\(476\) 0 0
\(477\) − 2.35459e20i − 1.91879i
\(478\) 0 0
\(479\) 5.75801e19 0.454733 0.227366 0.973809i \(-0.426989\pi\)
0.227366 + 0.973809i \(0.426989\pi\)
\(480\) 0 0
\(481\) 1.41320e20 1.08172
\(482\) 0 0
\(483\) − 5.19833e18i − 0.0385710i
\(484\) 0 0
\(485\) 3.10100e20i 2.23069i
\(486\) 0 0
\(487\) 7.29502e19 0.508814 0.254407 0.967097i \(-0.418120\pi\)
0.254407 + 0.967097i \(0.418120\pi\)
\(488\) 0 0
\(489\) 1.87030e20 1.26501
\(490\) 0 0
\(491\) 1.69291e20i 1.11051i 0.831680 + 0.555256i \(0.187380\pi\)
−0.831680 + 0.555256i \(0.812620\pi\)
\(492\) 0 0
\(493\) 9.62151e18i 0.0612197i
\(494\) 0 0
\(495\) −6.69552e20 −4.13281
\(496\) 0 0
\(497\) −3.75512e18 −0.0224880
\(498\) 0 0
\(499\) − 3.02072e20i − 1.75532i −0.479281 0.877661i \(-0.659103\pi\)
0.479281 0.877661i \(-0.340897\pi\)
\(500\) 0 0
\(501\) 2.56268e20i 1.44514i
\(502\) 0 0
\(503\) −2.31647e20 −1.26785 −0.633925 0.773395i \(-0.718557\pi\)
−0.633925 + 0.773395i \(0.718557\pi\)
\(504\) 0 0
\(505\) −5.53675e20 −2.94151
\(506\) 0 0
\(507\) − 1.54416e20i − 0.796403i
\(508\) 0 0
\(509\) − 7.79841e19i − 0.390502i −0.980753 0.195251i \(-0.937448\pi\)
0.980753 0.195251i \(-0.0625521\pi\)
\(510\) 0 0
\(511\) 1.00623e19 0.0489260
\(512\) 0 0
\(513\) −3.43842e20 −1.62360
\(514\) 0 0
\(515\) 1.20695e20i 0.553523i
\(516\) 0 0
\(517\) − 3.69754e20i − 1.64715i
\(518\) 0 0
\(519\) 5.09133e20 2.20331
\(520\) 0 0
\(521\) 3.41951e20 1.43774 0.718871 0.695144i \(-0.244659\pi\)
0.718871 + 0.695144i \(0.244659\pi\)
\(522\) 0 0
\(523\) 2.11396e20i 0.863642i 0.901959 + 0.431821i \(0.142129\pi\)
−0.901959 + 0.431821i \(0.857871\pi\)
\(524\) 0 0
\(525\) − 3.13476e19i − 0.124454i
\(526\) 0 0
\(527\) 2.86926e18 0.0110711
\(528\) 0 0
\(529\) −2.20660e20 −0.827574
\(530\) 0 0
\(531\) − 2.97195e20i − 1.08351i
\(532\) 0 0
\(533\) − 5.78898e19i − 0.205186i
\(534\) 0 0
\(535\) 4.23425e20 1.45923
\(536\) 0 0
\(537\) 3.99895e20 1.34010
\(538\) 0 0
\(539\) − 4.54815e20i − 1.48224i
\(540\) 0 0
\(541\) − 5.13131e20i − 1.62648i −0.581929 0.813240i \(-0.697702\pi\)
0.581929 0.813240i \(-0.302298\pi\)
\(542\) 0 0
\(543\) −8.94209e20 −2.75702
\(544\) 0 0
\(545\) 3.59833e20 1.07926
\(546\) 0 0
\(547\) − 6.07670e20i − 1.77322i −0.462516 0.886611i \(-0.653053\pi\)
0.462516 0.886611i \(-0.346947\pi\)
\(548\) 0 0
\(549\) − 1.03412e20i − 0.293614i
\(550\) 0 0
\(551\) 3.53518e20 0.976731
\(552\) 0 0
\(553\) 8.82228e17 0.00237215
\(554\) 0 0
\(555\) 1.46393e21i 3.83110i
\(556\) 0 0
\(557\) − 1.16265e20i − 0.296166i −0.988975 0.148083i \(-0.952690\pi\)
0.988975 0.148083i \(-0.0473102\pi\)
\(558\) 0 0
\(559\) −2.77172e20 −0.687322
\(560\) 0 0
\(561\) −7.66905e19 −0.185149
\(562\) 0 0
\(563\) 4.19500e20i 0.986095i 0.870002 + 0.493048i \(0.164117\pi\)
−0.870002 + 0.493048i \(0.835883\pi\)
\(564\) 0 0
\(565\) − 4.07034e18i − 0.00931681i
\(566\) 0 0
\(567\) −1.20412e19 −0.0268409
\(568\) 0 0
\(569\) −2.54681e20 −0.552910 −0.276455 0.961027i \(-0.589160\pi\)
−0.276455 + 0.961027i \(0.589160\pi\)
\(570\) 0 0
\(571\) − 5.64239e20i − 1.19314i −0.802560 0.596571i \(-0.796529\pi\)
0.802560 0.596571i \(-0.203471\pi\)
\(572\) 0 0
\(573\) 1.54338e21i 3.17916i
\(574\) 0 0
\(575\) 2.77242e20 0.556353
\(576\) 0 0
\(577\) 2.42327e20 0.473787 0.236893 0.971536i \(-0.423871\pi\)
0.236893 + 0.971536i \(0.423871\pi\)
\(578\) 0 0
\(579\) 5.36828e20i 1.02269i
\(580\) 0 0
\(581\) 4.77724e19i 0.0886863i
\(582\) 0 0
\(583\) −8.67744e20 −1.56992
\(584\) 0 0
\(585\) −1.14276e21 −2.01505
\(586\) 0 0
\(587\) 2.53984e20i 0.436536i 0.975889 + 0.218268i \(0.0700407\pi\)
−0.975889 + 0.218268i \(0.929959\pi\)
\(588\) 0 0
\(589\) − 1.05424e20i − 0.176634i
\(590\) 0 0
\(591\) 1.21634e21 1.98678
\(592\) 0 0
\(593\) 4.91791e20 0.783196 0.391598 0.920136i \(-0.371922\pi\)
0.391598 + 0.920136i \(0.371922\pi\)
\(594\) 0 0
\(595\) − 4.04465e18i − 0.00628063i
\(596\) 0 0
\(597\) 7.53630e19i 0.114117i
\(598\) 0 0
\(599\) 1.22676e21 1.81159 0.905793 0.423721i \(-0.139276\pi\)
0.905793 + 0.423721i \(0.139276\pi\)
\(600\) 0 0
\(601\) 8.81075e20 1.26898 0.634489 0.772932i \(-0.281210\pi\)
0.634489 + 0.772932i \(0.281210\pi\)
\(602\) 0 0
\(603\) − 1.13280e21i − 1.59138i
\(604\) 0 0
\(605\) 1.35128e21i 1.85174i
\(606\) 0 0
\(607\) −8.63946e20 −1.15497 −0.577486 0.816401i \(-0.695966\pi\)
−0.577486 + 0.816401i \(0.695966\pi\)
\(608\) 0 0
\(609\) 5.87652e19 0.0766462
\(610\) 0 0
\(611\) − 6.31078e20i − 0.803108i
\(612\) 0 0
\(613\) − 5.43647e20i − 0.675092i −0.941309 0.337546i \(-0.890403\pi\)
0.941309 0.337546i \(-0.109597\pi\)
\(614\) 0 0
\(615\) 5.99681e20 0.726703
\(616\) 0 0
\(617\) 9.53349e20 1.12749 0.563745 0.825949i \(-0.309360\pi\)
0.563745 + 0.825949i \(0.309360\pi\)
\(618\) 0 0
\(619\) 5.58681e20i 0.644888i 0.946589 + 0.322444i \(0.104504\pi\)
−0.946589 + 0.322444i \(0.895496\pi\)
\(620\) 0 0
\(621\) − 5.05502e20i − 0.569555i
\(622\) 0 0
\(623\) −1.15038e19 −0.0126526
\(624\) 0 0
\(625\) −5.07280e20 −0.544687
\(626\) 0 0
\(627\) 2.81780e21i 2.95395i
\(628\) 0 0
\(629\) 1.08159e20i 0.110709i
\(630\) 0 0
\(631\) −3.62782e20 −0.362599 −0.181299 0.983428i \(-0.558030\pi\)
−0.181299 + 0.983428i \(0.558030\pi\)
\(632\) 0 0
\(633\) 5.72647e20 0.558932
\(634\) 0 0
\(635\) − 1.90091e21i − 1.81200i
\(636\) 0 0
\(637\) − 7.76256e20i − 0.722702i
\(638\) 0 0
\(639\) −8.12004e20 −0.738417
\(640\) 0 0
\(641\) −1.61218e21 −1.43212 −0.716059 0.698040i \(-0.754056\pi\)
−0.716059 + 0.698040i \(0.754056\pi\)
\(642\) 0 0
\(643\) − 7.38606e20i − 0.640959i −0.947255 0.320480i \(-0.896156\pi\)
0.947255 0.320480i \(-0.103844\pi\)
\(644\) 0 0
\(645\) − 2.87122e21i − 2.43427i
\(646\) 0 0
\(647\) 1.36574e20 0.113132 0.0565659 0.998399i \(-0.481985\pi\)
0.0565659 + 0.998399i \(0.481985\pi\)
\(648\) 0 0
\(649\) −1.09526e21 −0.886509
\(650\) 0 0
\(651\) − 1.75245e19i − 0.0138608i
\(652\) 0 0
\(653\) 1.25905e21i 0.973183i 0.873630 + 0.486592i \(0.161760\pi\)
−0.873630 + 0.486592i \(0.838240\pi\)
\(654\) 0 0
\(655\) −1.69164e21 −1.27791
\(656\) 0 0
\(657\) 2.17586e21 1.60653
\(658\) 0 0
\(659\) 8.06495e20i 0.582051i 0.956715 + 0.291026i \(0.0939965\pi\)
−0.956715 + 0.291026i \(0.906003\pi\)
\(660\) 0 0
\(661\) − 1.10006e21i − 0.776081i −0.921642 0.388041i \(-0.873152\pi\)
0.921642 0.388041i \(-0.126848\pi\)
\(662\) 0 0
\(663\) −1.30892e20 −0.0902735
\(664\) 0 0
\(665\) −1.48610e20 −0.100204
\(666\) 0 0
\(667\) 5.19728e20i 0.342635i
\(668\) 0 0
\(669\) 2.63907e21i 1.70120i
\(670\) 0 0
\(671\) −3.81106e20 −0.240230
\(672\) 0 0
\(673\) −2.15849e21 −1.33057 −0.665285 0.746589i \(-0.731690\pi\)
−0.665285 + 0.746589i \(0.731690\pi\)
\(674\) 0 0
\(675\) − 3.04833e21i − 1.83774i
\(676\) 0 0
\(677\) − 3.56159e20i − 0.210005i −0.994472 0.105002i \(-0.966515\pi\)
0.994472 0.105002i \(-0.0334850\pi\)
\(678\) 0 0
\(679\) 1.39933e20 0.0807046
\(680\) 0 0
\(681\) −2.21946e21 −1.25211
\(682\) 0 0
\(683\) 1.66633e21i 0.919614i 0.888019 + 0.459807i \(0.152081\pi\)
−0.888019 + 0.459807i \(0.847919\pi\)
\(684\) 0 0
\(685\) − 3.37152e21i − 1.82032i
\(686\) 0 0
\(687\) −2.96604e19 −0.0156676
\(688\) 0 0
\(689\) −1.48102e21 −0.765451
\(690\) 0 0
\(691\) − 1.01961e21i − 0.515640i −0.966193 0.257820i \(-0.916996\pi\)
0.966193 0.257820i \(-0.0830042\pi\)
\(692\) 0 0
\(693\) 3.02137e20i 0.149522i
\(694\) 0 0
\(695\) −9.43760e20 −0.457063
\(696\) 0 0
\(697\) 4.43060e19 0.0209999
\(698\) 0 0
\(699\) − 4.38940e21i − 2.03623i
\(700\) 0 0
\(701\) 2.21860e21i 1.00738i 0.863885 + 0.503690i \(0.168024\pi\)
−0.863885 + 0.503690i \(0.831976\pi\)
\(702\) 0 0
\(703\) 3.97404e21 1.76631
\(704\) 0 0
\(705\) 6.53734e21 2.84435
\(706\) 0 0
\(707\) 2.49847e20i 0.106421i
\(708\) 0 0
\(709\) 4.74711e21i 1.97962i 0.142383 + 0.989812i \(0.454524\pi\)
−0.142383 + 0.989812i \(0.545476\pi\)
\(710\) 0 0
\(711\) 1.90772e20 0.0778920
\(712\) 0 0
\(713\) 1.54989e20 0.0619627
\(714\) 0 0
\(715\) 4.21144e21i 1.64868i
\(716\) 0 0
\(717\) − 6.24496e21i − 2.39407i
\(718\) 0 0
\(719\) 2.72163e20 0.102179 0.0510896 0.998694i \(-0.483731\pi\)
0.0510896 + 0.998694i \(0.483731\pi\)
\(720\) 0 0
\(721\) 5.44639e19 0.0200260
\(722\) 0 0
\(723\) 3.97975e20i 0.143324i
\(724\) 0 0
\(725\) 3.13412e21i 1.10555i
\(726\) 0 0
\(727\) −3.64179e21 −1.25837 −0.629184 0.777257i \(-0.716611\pi\)
−0.629184 + 0.777257i \(0.716611\pi\)
\(728\) 0 0
\(729\) 4.19764e21 1.42085
\(730\) 0 0
\(731\) − 2.12134e20i − 0.0703443i
\(732\) 0 0
\(733\) − 2.24321e21i − 0.728770i −0.931248 0.364385i \(-0.881279\pi\)
0.931248 0.364385i \(-0.118721\pi\)
\(734\) 0 0
\(735\) 8.04125e21 2.55958
\(736\) 0 0
\(737\) −4.17474e21 −1.30204
\(738\) 0 0
\(739\) − 4.72145e21i − 1.44292i −0.692456 0.721460i \(-0.743471\pi\)
0.692456 0.721460i \(-0.256529\pi\)
\(740\) 0 0
\(741\) 4.80928e21i 1.44027i
\(742\) 0 0
\(743\) −3.14778e21 −0.923822 −0.461911 0.886926i \(-0.652836\pi\)
−0.461911 + 0.886926i \(0.652836\pi\)
\(744\) 0 0
\(745\) 1.58749e21 0.456603
\(746\) 0 0
\(747\) 1.03303e22i 2.91210i
\(748\) 0 0
\(749\) − 1.91071e20i − 0.0527937i
\(750\) 0 0
\(751\) 1.50411e20 0.0407361 0.0203681 0.999793i \(-0.493516\pi\)
0.0203681 + 0.999793i \(0.493516\pi\)
\(752\) 0 0
\(753\) −5.51202e21 −1.46335
\(754\) 0 0
\(755\) 6.82817e21i 1.77706i
\(756\) 0 0
\(757\) 4.49997e21i 1.14813i 0.818811 + 0.574064i \(0.194634\pi\)
−0.818811 + 0.574064i \(0.805366\pi\)
\(758\) 0 0
\(759\) −4.14261e21 −1.03624
\(760\) 0 0
\(761\) −2.33535e21 −0.572754 −0.286377 0.958117i \(-0.592451\pi\)
−0.286377 + 0.958117i \(0.592451\pi\)
\(762\) 0 0
\(763\) − 1.62375e20i − 0.0390469i
\(764\) 0 0
\(765\) − 8.74611e20i − 0.206231i
\(766\) 0 0
\(767\) −1.86934e21 −0.432238
\(768\) 0 0
\(769\) 1.43868e21 0.326224 0.163112 0.986608i \(-0.447847\pi\)
0.163112 + 0.986608i \(0.447847\pi\)
\(770\) 0 0
\(771\) 4.29588e21i 0.955310i
\(772\) 0 0
\(773\) − 5.51890e21i − 1.20367i −0.798621 0.601834i \(-0.794437\pi\)
0.798621 0.601834i \(-0.205563\pi\)
\(774\) 0 0
\(775\) 9.34634e20 0.199930
\(776\) 0 0
\(777\) 6.60603e20 0.138606
\(778\) 0 0
\(779\) − 1.62791e21i − 0.335043i
\(780\) 0 0
\(781\) 2.99250e21i 0.604160i
\(782\) 0 0
\(783\) 5.71451e21 1.13179
\(784\) 0 0
\(785\) 1.41432e22 2.74804
\(786\) 0 0
\(787\) − 6.07126e21i − 1.15736i −0.815555 0.578680i \(-0.803568\pi\)
0.815555 0.578680i \(-0.196432\pi\)
\(788\) 0 0
\(789\) − 2.77727e20i − 0.0519447i
\(790\) 0 0
\(791\) −1.83675e18 −0.000337075 0
\(792\) 0 0
\(793\) −6.50453e20 −0.117130
\(794\) 0 0
\(795\) − 1.53419e22i − 2.71098i
\(796\) 0 0
\(797\) − 1.11112e22i − 1.92674i −0.268184 0.963368i \(-0.586423\pi\)
0.268184 0.963368i \(-0.413577\pi\)
\(798\) 0 0
\(799\) 4.82996e20 0.0821945
\(800\) 0 0
\(801\) −2.48756e21 −0.415461
\(802\) 0 0
\(803\) − 8.01874e21i − 1.31444i
\(804\) 0 0
\(805\) − 2.18481e20i − 0.0351515i
\(806\) 0 0
\(807\) −8.84909e21 −1.39748
\(808\) 0 0
\(809\) 4.64825e21 0.720568 0.360284 0.932843i \(-0.382680\pi\)
0.360284 + 0.932843i \(0.382680\pi\)
\(810\) 0 0
\(811\) 6.95327e21i 1.05811i 0.848586 + 0.529057i \(0.177454\pi\)
−0.848586 + 0.529057i \(0.822546\pi\)
\(812\) 0 0
\(813\) 7.71440e21i 1.15245i
\(814\) 0 0
\(815\) 7.86069e21 1.15287
\(816\) 0 0
\(817\) −7.79431e21 −1.12231
\(818\) 0 0
\(819\) 5.15672e20i 0.0729028i
\(820\) 0 0
\(821\) − 1.63651e21i − 0.227167i −0.993528 0.113584i \(-0.963767\pi\)
0.993528 0.113584i \(-0.0362330\pi\)
\(822\) 0 0
\(823\) 1.30316e22 1.77623 0.888116 0.459620i \(-0.152014\pi\)
0.888116 + 0.459620i \(0.152014\pi\)
\(824\) 0 0
\(825\) −2.49812e22 −3.34356
\(826\) 0 0
\(827\) − 5.43834e21i − 0.714784i −0.933954 0.357392i \(-0.883666\pi\)
0.933954 0.357392i \(-0.116334\pi\)
\(828\) 0 0
\(829\) 4.84909e21i 0.625894i 0.949771 + 0.312947i \(0.101316\pi\)
−0.949771 + 0.312947i \(0.898684\pi\)
\(830\) 0 0
\(831\) −1.25462e22 −1.59040
\(832\) 0 0
\(833\) 5.94108e20 0.0739653
\(834\) 0 0
\(835\) 1.07707e22i 1.31703i
\(836\) 0 0
\(837\) − 1.70414e21i − 0.204675i
\(838\) 0 0
\(839\) −9.02485e21 −1.06470 −0.532348 0.846526i \(-0.678690\pi\)
−0.532348 + 0.846526i \(0.678690\pi\)
\(840\) 0 0
\(841\) 2.75386e21 0.319133
\(842\) 0 0
\(843\) − 1.47211e22i − 1.67585i
\(844\) 0 0
\(845\) − 6.48996e21i − 0.725799i
\(846\) 0 0
\(847\) 6.09768e20 0.0669945
\(848\) 0 0
\(849\) −1.72961e22 −1.86698
\(850\) 0 0
\(851\) 5.84246e21i 0.619618i
\(852\) 0 0
\(853\) − 4.32653e21i − 0.450840i −0.974262 0.225420i \(-0.927625\pi\)
0.974262 0.225420i \(-0.0723754\pi\)
\(854\) 0 0
\(855\) −3.21354e22 −3.29031
\(856\) 0 0
\(857\) 1.15996e22 1.16704 0.583521 0.812098i \(-0.301675\pi\)
0.583521 + 0.812098i \(0.301675\pi\)
\(858\) 0 0
\(859\) 2.37330e21i 0.234641i 0.993094 + 0.117321i \(0.0374305\pi\)
−0.993094 + 0.117321i \(0.962569\pi\)
\(860\) 0 0
\(861\) − 2.70607e20i − 0.0262915i
\(862\) 0 0
\(863\) 9.83961e21 0.939501 0.469750 0.882799i \(-0.344344\pi\)
0.469750 + 0.882799i \(0.344344\pi\)
\(864\) 0 0
\(865\) 2.13984e22 2.00798
\(866\) 0 0
\(867\) 1.80990e22i 1.66921i
\(868\) 0 0
\(869\) − 7.03058e20i − 0.0637298i
\(870\) 0 0
\(871\) −7.12524e21 −0.634838
\(872\) 0 0
\(873\) 3.02591e22 2.65002
\(874\) 0 0
\(875\) − 3.34167e20i − 0.0287676i
\(876\) 0 0
\(877\) 1.13967e22i 0.964457i 0.876046 + 0.482228i \(0.160172\pi\)
−0.876046 + 0.482228i \(0.839828\pi\)
\(878\) 0 0
\(879\) 3.65964e22 3.04454
\(880\) 0 0
\(881\) −1.32703e22 −1.08533 −0.542665 0.839949i \(-0.682585\pi\)
−0.542665 + 0.839949i \(0.682585\pi\)
\(882\) 0 0
\(883\) − 1.60387e22i − 1.28963i −0.764340 0.644813i \(-0.776935\pi\)
0.764340 0.644813i \(-0.223065\pi\)
\(884\) 0 0
\(885\) − 1.93645e22i − 1.53085i
\(886\) 0 0
\(887\) 1.17227e22 0.911169 0.455584 0.890193i \(-0.349430\pi\)
0.455584 + 0.890193i \(0.349430\pi\)
\(888\) 0 0
\(889\) −8.57788e20 −0.0655566
\(890\) 0 0
\(891\) 9.59577e21i 0.721102i
\(892\) 0 0
\(893\) − 1.77465e22i − 1.31137i
\(894\) 0 0
\(895\) 1.68072e22 1.22130
\(896\) 0 0
\(897\) −7.07041e21 −0.505244
\(898\) 0 0
\(899\) 1.75210e21i 0.123129i
\(900\) 0 0
\(901\) − 1.13350e21i − 0.0783405i
\(902\) 0 0
\(903\) −1.29565e21 −0.0880701
\(904\) 0 0
\(905\) −3.75827e22 −2.51260
\(906\) 0 0
\(907\) 1.91784e22i 1.26112i 0.776139 + 0.630562i \(0.217175\pi\)
−0.776139 + 0.630562i \(0.782825\pi\)
\(908\) 0 0
\(909\) 5.40267e22i 3.49445i
\(910\) 0 0
\(911\) −2.32929e22 −1.48196 −0.740978 0.671530i \(-0.765638\pi\)
−0.740978 + 0.671530i \(0.765638\pi\)
\(912\) 0 0
\(913\) 3.80704e22 2.38263
\(914\) 0 0
\(915\) − 6.73805e21i − 0.414835i
\(916\) 0 0
\(917\) 7.63357e20i 0.0462336i
\(918\) 0 0
\(919\) −2.98532e21 −0.177879 −0.0889394 0.996037i \(-0.528348\pi\)
−0.0889394 + 0.996037i \(0.528348\pi\)
\(920\) 0 0
\(921\) 1.61954e22 0.949392
\(922\) 0 0
\(923\) 5.10746e21i 0.294572i
\(924\) 0 0
\(925\) 3.52318e22i 1.99927i
\(926\) 0 0
\(927\) 1.17772e22 0.657574
\(928\) 0 0
\(929\) 1.47039e21 0.0807821 0.0403910 0.999184i \(-0.487140\pi\)
0.0403910 + 0.999184i \(0.487140\pi\)
\(930\) 0 0
\(931\) − 2.18290e22i − 1.18008i
\(932\) 0 0
\(933\) − 3.67684e21i − 0.195597i
\(934\) 0 0
\(935\) −3.22323e21 −0.168735
\(936\) 0 0
\(937\) −1.35569e22 −0.698417 −0.349208 0.937045i \(-0.613549\pi\)
−0.349208 + 0.937045i \(0.613549\pi\)
\(938\) 0 0
\(939\) − 1.34264e22i − 0.680716i
\(940\) 0 0
\(941\) 1.13116e22i 0.564418i 0.959353 + 0.282209i \(0.0910672\pi\)
−0.959353 + 0.282209i \(0.908933\pi\)
\(942\) 0 0
\(943\) 2.39329e21 0.117532
\(944\) 0 0
\(945\) −2.40224e21 −0.116112
\(946\) 0 0
\(947\) 1.72242e22i 0.819433i 0.912213 + 0.409716i \(0.134372\pi\)
−0.912213 + 0.409716i \(0.865628\pi\)
\(948\) 0 0
\(949\) − 1.36860e22i − 0.640885i
\(950\) 0 0
\(951\) −3.81879e21 −0.176024
\(952\) 0 0
\(953\) −8.21718e21 −0.372843 −0.186421 0.982470i \(-0.559689\pi\)
−0.186421 + 0.982470i \(0.559689\pi\)
\(954\) 0 0
\(955\) 6.48667e22i 2.89732i
\(956\) 0 0
\(957\) − 4.68307e22i − 2.05916i
\(958\) 0 0
\(959\) −1.52141e21 −0.0658576
\(960\) 0 0
\(961\) −2.29428e22 −0.977733
\(962\) 0 0
\(963\) − 4.13171e22i − 1.73353i
\(964\) 0 0
\(965\) 2.25623e22i 0.932029i
\(966\) 0 0
\(967\) 1.45625e22 0.592296 0.296148 0.955142i \(-0.404298\pi\)
0.296148 + 0.955142i \(0.404298\pi\)
\(968\) 0 0
\(969\) −3.68079e21 −0.147405
\(970\) 0 0
\(971\) − 4.44965e22i − 1.75462i −0.479928 0.877308i \(-0.659337\pi\)
0.479928 0.877308i \(-0.340663\pi\)
\(972\) 0 0
\(973\) 4.25874e20i 0.0165362i
\(974\) 0 0
\(975\) −4.26367e22 −1.63023
\(976\) 0 0
\(977\) 7.34006e21 0.276370 0.138185 0.990406i \(-0.455873\pi\)
0.138185 + 0.990406i \(0.455873\pi\)
\(978\) 0 0
\(979\) 9.16749e21i 0.339923i
\(980\) 0 0
\(981\) − 3.51119e22i − 1.28214i
\(982\) 0 0
\(983\) −1.35957e22 −0.488934 −0.244467 0.969658i \(-0.578613\pi\)
−0.244467 + 0.969658i \(0.578613\pi\)
\(984\) 0 0
\(985\) 5.11217e22 1.81065
\(986\) 0 0
\(987\) − 2.94999e21i − 0.102906i
\(988\) 0 0
\(989\) − 1.14589e22i − 0.393704i
\(990\) 0 0
\(991\) 2.67627e21 0.0905686 0.0452843 0.998974i \(-0.485581\pi\)
0.0452843 + 0.998974i \(0.485581\pi\)
\(992\) 0 0
\(993\) −1.90842e22 −0.636143
\(994\) 0 0
\(995\) 3.16743e21i 0.104000i
\(996\) 0 0
\(997\) 1.79920e22i 0.581924i 0.956735 + 0.290962i \(0.0939754\pi\)
−0.956735 + 0.290962i \(0.906025\pi\)
\(998\) 0 0
\(999\) 6.42390e22 2.04672
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 32.16.b.a.17.2 14
4.3 odd 2 8.16.b.a.5.6 yes 14
8.3 odd 2 8.16.b.a.5.5 14
8.5 even 2 inner 32.16.b.a.17.13 14
12.11 even 2 72.16.d.b.37.9 14
24.11 even 2 72.16.d.b.37.10 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.16.b.a.5.5 14 8.3 odd 2
8.16.b.a.5.6 yes 14 4.3 odd 2
32.16.b.a.17.2 14 1.1 even 1 trivial
32.16.b.a.17.13 14 8.5 even 2 inner
72.16.d.b.37.9 14 12.11 even 2
72.16.d.b.37.10 14 24.11 even 2