Properties

Label 32.16.a.e.1.2
Level $32$
Weight $16$
Character 32.1
Self dual yes
Analytic conductor $45.662$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [32,16,Mod(1,32)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("32.1"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(32, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 16, names="a")
 
Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 32.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2912] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.6619216320\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 10174x^{2} - 369720x - 3191805 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{27}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(116.540\) of defining polynomial
Character \(\chi\) \(=\) 32.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-634.991 q^{3} +134146. q^{5} -1.14384e6 q^{7} -1.39457e7 q^{9} +9.38825e7 q^{11} +1.44001e8 q^{13} -8.51813e7 q^{15} -1.07455e9 q^{17} -1.01588e9 q^{19} +7.26327e8 q^{21} -3.73320e9 q^{23} -1.25225e10 q^{25} +1.79668e10 q^{27} +5.59549e10 q^{29} +1.38114e11 q^{31} -5.96145e10 q^{33} -1.53441e11 q^{35} -1.62068e11 q^{37} -9.14394e10 q^{39} +1.27301e12 q^{41} +2.57947e12 q^{43} -1.87075e12 q^{45} +5.19038e12 q^{47} -3.43919e12 q^{49} +6.82329e11 q^{51} +8.52305e12 q^{53} +1.25939e13 q^{55} +6.45076e11 q^{57} +3.13853e13 q^{59} -1.54479e13 q^{61} +1.59516e13 q^{63} +1.93171e13 q^{65} +6.71953e13 q^{67} +2.37055e12 q^{69} +1.14103e14 q^{71} +2.31840e12 q^{73} +7.95168e12 q^{75} -1.07386e14 q^{77} -9.87720e13 q^{79} +1.88697e14 q^{81} -3.67908e13 q^{83} -1.44146e14 q^{85} -3.55309e13 q^{87} -5.46013e13 q^{89} -1.64714e14 q^{91} -8.77013e13 q^{93} -1.36276e14 q^{95} +8.64627e14 q^{97} -1.30926e15 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2912 q^{3} - 98280 q^{5} + 2755776 q^{7} + 26457940 q^{9} - 110853856 q^{11} - 187741448 q^{13} + 442991680 q^{15} + 2121294984 q^{17} - 419203872 q^{19} + 8397459968 q^{21} + 5330808384 q^{23} + 8564955740 q^{25}+ \cdots - 26\!\cdots\!84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −634.991 −0.167632 −0.0838162 0.996481i \(-0.526711\pi\)
−0.0838162 + 0.996481i \(0.526711\pi\)
\(4\) 0 0
\(5\) 134146. 0.767895 0.383947 0.923355i \(-0.374564\pi\)
0.383947 + 0.923355i \(0.374564\pi\)
\(6\) 0 0
\(7\) −1.14384e6 −0.524964 −0.262482 0.964937i \(-0.584541\pi\)
−0.262482 + 0.964937i \(0.584541\pi\)
\(8\) 0 0
\(9\) −1.39457e7 −0.971899
\(10\) 0 0
\(11\) 9.38825e7 1.45258 0.726289 0.687390i \(-0.241244\pi\)
0.726289 + 0.687390i \(0.241244\pi\)
\(12\) 0 0
\(13\) 1.44001e8 0.636489 0.318245 0.948009i \(-0.396907\pi\)
0.318245 + 0.948009i \(0.396907\pi\)
\(14\) 0 0
\(15\) −8.51813e7 −0.128724
\(16\) 0 0
\(17\) −1.07455e9 −0.635125 −0.317563 0.948237i \(-0.602864\pi\)
−0.317563 + 0.948237i \(0.602864\pi\)
\(18\) 0 0
\(19\) −1.01588e9 −0.260730 −0.130365 0.991466i \(-0.541615\pi\)
−0.130365 + 0.991466i \(0.541615\pi\)
\(20\) 0 0
\(21\) 7.26327e8 0.0880010
\(22\) 0 0
\(23\) −3.73320e9 −0.228625 −0.114312 0.993445i \(-0.536466\pi\)
−0.114312 + 0.993445i \(0.536466\pi\)
\(24\) 0 0
\(25\) −1.25225e10 −0.410338
\(26\) 0 0
\(27\) 1.79668e10 0.330554
\(28\) 0 0
\(29\) 5.59549e10 0.602356 0.301178 0.953568i \(-0.402620\pi\)
0.301178 + 0.953568i \(0.402620\pi\)
\(30\) 0 0
\(31\) 1.38114e11 0.901624 0.450812 0.892619i \(-0.351134\pi\)
0.450812 + 0.892619i \(0.351134\pi\)
\(32\) 0 0
\(33\) −5.96145e10 −0.243499
\(34\) 0 0
\(35\) −1.53441e11 −0.403117
\(36\) 0 0
\(37\) −1.62068e11 −0.280662 −0.140331 0.990105i \(-0.544817\pi\)
−0.140331 + 0.990105i \(0.544817\pi\)
\(38\) 0 0
\(39\) −9.14394e10 −0.106696
\(40\) 0 0
\(41\) 1.27301e12 1.02083 0.510415 0.859928i \(-0.329492\pi\)
0.510415 + 0.859928i \(0.329492\pi\)
\(42\) 0 0
\(43\) 2.57947e12 1.44716 0.723582 0.690238i \(-0.242494\pi\)
0.723582 + 0.690238i \(0.242494\pi\)
\(44\) 0 0
\(45\) −1.87075e12 −0.746316
\(46\) 0 0
\(47\) 5.19038e12 1.49440 0.747198 0.664602i \(-0.231399\pi\)
0.747198 + 0.664602i \(0.231399\pi\)
\(48\) 0 0
\(49\) −3.43919e12 −0.724413
\(50\) 0 0
\(51\) 6.82329e11 0.106468
\(52\) 0 0
\(53\) 8.52305e12 0.996611 0.498306 0.867001i \(-0.333956\pi\)
0.498306 + 0.867001i \(0.333956\pi\)
\(54\) 0 0
\(55\) 1.25939e13 1.11543
\(56\) 0 0
\(57\) 6.45076e11 0.0437069
\(58\) 0 0
\(59\) 3.13853e13 1.64186 0.820931 0.571028i \(-0.193455\pi\)
0.820931 + 0.571028i \(0.193455\pi\)
\(60\) 0 0
\(61\) −1.54479e13 −0.629355 −0.314677 0.949199i \(-0.601896\pi\)
−0.314677 + 0.949199i \(0.601896\pi\)
\(62\) 0 0
\(63\) 1.59516e13 0.510212
\(64\) 0 0
\(65\) 1.93171e13 0.488757
\(66\) 0 0
\(67\) 6.71953e13 1.35450 0.677248 0.735755i \(-0.263172\pi\)
0.677248 + 0.735755i \(0.263172\pi\)
\(68\) 0 0
\(69\) 2.37055e12 0.0383249
\(70\) 0 0
\(71\) 1.14103e14 1.48888 0.744439 0.667690i \(-0.232717\pi\)
0.744439 + 0.667690i \(0.232717\pi\)
\(72\) 0 0
\(73\) 2.31840e12 0.0245622 0.0122811 0.999925i \(-0.496091\pi\)
0.0122811 + 0.999925i \(0.496091\pi\)
\(74\) 0 0
\(75\) 7.95168e12 0.0687859
\(76\) 0 0
\(77\) −1.07386e14 −0.762551
\(78\) 0 0
\(79\) −9.87720e13 −0.578669 −0.289335 0.957228i \(-0.593434\pi\)
−0.289335 + 0.957228i \(0.593434\pi\)
\(80\) 0 0
\(81\) 1.88697e14 0.916488
\(82\) 0 0
\(83\) −3.67908e13 −0.148817 −0.0744087 0.997228i \(-0.523707\pi\)
−0.0744087 + 0.997228i \(0.523707\pi\)
\(84\) 0 0
\(85\) −1.44146e14 −0.487709
\(86\) 0 0
\(87\) −3.55309e13 −0.100974
\(88\) 0 0
\(89\) −5.46013e13 −0.130851 −0.0654256 0.997857i \(-0.520841\pi\)
−0.0654256 + 0.997857i \(0.520841\pi\)
\(90\) 0 0
\(91\) −1.64714e14 −0.334134
\(92\) 0 0
\(93\) −8.77013e13 −0.151142
\(94\) 0 0
\(95\) −1.36276e14 −0.200214
\(96\) 0 0
\(97\) 8.64627e14 1.08653 0.543264 0.839562i \(-0.317188\pi\)
0.543264 + 0.839562i \(0.317188\pi\)
\(98\) 0 0
\(99\) −1.30926e15 −1.41176
\(100\) 0 0
\(101\) −3.33628e14 −0.309636 −0.154818 0.987943i \(-0.549479\pi\)
−0.154818 + 0.987943i \(0.549479\pi\)
\(102\) 0 0
\(103\) −2.36802e15 −1.89717 −0.948585 0.316521i \(-0.897485\pi\)
−0.948585 + 0.316521i \(0.897485\pi\)
\(104\) 0 0
\(105\) 9.74337e13 0.0675755
\(106\) 0 0
\(107\) −7.63016e14 −0.459362 −0.229681 0.973266i \(-0.573768\pi\)
−0.229681 + 0.973266i \(0.573768\pi\)
\(108\) 0 0
\(109\) −3.39386e15 −1.77826 −0.889130 0.457655i \(-0.848689\pi\)
−0.889130 + 0.457655i \(0.848689\pi\)
\(110\) 0 0
\(111\) 1.02911e14 0.0470480
\(112\) 0 0
\(113\) 4.21910e15 1.68706 0.843531 0.537080i \(-0.180473\pi\)
0.843531 + 0.537080i \(0.180473\pi\)
\(114\) 0 0
\(115\) −5.00793e14 −0.175560
\(116\) 0 0
\(117\) −2.00820e15 −0.618603
\(118\) 0 0
\(119\) 1.22911e15 0.333418
\(120\) 0 0
\(121\) 4.63667e15 1.10998
\(122\) 0 0
\(123\) −8.08351e14 −0.171124
\(124\) 0 0
\(125\) −5.77364e15 −1.08299
\(126\) 0 0
\(127\) −1.97771e14 −0.0329332 −0.0164666 0.999864i \(-0.505242\pi\)
−0.0164666 + 0.999864i \(0.505242\pi\)
\(128\) 0 0
\(129\) −1.63794e15 −0.242592
\(130\) 0 0
\(131\) 1.01974e16 1.34572 0.672858 0.739772i \(-0.265066\pi\)
0.672858 + 0.739772i \(0.265066\pi\)
\(132\) 0 0
\(133\) 1.16201e15 0.136874
\(134\) 0 0
\(135\) 2.41017e15 0.253831
\(136\) 0 0
\(137\) 9.54155e15 0.899942 0.449971 0.893043i \(-0.351434\pi\)
0.449971 + 0.893043i \(0.351434\pi\)
\(138\) 0 0
\(139\) 6.69800e15 0.566675 0.283338 0.959020i \(-0.408558\pi\)
0.283338 + 0.959020i \(0.408558\pi\)
\(140\) 0 0
\(141\) −3.29585e15 −0.250509
\(142\) 0 0
\(143\) 1.35192e16 0.924550
\(144\) 0 0
\(145\) 7.50611e15 0.462546
\(146\) 0 0
\(147\) 2.18386e15 0.121435
\(148\) 0 0
\(149\) −3.24398e16 −1.62998 −0.814988 0.579478i \(-0.803256\pi\)
−0.814988 + 0.579478i \(0.803256\pi\)
\(150\) 0 0
\(151\) 3.37588e16 1.53483 0.767414 0.641152i \(-0.221543\pi\)
0.767414 + 0.641152i \(0.221543\pi\)
\(152\) 0 0
\(153\) 1.49853e16 0.617278
\(154\) 0 0
\(155\) 1.85274e16 0.692353
\(156\) 0 0
\(157\) 8.10693e15 0.275175 0.137588 0.990490i \(-0.456065\pi\)
0.137588 + 0.990490i \(0.456065\pi\)
\(158\) 0 0
\(159\) −5.41206e15 −0.167064
\(160\) 0 0
\(161\) 4.27018e15 0.120020
\(162\) 0 0
\(163\) −2.95667e16 −0.757522 −0.378761 0.925494i \(-0.623650\pi\)
−0.378761 + 0.925494i \(0.623650\pi\)
\(164\) 0 0
\(165\) −7.99703e15 −0.186982
\(166\) 0 0
\(167\) −8.40284e16 −1.79495 −0.897475 0.441065i \(-0.854601\pi\)
−0.897475 + 0.441065i \(0.854601\pi\)
\(168\) 0 0
\(169\) −3.04495e16 −0.594882
\(170\) 0 0
\(171\) 1.41672e16 0.253404
\(172\) 0 0
\(173\) 6.13670e16 1.00598 0.502990 0.864292i \(-0.332233\pi\)
0.502990 + 0.864292i \(0.332233\pi\)
\(174\) 0 0
\(175\) 1.43237e16 0.215413
\(176\) 0 0
\(177\) −1.99294e16 −0.275229
\(178\) 0 0
\(179\) −6.99725e16 −0.888238 −0.444119 0.895968i \(-0.646483\pi\)
−0.444119 + 0.895968i \(0.646483\pi\)
\(180\) 0 0
\(181\) 3.86157e16 0.450998 0.225499 0.974243i \(-0.427599\pi\)
0.225499 + 0.974243i \(0.427599\pi\)
\(182\) 0 0
\(183\) 9.80927e15 0.105500
\(184\) 0 0
\(185\) −2.17407e16 −0.215519
\(186\) 0 0
\(187\) −1.00881e17 −0.922569
\(188\) 0 0
\(189\) −2.05511e16 −0.173529
\(190\) 0 0
\(191\) −1.48426e17 −1.15813 −0.579067 0.815280i \(-0.696583\pi\)
−0.579067 + 0.815280i \(0.696583\pi\)
\(192\) 0 0
\(193\) −1.92668e17 −1.39036 −0.695182 0.718833i \(-0.744676\pi\)
−0.695182 + 0.718833i \(0.744676\pi\)
\(194\) 0 0
\(195\) −1.22662e16 −0.0819315
\(196\) 0 0
\(197\) 2.12947e17 1.31758 0.658788 0.752328i \(-0.271069\pi\)
0.658788 + 0.752328i \(0.271069\pi\)
\(198\) 0 0
\(199\) −1.41451e17 −0.811352 −0.405676 0.914017i \(-0.632964\pi\)
−0.405676 + 0.914017i \(0.632964\pi\)
\(200\) 0 0
\(201\) −4.26684e16 −0.227057
\(202\) 0 0
\(203\) −6.40034e16 −0.316215
\(204\) 0 0
\(205\) 1.70769e17 0.783890
\(206\) 0 0
\(207\) 5.20621e16 0.222200
\(208\) 0 0
\(209\) −9.53736e16 −0.378731
\(210\) 0 0
\(211\) 2.30928e17 0.853803 0.426902 0.904298i \(-0.359605\pi\)
0.426902 + 0.904298i \(0.359605\pi\)
\(212\) 0 0
\(213\) −7.24543e16 −0.249584
\(214\) 0 0
\(215\) 3.46025e17 1.11127
\(216\) 0 0
\(217\) −1.57980e17 −0.473321
\(218\) 0 0
\(219\) −1.47216e15 −0.00411742
\(220\) 0 0
\(221\) −1.54736e17 −0.404250
\(222\) 0 0
\(223\) 2.92734e17 0.714802 0.357401 0.933951i \(-0.383663\pi\)
0.357401 + 0.933951i \(0.383663\pi\)
\(224\) 0 0
\(225\) 1.74635e17 0.398807
\(226\) 0 0
\(227\) 2.75305e17 0.588329 0.294165 0.955755i \(-0.404959\pi\)
0.294165 + 0.955755i \(0.404959\pi\)
\(228\) 0 0
\(229\) 8.96352e17 1.79355 0.896773 0.442491i \(-0.145905\pi\)
0.896773 + 0.442491i \(0.145905\pi\)
\(230\) 0 0
\(231\) 6.81894e16 0.127828
\(232\) 0 0
\(233\) −4.86086e17 −0.854169 −0.427085 0.904212i \(-0.640459\pi\)
−0.427085 + 0.904212i \(0.640459\pi\)
\(234\) 0 0
\(235\) 6.96267e17 1.14754
\(236\) 0 0
\(237\) 6.27193e16 0.0970037
\(238\) 0 0
\(239\) 5.19083e17 0.753794 0.376897 0.926255i \(-0.376991\pi\)
0.376897 + 0.926255i \(0.376991\pi\)
\(240\) 0 0
\(241\) −4.01529e17 −0.547759 −0.273880 0.961764i \(-0.588307\pi\)
−0.273880 + 0.961764i \(0.588307\pi\)
\(242\) 0 0
\(243\) −3.77625e17 −0.484187
\(244\) 0 0
\(245\) −4.61353e17 −0.556273
\(246\) 0 0
\(247\) −1.46288e17 −0.165952
\(248\) 0 0
\(249\) 2.33618e16 0.0249466
\(250\) 0 0
\(251\) 9.05569e16 0.0910686 0.0455343 0.998963i \(-0.485501\pi\)
0.0455343 + 0.998963i \(0.485501\pi\)
\(252\) 0 0
\(253\) −3.50482e17 −0.332095
\(254\) 0 0
\(255\) 9.15315e16 0.0817559
\(256\) 0 0
\(257\) 1.55330e18 1.30845 0.654224 0.756301i \(-0.272995\pi\)
0.654224 + 0.756301i \(0.272995\pi\)
\(258\) 0 0
\(259\) 1.85379e17 0.147337
\(260\) 0 0
\(261\) −7.80330e17 −0.585429
\(262\) 0 0
\(263\) 4.03350e17 0.285768 0.142884 0.989739i \(-0.454362\pi\)
0.142884 + 0.989739i \(0.454362\pi\)
\(264\) 0 0
\(265\) 1.14333e18 0.765293
\(266\) 0 0
\(267\) 3.46713e16 0.0219349
\(268\) 0 0
\(269\) −1.16667e18 −0.697922 −0.348961 0.937137i \(-0.613465\pi\)
−0.348961 + 0.937137i \(0.613465\pi\)
\(270\) 0 0
\(271\) −2.85152e18 −1.61364 −0.806821 0.590796i \(-0.798814\pi\)
−0.806821 + 0.590796i \(0.798814\pi\)
\(272\) 0 0
\(273\) 1.04592e17 0.0560117
\(274\) 0 0
\(275\) −1.17564e18 −0.596047
\(276\) 0 0
\(277\) −1.70828e18 −0.820278 −0.410139 0.912023i \(-0.634520\pi\)
−0.410139 + 0.912023i \(0.634520\pi\)
\(278\) 0 0
\(279\) −1.92610e18 −0.876288
\(280\) 0 0
\(281\) 3.12673e18 1.34832 0.674161 0.738585i \(-0.264505\pi\)
0.674161 + 0.738585i \(0.264505\pi\)
\(282\) 0 0
\(283\) −3.93221e18 −1.60782 −0.803912 0.594748i \(-0.797252\pi\)
−0.803912 + 0.594748i \(0.797252\pi\)
\(284\) 0 0
\(285\) 8.65342e16 0.0335623
\(286\) 0 0
\(287\) −1.45612e18 −0.535899
\(288\) 0 0
\(289\) −1.70777e18 −0.596616
\(290\) 0 0
\(291\) −5.49030e17 −0.182137
\(292\) 0 0
\(293\) −9.78910e15 −0.00308486 −0.00154243 0.999999i \(-0.500491\pi\)
−0.00154243 + 0.999999i \(0.500491\pi\)
\(294\) 0 0
\(295\) 4.21021e18 1.26078
\(296\) 0 0
\(297\) 1.68677e18 0.480156
\(298\) 0 0
\(299\) −5.37586e17 −0.145517
\(300\) 0 0
\(301\) −2.95050e18 −0.759709
\(302\) 0 0
\(303\) 2.11851e17 0.0519051
\(304\) 0 0
\(305\) −2.07227e18 −0.483278
\(306\) 0 0
\(307\) 2.66489e18 0.591754 0.295877 0.955226i \(-0.404388\pi\)
0.295877 + 0.955226i \(0.404388\pi\)
\(308\) 0 0
\(309\) 1.50367e18 0.318027
\(310\) 0 0
\(311\) −6.21474e18 −1.25233 −0.626167 0.779689i \(-0.715377\pi\)
−0.626167 + 0.779689i \(0.715377\pi\)
\(312\) 0 0
\(313\) 7.37565e18 1.41650 0.708252 0.705960i \(-0.249484\pi\)
0.708252 + 0.705960i \(0.249484\pi\)
\(314\) 0 0
\(315\) 2.13984e18 0.391789
\(316\) 0 0
\(317\) −4.51003e18 −0.787472 −0.393736 0.919224i \(-0.628818\pi\)
−0.393736 + 0.919224i \(0.628818\pi\)
\(318\) 0 0
\(319\) 5.25319e18 0.874969
\(320\) 0 0
\(321\) 4.84508e17 0.0770040
\(322\) 0 0
\(323\) 1.09162e18 0.165597
\(324\) 0 0
\(325\) −1.80326e18 −0.261175
\(326\) 0 0
\(327\) 2.15507e18 0.298094
\(328\) 0 0
\(329\) −5.93696e18 −0.784504
\(330\) 0 0
\(331\) 7.62828e18 0.963200 0.481600 0.876391i \(-0.340056\pi\)
0.481600 + 0.876391i \(0.340056\pi\)
\(332\) 0 0
\(333\) 2.26014e18 0.272775
\(334\) 0 0
\(335\) 9.01396e18 1.04011
\(336\) 0 0
\(337\) −3.59960e17 −0.0397219 −0.0198609 0.999803i \(-0.506322\pi\)
−0.0198609 + 0.999803i \(0.506322\pi\)
\(338\) 0 0
\(339\) −2.67909e18 −0.282806
\(340\) 0 0
\(341\) 1.29665e19 1.30968
\(342\) 0 0
\(343\) 9.36433e18 0.905255
\(344\) 0 0
\(345\) 3.17999e17 0.0294295
\(346\) 0 0
\(347\) 3.93125e18 0.348385 0.174192 0.984712i \(-0.444269\pi\)
0.174192 + 0.984712i \(0.444269\pi\)
\(348\) 0 0
\(349\) 3.15117e18 0.267474 0.133737 0.991017i \(-0.457302\pi\)
0.133737 + 0.991017i \(0.457302\pi\)
\(350\) 0 0
\(351\) 2.58724e18 0.210394
\(352\) 0 0
\(353\) −8.44905e18 −0.658411 −0.329206 0.944258i \(-0.606781\pi\)
−0.329206 + 0.944258i \(0.606781\pi\)
\(354\) 0 0
\(355\) 1.53064e19 1.14330
\(356\) 0 0
\(357\) −7.80475e17 −0.0558917
\(358\) 0 0
\(359\) −9.74186e18 −0.669011 −0.334506 0.942394i \(-0.608569\pi\)
−0.334506 + 0.942394i \(0.608569\pi\)
\(360\) 0 0
\(361\) −1.41491e19 −0.932020
\(362\) 0 0
\(363\) −2.94424e18 −0.186069
\(364\) 0 0
\(365\) 3.11003e17 0.0188612
\(366\) 0 0
\(367\) −1.38111e19 −0.803957 −0.401979 0.915649i \(-0.631677\pi\)
−0.401979 + 0.915649i \(0.631677\pi\)
\(368\) 0 0
\(369\) −1.77530e19 −0.992144
\(370\) 0 0
\(371\) −9.74899e18 −0.523185
\(372\) 0 0
\(373\) 3.07694e19 1.58600 0.792999 0.609222i \(-0.208518\pi\)
0.792999 + 0.609222i \(0.208518\pi\)
\(374\) 0 0
\(375\) 3.66621e18 0.181544
\(376\) 0 0
\(377\) 8.05758e18 0.383393
\(378\) 0 0
\(379\) −1.19711e19 −0.547442 −0.273721 0.961809i \(-0.588255\pi\)
−0.273721 + 0.961809i \(0.588255\pi\)
\(380\) 0 0
\(381\) 1.25583e17 0.00552068
\(382\) 0 0
\(383\) −2.18781e19 −0.924740 −0.462370 0.886687i \(-0.653001\pi\)
−0.462370 + 0.886687i \(0.653001\pi\)
\(384\) 0 0
\(385\) −1.44054e19 −0.585559
\(386\) 0 0
\(387\) −3.59726e19 −1.40650
\(388\) 0 0
\(389\) 3.37297e19 1.26879 0.634396 0.773008i \(-0.281249\pi\)
0.634396 + 0.773008i \(0.281249\pi\)
\(390\) 0 0
\(391\) 4.01151e18 0.145205
\(392\) 0 0
\(393\) −6.47524e18 −0.225586
\(394\) 0 0
\(395\) −1.32498e19 −0.444357
\(396\) 0 0
\(397\) −4.30571e19 −1.39032 −0.695162 0.718853i \(-0.744667\pi\)
−0.695162 + 0.718853i \(0.744667\pi\)
\(398\) 0 0
\(399\) −7.37864e17 −0.0229445
\(400\) 0 0
\(401\) −2.66863e19 −0.799292 −0.399646 0.916670i \(-0.630867\pi\)
−0.399646 + 0.916670i \(0.630867\pi\)
\(402\) 0 0
\(403\) 1.98886e19 0.573874
\(404\) 0 0
\(405\) 2.53128e19 0.703766
\(406\) 0 0
\(407\) −1.52153e19 −0.407683
\(408\) 0 0
\(409\) 6.77946e19 1.75094 0.875468 0.483276i \(-0.160553\pi\)
0.875468 + 0.483276i \(0.160553\pi\)
\(410\) 0 0
\(411\) −6.05880e18 −0.150860
\(412\) 0 0
\(413\) −3.58998e19 −0.861919
\(414\) 0 0
\(415\) −4.93533e18 −0.114276
\(416\) 0 0
\(417\) −4.25317e18 −0.0949931
\(418\) 0 0
\(419\) −3.00699e19 −0.647928 −0.323964 0.946069i \(-0.605016\pi\)
−0.323964 + 0.946069i \(0.605016\pi\)
\(420\) 0 0
\(421\) 5.20870e18 0.108296 0.0541481 0.998533i \(-0.482756\pi\)
0.0541481 + 0.998533i \(0.482756\pi\)
\(422\) 0 0
\(423\) −7.23835e19 −1.45240
\(424\) 0 0
\(425\) 1.34561e19 0.260616
\(426\) 0 0
\(427\) 1.76699e19 0.330389
\(428\) 0 0
\(429\) −8.58456e18 −0.154985
\(430\) 0 0
\(431\) 5.23618e19 0.912924 0.456462 0.889743i \(-0.349116\pi\)
0.456462 + 0.889743i \(0.349116\pi\)
\(432\) 0 0
\(433\) −6.72276e19 −1.13211 −0.566054 0.824368i \(-0.691531\pi\)
−0.566054 + 0.824368i \(0.691531\pi\)
\(434\) 0 0
\(435\) −4.76631e18 −0.0775377
\(436\) 0 0
\(437\) 3.79250e18 0.0596094
\(438\) 0 0
\(439\) 1.08865e20 1.65350 0.826752 0.562567i \(-0.190186\pi\)
0.826752 + 0.562567i \(0.190186\pi\)
\(440\) 0 0
\(441\) 4.79619e19 0.704056
\(442\) 0 0
\(443\) 7.96094e19 1.12963 0.564815 0.825217i \(-0.308947\pi\)
0.564815 + 0.825217i \(0.308947\pi\)
\(444\) 0 0
\(445\) −7.32453e18 −0.100480
\(446\) 0 0
\(447\) 2.05990e19 0.273237
\(448\) 0 0
\(449\) 4.82462e18 0.0618893 0.0309446 0.999521i \(-0.490148\pi\)
0.0309446 + 0.999521i \(0.490148\pi\)
\(450\) 0 0
\(451\) 1.19513e20 1.48283
\(452\) 0 0
\(453\) −2.14365e19 −0.257287
\(454\) 0 0
\(455\) −2.20957e19 −0.256580
\(456\) 0 0
\(457\) 1.10838e20 1.24542 0.622712 0.782451i \(-0.286031\pi\)
0.622712 + 0.782451i \(0.286031\pi\)
\(458\) 0 0
\(459\) −1.93062e19 −0.209943
\(460\) 0 0
\(461\) −1.11041e20 −1.16876 −0.584382 0.811479i \(-0.698663\pi\)
−0.584382 + 0.811479i \(0.698663\pi\)
\(462\) 0 0
\(463\) 7.48407e19 0.762572 0.381286 0.924457i \(-0.375481\pi\)
0.381286 + 0.924457i \(0.375481\pi\)
\(464\) 0 0
\(465\) −1.17647e19 −0.116061
\(466\) 0 0
\(467\) 1.10986e19 0.106021 0.0530106 0.998594i \(-0.483118\pi\)
0.0530106 + 0.998594i \(0.483118\pi\)
\(468\) 0 0
\(469\) −7.68606e19 −0.711062
\(470\) 0 0
\(471\) −5.14783e18 −0.0461283
\(472\) 0 0
\(473\) 2.42167e20 2.10212
\(474\) 0 0
\(475\) 1.27214e19 0.106988
\(476\) 0 0
\(477\) −1.18860e20 −0.968606
\(478\) 0 0
\(479\) −5.04298e19 −0.398264 −0.199132 0.979973i \(-0.563812\pi\)
−0.199132 + 0.979973i \(0.563812\pi\)
\(480\) 0 0
\(481\) −2.33379e19 −0.178638
\(482\) 0 0
\(483\) −2.71153e18 −0.0201192
\(484\) 0 0
\(485\) 1.15986e20 0.834339
\(486\) 0 0
\(487\) 2.44347e20 1.70427 0.852137 0.523319i \(-0.175307\pi\)
0.852137 + 0.523319i \(0.175307\pi\)
\(488\) 0 0
\(489\) 1.87746e19 0.126985
\(490\) 0 0
\(491\) −2.19942e20 −1.44277 −0.721385 0.692534i \(-0.756494\pi\)
−0.721385 + 0.692534i \(0.756494\pi\)
\(492\) 0 0
\(493\) −6.01263e19 −0.382572
\(494\) 0 0
\(495\) −1.75631e20 −1.08408
\(496\) 0 0
\(497\) −1.30515e20 −0.781608
\(498\) 0 0
\(499\) 1.54659e20 0.898716 0.449358 0.893352i \(-0.351653\pi\)
0.449358 + 0.893352i \(0.351653\pi\)
\(500\) 0 0
\(501\) 5.33573e19 0.300892
\(502\) 0 0
\(503\) −2.48198e20 −1.35844 −0.679218 0.733937i \(-0.737681\pi\)
−0.679218 + 0.733937i \(0.737681\pi\)
\(504\) 0 0
\(505\) −4.47548e19 −0.237768
\(506\) 0 0
\(507\) 1.93352e19 0.0997214
\(508\) 0 0
\(509\) −2.89865e20 −1.45148 −0.725742 0.687967i \(-0.758503\pi\)
−0.725742 + 0.687967i \(0.758503\pi\)
\(510\) 0 0
\(511\) −2.65188e18 −0.0128943
\(512\) 0 0
\(513\) −1.82522e19 −0.0861856
\(514\) 0 0
\(515\) −3.17660e20 −1.45683
\(516\) 0 0
\(517\) 4.87286e20 2.17072
\(518\) 0 0
\(519\) −3.89675e19 −0.168635
\(520\) 0 0
\(521\) 1.33511e20 0.561348 0.280674 0.959803i \(-0.409442\pi\)
0.280674 + 0.959803i \(0.409442\pi\)
\(522\) 0 0
\(523\) 2.18247e20 0.891630 0.445815 0.895125i \(-0.352914\pi\)
0.445815 + 0.895125i \(0.352914\pi\)
\(524\) 0 0
\(525\) −9.09544e18 −0.0361101
\(526\) 0 0
\(527\) −1.48411e20 −0.572645
\(528\) 0 0
\(529\) −2.52698e20 −0.947731
\(530\) 0 0
\(531\) −4.37690e20 −1.59572
\(532\) 0 0
\(533\) 1.83315e20 0.649747
\(534\) 0 0
\(535\) −1.02355e20 −0.352742
\(536\) 0 0
\(537\) 4.44319e19 0.148898
\(538\) 0 0
\(539\) −3.22880e20 −1.05227
\(540\) 0 0
\(541\) −2.08153e20 −0.659787 −0.329894 0.944018i \(-0.607013\pi\)
−0.329894 + 0.944018i \(0.607013\pi\)
\(542\) 0 0
\(543\) −2.45206e19 −0.0756019
\(544\) 0 0
\(545\) −4.55272e20 −1.36552
\(546\) 0 0
\(547\) 1.78808e20 0.521775 0.260887 0.965369i \(-0.415985\pi\)
0.260887 + 0.965369i \(0.415985\pi\)
\(548\) 0 0
\(549\) 2.15432e20 0.611670
\(550\) 0 0
\(551\) −5.68437e19 −0.157053
\(552\) 0 0
\(553\) 1.12979e20 0.303781
\(554\) 0 0
\(555\) 1.38051e19 0.0361279
\(556\) 0 0
\(557\) −8.66937e18 −0.0220838 −0.0110419 0.999939i \(-0.503515\pi\)
−0.0110419 + 0.999939i \(0.503515\pi\)
\(558\) 0 0
\(559\) 3.71447e20 0.921104
\(560\) 0 0
\(561\) 6.40587e19 0.154652
\(562\) 0 0
\(563\) 3.90636e20 0.918247 0.459124 0.888372i \(-0.348164\pi\)
0.459124 + 0.888372i \(0.348164\pi\)
\(564\) 0 0
\(565\) 5.65974e20 1.29549
\(566\) 0 0
\(567\) −2.15839e20 −0.481123
\(568\) 0 0
\(569\) −2.40917e18 −0.00523028 −0.00261514 0.999997i \(-0.500832\pi\)
−0.00261514 + 0.999997i \(0.500832\pi\)
\(570\) 0 0
\(571\) 8.00598e20 1.69295 0.846474 0.532430i \(-0.178721\pi\)
0.846474 + 0.532430i \(0.178721\pi\)
\(572\) 0 0
\(573\) 9.42490e19 0.194141
\(574\) 0 0
\(575\) 4.67491e19 0.0938133
\(576\) 0 0
\(577\) −7.41944e20 −1.45062 −0.725308 0.688424i \(-0.758303\pi\)
−0.725308 + 0.688424i \(0.758303\pi\)
\(578\) 0 0
\(579\) 1.22342e20 0.233070
\(580\) 0 0
\(581\) 4.20828e19 0.0781238
\(582\) 0 0
\(583\) 8.00165e20 1.44766
\(584\) 0 0
\(585\) −2.69391e20 −0.475022
\(586\) 0 0
\(587\) −2.34877e20 −0.403696 −0.201848 0.979417i \(-0.564695\pi\)
−0.201848 + 0.979417i \(0.564695\pi\)
\(588\) 0 0
\(589\) −1.40308e20 −0.235081
\(590\) 0 0
\(591\) −1.35220e20 −0.220869
\(592\) 0 0
\(593\) 1.12197e20 0.178678 0.0893392 0.996001i \(-0.471524\pi\)
0.0893392 + 0.996001i \(0.471524\pi\)
\(594\) 0 0
\(595\) 1.64880e20 0.256030
\(596\) 0 0
\(597\) 8.98204e19 0.136009
\(598\) 0 0
\(599\) 2.72137e20 0.401871 0.200935 0.979604i \(-0.435602\pi\)
0.200935 + 0.979604i \(0.435602\pi\)
\(600\) 0 0
\(601\) −9.54015e19 −0.137403 −0.0687016 0.997637i \(-0.521886\pi\)
−0.0687016 + 0.997637i \(0.521886\pi\)
\(602\) 0 0
\(603\) −9.37085e20 −1.31643
\(604\) 0 0
\(605\) 6.21989e20 0.852349
\(606\) 0 0
\(607\) 8.53048e20 1.14040 0.570201 0.821505i \(-0.306865\pi\)
0.570201 + 0.821505i \(0.306865\pi\)
\(608\) 0 0
\(609\) 4.06416e19 0.0530079
\(610\) 0 0
\(611\) 7.47421e20 0.951166
\(612\) 0 0
\(613\) −2.69183e20 −0.334267 −0.167134 0.985934i \(-0.553451\pi\)
−0.167134 + 0.985934i \(0.553451\pi\)
\(614\) 0 0
\(615\) −1.08437e20 −0.131405
\(616\) 0 0
\(617\) 5.48639e20 0.648855 0.324428 0.945911i \(-0.394828\pi\)
0.324428 + 0.945911i \(0.394828\pi\)
\(618\) 0 0
\(619\) 8.74983e20 1.01000 0.504998 0.863120i \(-0.331493\pi\)
0.504998 + 0.863120i \(0.331493\pi\)
\(620\) 0 0
\(621\) −6.70738e19 −0.0755728
\(622\) 0 0
\(623\) 6.24551e19 0.0686922
\(624\) 0 0
\(625\) −3.92353e20 −0.421285
\(626\) 0 0
\(627\) 6.05614e19 0.0634876
\(628\) 0 0
\(629\) 1.74150e20 0.178255
\(630\) 0 0
\(631\) 2.36778e20 0.236658 0.118329 0.992974i \(-0.462246\pi\)
0.118329 + 0.992974i \(0.462246\pi\)
\(632\) 0 0
\(633\) −1.46637e20 −0.143125
\(634\) 0 0
\(635\) −2.65301e19 −0.0252892
\(636\) 0 0
\(637\) −4.95248e20 −0.461081
\(638\) 0 0
\(639\) −1.59124e21 −1.44704
\(640\) 0 0
\(641\) −5.34458e19 −0.0474764 −0.0237382 0.999718i \(-0.507557\pi\)
−0.0237382 + 0.999718i \(0.507557\pi\)
\(642\) 0 0
\(643\) −1.27376e21 −1.10536 −0.552682 0.833392i \(-0.686395\pi\)
−0.552682 + 0.833392i \(0.686395\pi\)
\(644\) 0 0
\(645\) −2.19723e20 −0.186285
\(646\) 0 0
\(647\) −2.01963e21 −1.67297 −0.836486 0.547988i \(-0.815394\pi\)
−0.836486 + 0.547988i \(0.815394\pi\)
\(648\) 0 0
\(649\) 2.94653e21 2.38493
\(650\) 0 0
\(651\) 1.00316e20 0.0793439
\(652\) 0 0
\(653\) −2.00632e21 −1.55078 −0.775392 0.631480i \(-0.782448\pi\)
−0.775392 + 0.631480i \(0.782448\pi\)
\(654\) 0 0
\(655\) 1.36793e21 1.03337
\(656\) 0 0
\(657\) −3.23317e19 −0.0238720
\(658\) 0 0
\(659\) −2.07879e21 −1.50027 −0.750135 0.661285i \(-0.770011\pi\)
−0.750135 + 0.661285i \(0.770011\pi\)
\(660\) 0 0
\(661\) −1.14859e21 −0.810317 −0.405158 0.914247i \(-0.632784\pi\)
−0.405158 + 0.914247i \(0.632784\pi\)
\(662\) 0 0
\(663\) 9.82562e19 0.0677655
\(664\) 0 0
\(665\) 1.55878e20 0.105105
\(666\) 0 0
\(667\) −2.08891e20 −0.137713
\(668\) 0 0
\(669\) −1.85883e20 −0.119824
\(670\) 0 0
\(671\) −1.45029e21 −0.914187
\(672\) 0 0
\(673\) 1.06762e21 0.658120 0.329060 0.944309i \(-0.393268\pi\)
0.329060 + 0.944309i \(0.393268\pi\)
\(674\) 0 0
\(675\) −2.24990e20 −0.135639
\(676\) 0 0
\(677\) −1.46442e21 −0.863479 −0.431739 0.901998i \(-0.642100\pi\)
−0.431739 + 0.901998i \(0.642100\pi\)
\(678\) 0 0
\(679\) −9.88994e20 −0.570388
\(680\) 0 0
\(681\) −1.74816e20 −0.0986231
\(682\) 0 0
\(683\) −9.87991e20 −0.545253 −0.272626 0.962120i \(-0.587892\pi\)
−0.272626 + 0.962120i \(0.587892\pi\)
\(684\) 0 0
\(685\) 1.27996e21 0.691061
\(686\) 0 0
\(687\) −5.69175e20 −0.300656
\(688\) 0 0
\(689\) 1.22733e21 0.634332
\(690\) 0 0
\(691\) 1.14670e21 0.579917 0.289959 0.957039i \(-0.406358\pi\)
0.289959 + 0.957039i \(0.406358\pi\)
\(692\) 0 0
\(693\) 1.49758e21 0.741123
\(694\) 0 0
\(695\) 8.98508e20 0.435147
\(696\) 0 0
\(697\) −1.36791e21 −0.648355
\(698\) 0 0
\(699\) 3.08660e20 0.143187
\(700\) 0 0
\(701\) 9.61458e19 0.0436561 0.0218281 0.999762i \(-0.493051\pi\)
0.0218281 + 0.999762i \(0.493051\pi\)
\(702\) 0 0
\(703\) 1.64642e20 0.0731770
\(704\) 0 0
\(705\) −4.42123e20 −0.192365
\(706\) 0 0
\(707\) 3.81617e20 0.162548
\(708\) 0 0
\(709\) −2.01099e21 −0.838616 −0.419308 0.907844i \(-0.637727\pi\)
−0.419308 + 0.907844i \(0.637727\pi\)
\(710\) 0 0
\(711\) 1.37744e21 0.562408
\(712\) 0 0
\(713\) −5.15609e20 −0.206134
\(714\) 0 0
\(715\) 1.81354e21 0.709957
\(716\) 0 0
\(717\) −3.29613e20 −0.126360
\(718\) 0 0
\(719\) 5.47206e20 0.205440 0.102720 0.994710i \(-0.467245\pi\)
0.102720 + 0.994710i \(0.467245\pi\)
\(720\) 0 0
\(721\) 2.70864e21 0.995947
\(722\) 0 0
\(723\) 2.54968e20 0.0918222
\(724\) 0 0
\(725\) −7.00696e20 −0.247169
\(726\) 0 0
\(727\) 1.21154e21 0.418630 0.209315 0.977848i \(-0.432877\pi\)
0.209315 + 0.977848i \(0.432877\pi\)
\(728\) 0 0
\(729\) −2.46780e21 −0.835322
\(730\) 0 0
\(731\) −2.77177e21 −0.919131
\(732\) 0 0
\(733\) 1.21006e21 0.393121 0.196561 0.980492i \(-0.437023\pi\)
0.196561 + 0.980492i \(0.437023\pi\)
\(734\) 0 0
\(735\) 2.92955e20 0.0932493
\(736\) 0 0
\(737\) 6.30846e21 1.96751
\(738\) 0 0
\(739\) 3.33450e21 1.01905 0.509527 0.860455i \(-0.329820\pi\)
0.509527 + 0.860455i \(0.329820\pi\)
\(740\) 0 0
\(741\) 9.28918e19 0.0278190
\(742\) 0 0
\(743\) 2.93853e21 0.862410 0.431205 0.902254i \(-0.358089\pi\)
0.431205 + 0.902254i \(0.358089\pi\)
\(744\) 0 0
\(745\) −4.35166e21 −1.25165
\(746\) 0 0
\(747\) 5.13074e20 0.144636
\(748\) 0 0
\(749\) 8.72768e20 0.241149
\(750\) 0 0
\(751\) 5.03046e20 0.136241 0.0681206 0.997677i \(-0.478300\pi\)
0.0681206 + 0.997677i \(0.478300\pi\)
\(752\) 0 0
\(753\) −5.75028e19 −0.0152660
\(754\) 0 0
\(755\) 4.52860e21 1.17859
\(756\) 0 0
\(757\) −1.61904e21 −0.413083 −0.206542 0.978438i \(-0.566221\pi\)
−0.206542 + 0.978438i \(0.566221\pi\)
\(758\) 0 0
\(759\) 2.22553e20 0.0556699
\(760\) 0 0
\(761\) −3.90363e21 −0.957378 −0.478689 0.877985i \(-0.658888\pi\)
−0.478689 + 0.877985i \(0.658888\pi\)
\(762\) 0 0
\(763\) 3.88203e21 0.933522
\(764\) 0 0
\(765\) 2.01022e21 0.474004
\(766\) 0 0
\(767\) 4.51953e21 1.04503
\(768\) 0 0
\(769\) −6.51753e21 −1.47787 −0.738934 0.673778i \(-0.764670\pi\)
−0.738934 + 0.673778i \(0.764670\pi\)
\(770\) 0 0
\(771\) −9.86330e20 −0.219338
\(772\) 0 0
\(773\) 2.11533e21 0.461352 0.230676 0.973031i \(-0.425906\pi\)
0.230676 + 0.973031i \(0.425906\pi\)
\(774\) 0 0
\(775\) −1.72954e21 −0.369970
\(776\) 0 0
\(777\) −1.17714e20 −0.0246985
\(778\) 0 0
\(779\) −1.29323e21 −0.266161
\(780\) 0 0
\(781\) 1.07123e22 2.16271
\(782\) 0 0
\(783\) 1.00533e21 0.199111
\(784\) 0 0
\(785\) 1.08751e21 0.211306
\(786\) 0 0
\(787\) −7.66416e21 −1.46101 −0.730507 0.682906i \(-0.760716\pi\)
−0.730507 + 0.682906i \(0.760716\pi\)
\(788\) 0 0
\(789\) −2.56124e20 −0.0479040
\(790\) 0 0
\(791\) −4.82597e21 −0.885647
\(792\) 0 0
\(793\) −2.22452e21 −0.400578
\(794\) 0 0
\(795\) −7.26004e20 −0.128288
\(796\) 0 0
\(797\) 7.50732e20 0.130181 0.0650904 0.997879i \(-0.479266\pi\)
0.0650904 + 0.997879i \(0.479266\pi\)
\(798\) 0 0
\(799\) −5.57732e21 −0.949128
\(800\) 0 0
\(801\) 7.61453e20 0.127174
\(802\) 0 0
\(803\) 2.17657e20 0.0356785
\(804\) 0 0
\(805\) 5.72827e20 0.0921625
\(806\) 0 0
\(807\) 7.40826e20 0.116994
\(808\) 0 0
\(809\) −5.65783e21 −0.877073 −0.438536 0.898713i \(-0.644503\pi\)
−0.438536 + 0.898713i \(0.644503\pi\)
\(810\) 0 0
\(811\) −6.21577e21 −0.945886 −0.472943 0.881093i \(-0.656808\pi\)
−0.472943 + 0.881093i \(0.656808\pi\)
\(812\) 0 0
\(813\) 1.81069e21 0.270499
\(814\) 0 0
\(815\) −3.96624e21 −0.581698
\(816\) 0 0
\(817\) −2.62044e21 −0.377320
\(818\) 0 0
\(819\) 2.29705e21 0.324745
\(820\) 0 0
\(821\) −9.52351e21 −1.32198 −0.660988 0.750397i \(-0.729863\pi\)
−0.660988 + 0.750397i \(0.729863\pi\)
\(822\) 0 0
\(823\) −8.61991e21 −1.17491 −0.587454 0.809258i \(-0.699870\pi\)
−0.587454 + 0.809258i \(0.699870\pi\)
\(824\) 0 0
\(825\) 7.46523e20 0.0999169
\(826\) 0 0
\(827\) 8.11120e21 1.06609 0.533045 0.846087i \(-0.321048\pi\)
0.533045 + 0.846087i \(0.321048\pi\)
\(828\) 0 0
\(829\) 1.26605e22 1.63414 0.817072 0.576536i \(-0.195596\pi\)
0.817072 + 0.576536i \(0.195596\pi\)
\(830\) 0 0
\(831\) 1.08474e21 0.137505
\(832\) 0 0
\(833\) 3.69558e21 0.460093
\(834\) 0 0
\(835\) −1.12720e22 −1.37833
\(836\) 0 0
\(837\) 2.48147e21 0.298036
\(838\) 0 0
\(839\) 3.77471e21 0.445317 0.222658 0.974897i \(-0.428527\pi\)
0.222658 + 0.974897i \(0.428527\pi\)
\(840\) 0 0
\(841\) −5.49824e21 −0.637167
\(842\) 0 0
\(843\) −1.98545e21 −0.226022
\(844\) 0 0
\(845\) −4.08468e21 −0.456806
\(846\) 0 0
\(847\) −5.30360e21 −0.582701
\(848\) 0 0
\(849\) 2.49692e21 0.269524
\(850\) 0 0
\(851\) 6.05031e20 0.0641662
\(852\) 0 0
\(853\) −1.11887e22 −1.16590 −0.582948 0.812509i \(-0.698101\pi\)
−0.582948 + 0.812509i \(0.698101\pi\)
\(854\) 0 0
\(855\) 1.90047e21 0.194587
\(856\) 0 0
\(857\) 6.99179e21 0.703449 0.351724 0.936104i \(-0.385595\pi\)
0.351724 + 0.936104i \(0.385595\pi\)
\(858\) 0 0
\(859\) −1.77065e22 −1.75058 −0.875292 0.483595i \(-0.839331\pi\)
−0.875292 + 0.483595i \(0.839331\pi\)
\(860\) 0 0
\(861\) 9.24623e20 0.0898341
\(862\) 0 0
\(863\) 1.67429e21 0.159864 0.0799319 0.996800i \(-0.474530\pi\)
0.0799319 + 0.996800i \(0.474530\pi\)
\(864\) 0 0
\(865\) 8.23212e21 0.772487
\(866\) 0 0
\(867\) 1.08442e21 0.100012
\(868\) 0 0
\(869\) −9.27295e21 −0.840562
\(870\) 0 0
\(871\) 9.67620e21 0.862122
\(872\) 0 0
\(873\) −1.20578e22 −1.05600
\(874\) 0 0
\(875\) 6.60412e21 0.568531
\(876\) 0 0
\(877\) 6.20926e21 0.525464 0.262732 0.964869i \(-0.415376\pi\)
0.262732 + 0.964869i \(0.415376\pi\)
\(878\) 0 0
\(879\) 6.21599e18 0.000517123 0
\(880\) 0 0
\(881\) 1.96275e22 1.60526 0.802629 0.596478i \(-0.203434\pi\)
0.802629 + 0.596478i \(0.203434\pi\)
\(882\) 0 0
\(883\) 1.04753e22 0.842292 0.421146 0.906993i \(-0.361628\pi\)
0.421146 + 0.906993i \(0.361628\pi\)
\(884\) 0 0
\(885\) −2.67344e21 −0.211347
\(886\) 0 0
\(887\) 3.27875e21 0.254848 0.127424 0.991848i \(-0.459329\pi\)
0.127424 + 0.991848i \(0.459329\pi\)
\(888\) 0 0
\(889\) 2.26218e20 0.0172888
\(890\) 0 0
\(891\) 1.77153e22 1.33127
\(892\) 0 0
\(893\) −5.27282e21 −0.389634
\(894\) 0 0
\(895\) −9.38650e21 −0.682073
\(896\) 0 0
\(897\) 3.41362e20 0.0243934
\(898\) 0 0
\(899\) 7.72817e21 0.543099
\(900\) 0 0
\(901\) −9.15843e21 −0.632973
\(902\) 0 0
\(903\) 1.87354e21 0.127352
\(904\) 0 0
\(905\) 5.18013e21 0.346319
\(906\) 0 0
\(907\) 3.71072e20 0.0244008 0.0122004 0.999926i \(-0.496116\pi\)
0.0122004 + 0.999926i \(0.496116\pi\)
\(908\) 0 0
\(909\) 4.65267e21 0.300936
\(910\) 0 0
\(911\) 1.97479e22 1.25641 0.628206 0.778047i \(-0.283790\pi\)
0.628206 + 0.778047i \(0.283790\pi\)
\(912\) 0 0
\(913\) −3.45401e21 −0.216169
\(914\) 0 0
\(915\) 1.31587e21 0.0810131
\(916\) 0 0
\(917\) −1.16641e22 −0.706453
\(918\) 0 0
\(919\) 1.89055e21 0.112648 0.0563239 0.998413i \(-0.482062\pi\)
0.0563239 + 0.998413i \(0.482062\pi\)
\(920\) 0 0
\(921\) −1.69218e21 −0.0991971
\(922\) 0 0
\(923\) 1.64310e22 0.947655
\(924\) 0 0
\(925\) 2.02949e21 0.115166
\(926\) 0 0
\(927\) 3.30237e22 1.84386
\(928\) 0 0
\(929\) 3.34951e22 1.84020 0.920098 0.391689i \(-0.128109\pi\)
0.920098 + 0.391689i \(0.128109\pi\)
\(930\) 0 0
\(931\) 3.49382e21 0.188876
\(932\) 0 0
\(933\) 3.94630e21 0.209932
\(934\) 0 0
\(935\) −1.35328e22 −0.708436
\(936\) 0 0
\(937\) −7.69977e21 −0.396671 −0.198336 0.980134i \(-0.563554\pi\)
−0.198336 + 0.980134i \(0.563554\pi\)
\(938\) 0 0
\(939\) −4.68347e21 −0.237452
\(940\) 0 0
\(941\) −2.32873e22 −1.16198 −0.580988 0.813912i \(-0.697334\pi\)
−0.580988 + 0.813912i \(0.697334\pi\)
\(942\) 0 0
\(943\) −4.75241e21 −0.233387
\(944\) 0 0
\(945\) −2.75685e21 −0.133252
\(946\) 0 0
\(947\) −1.94058e22 −0.923225 −0.461613 0.887082i \(-0.652729\pi\)
−0.461613 + 0.887082i \(0.652729\pi\)
\(948\) 0 0
\(949\) 3.33852e20 0.0156336
\(950\) 0 0
\(951\) 2.86383e21 0.132006
\(952\) 0 0
\(953\) 9.32103e21 0.422929 0.211464 0.977386i \(-0.432177\pi\)
0.211464 + 0.977386i \(0.432177\pi\)
\(954\) 0 0
\(955\) −1.99107e22 −0.889326
\(956\) 0 0
\(957\) −3.33572e21 −0.146673
\(958\) 0 0
\(959\) −1.09140e22 −0.472438
\(960\) 0 0
\(961\) −4.38972e21 −0.187073
\(962\) 0 0
\(963\) 1.06408e22 0.446454
\(964\) 0 0
\(965\) −2.58455e22 −1.06765
\(966\) 0 0
\(967\) −4.38828e22 −1.78482 −0.892412 0.451222i \(-0.850988\pi\)
−0.892412 + 0.451222i \(0.850988\pi\)
\(968\) 0 0
\(969\) −6.93166e20 −0.0277593
\(970\) 0 0
\(971\) 1.35870e22 0.535772 0.267886 0.963451i \(-0.413675\pi\)
0.267886 + 0.963451i \(0.413675\pi\)
\(972\) 0 0
\(973\) −7.66143e21 −0.297484
\(974\) 0 0
\(975\) 1.14505e21 0.0437815
\(976\) 0 0
\(977\) 1.14769e21 0.0432132 0.0216066 0.999767i \(-0.493122\pi\)
0.0216066 + 0.999767i \(0.493122\pi\)
\(978\) 0 0
\(979\) −5.12610e21 −0.190072
\(980\) 0 0
\(981\) 4.73297e22 1.72829
\(982\) 0 0
\(983\) 4.01501e22 1.44389 0.721946 0.691949i \(-0.243248\pi\)
0.721946 + 0.691949i \(0.243248\pi\)
\(984\) 0 0
\(985\) 2.85660e22 1.01176
\(986\) 0 0
\(987\) 3.76992e21 0.131508
\(988\) 0 0
\(989\) −9.62971e21 −0.330857
\(990\) 0 0
\(991\) −4.39824e22 −1.48842 −0.744212 0.667944i \(-0.767175\pi\)
−0.744212 + 0.667944i \(0.767175\pi\)
\(992\) 0 0
\(993\) −4.84389e21 −0.161464
\(994\) 0 0
\(995\) −1.89751e22 −0.623033
\(996\) 0 0
\(997\) 3.15841e22 1.02154 0.510769 0.859718i \(-0.329361\pi\)
0.510769 + 0.859718i \(0.329361\pi\)
\(998\) 0 0
\(999\) −2.91184e21 −0.0927739
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 32.16.a.e.1.2 yes 4
4.3 odd 2 32.16.a.c.1.3 4
8.3 odd 2 64.16.a.q.1.2 4
8.5 even 2 64.16.a.o.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.16.a.c.1.3 4 4.3 odd 2
32.16.a.e.1.2 yes 4 1.1 even 1 trivial
64.16.a.o.1.3 4 8.5 even 2
64.16.a.q.1.2 4 8.3 odd 2