Properties

Label 3168.2.f.h.1585.9
Level $3168$
Weight $2$
Character 3168.1585
Analytic conductor $25.297$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3168,2,Mod(1585,3168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3168.1585"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2966073603\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: 20.0.74831334220841134637329678336.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2x^{18} + 5x^{16} - 8x^{14} + 28x^{12} - 64x^{10} + 112x^{8} - 128x^{6} + 320x^{4} - 512x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{29} \)
Twist minimal: no (minimal twist has level 792)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1585.9
Root \(-0.689696 + 1.23463i\) of defining polynomial
Character \(\chi\) \(=\) 3168.1585
Dual form 3168.2.f.h.1585.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.752075i q^{5} +3.95740 q^{7} +1.00000i q^{11} -0.420127i q^{13} -3.06410 q^{17} +7.03114i q^{19} +3.63326 q^{23} +4.43438 q^{25} +2.98923i q^{29} +2.93853 q^{31} -2.97626i q^{35} -1.20826i q^{37} -10.2443 q^{41} +10.2443i q^{43} +11.1993 q^{47} +8.66098 q^{49} +8.38101i q^{53} +0.752075 q^{55} -1.21830i q^{59} +3.86288i q^{61} -0.315967 q^{65} -7.79081i q^{67} -6.91633 q^{71} -2.76017 q^{73} +3.95740i q^{77} +6.67984 q^{79} -14.8318i q^{83} +2.30443i q^{85} +11.7579 q^{89} -1.66261i q^{91} +5.28795 q^{95} +3.22439 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 12 q^{25} - 40 q^{31} + 36 q^{49} + 16 q^{55} - 56 q^{73} + 16 q^{79} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3168\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(991\) \(1189\) \(1729\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 0.752075i − 0.336338i −0.985758 0.168169i \(-0.946215\pi\)
0.985758 0.168169i \(-0.0537855\pi\)
\(6\) 0 0
\(7\) 3.95740 1.49575 0.747877 0.663837i \(-0.231073\pi\)
0.747877 + 0.663837i \(0.231073\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) − 0.420127i − 0.116522i −0.998301 0.0582612i \(-0.981444\pi\)
0.998301 0.0582612i \(-0.0185556\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.06410 −0.743154 −0.371577 0.928402i \(-0.621183\pi\)
−0.371577 + 0.928402i \(0.621183\pi\)
\(18\) 0 0
\(19\) 7.03114i 1.61306i 0.591197 + 0.806528i \(0.298656\pi\)
−0.591197 + 0.806528i \(0.701344\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.63326 0.757588 0.378794 0.925481i \(-0.376339\pi\)
0.378794 + 0.925481i \(0.376339\pi\)
\(24\) 0 0
\(25\) 4.43438 0.886877
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.98923i 0.555087i 0.960713 + 0.277543i \(0.0895202\pi\)
−0.960713 + 0.277543i \(0.910480\pi\)
\(30\) 0 0
\(31\) 2.93853 0.527776 0.263888 0.964553i \(-0.414995\pi\)
0.263888 + 0.964553i \(0.414995\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 2.97626i − 0.503079i
\(36\) 0 0
\(37\) − 1.20826i − 0.198637i −0.995056 0.0993183i \(-0.968334\pi\)
0.995056 0.0993183i \(-0.0316662\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −10.2443 −1.59989 −0.799944 0.600075i \(-0.795137\pi\)
−0.799944 + 0.600075i \(0.795137\pi\)
\(42\) 0 0
\(43\) 10.2443i 1.56224i 0.624382 + 0.781119i \(0.285351\pi\)
−0.624382 + 0.781119i \(0.714649\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.1993 1.63359 0.816796 0.576926i \(-0.195748\pi\)
0.816796 + 0.576926i \(0.195748\pi\)
\(48\) 0 0
\(49\) 8.66098 1.23728
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.38101i 1.15122i 0.817724 + 0.575610i \(0.195235\pi\)
−0.817724 + 0.575610i \(0.804765\pi\)
\(54\) 0 0
\(55\) 0.752075 0.101410
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 1.21830i − 0.158609i −0.996850 0.0793044i \(-0.974730\pi\)
0.996850 0.0793044i \(-0.0252699\pi\)
\(60\) 0 0
\(61\) 3.86288i 0.494592i 0.968940 + 0.247296i \(0.0795419\pi\)
−0.968940 + 0.247296i \(0.920458\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.315967 −0.0391909
\(66\) 0 0
\(67\) − 7.79081i − 0.951799i −0.879500 0.475900i \(-0.842123\pi\)
0.879500 0.475900i \(-0.157877\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.91633 −0.820818 −0.410409 0.911902i \(-0.634614\pi\)
−0.410409 + 0.911902i \(0.634614\pi\)
\(72\) 0 0
\(73\) −2.76017 −0.323054 −0.161527 0.986868i \(-0.551642\pi\)
−0.161527 + 0.986868i \(0.551642\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.95740i 0.450987i
\(78\) 0 0
\(79\) 6.67984 0.751541 0.375770 0.926713i \(-0.377378\pi\)
0.375770 + 0.926713i \(0.377378\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 14.8318i − 1.62800i −0.580864 0.814000i \(-0.697285\pi\)
0.580864 0.814000i \(-0.302715\pi\)
\(84\) 0 0
\(85\) 2.30443i 0.249951i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 11.7579 1.24633 0.623165 0.782090i \(-0.285846\pi\)
0.623165 + 0.782090i \(0.285846\pi\)
\(90\) 0 0
\(91\) − 1.66261i − 0.174289i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.28795 0.542532
\(96\) 0 0
\(97\) 3.22439 0.327387 0.163693 0.986511i \(-0.447659\pi\)
0.163693 + 0.986511i \(0.447659\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 3.50662i − 0.348921i −0.984664 0.174461i \(-0.944182\pi\)
0.984664 0.174461i \(-0.0558182\pi\)
\(102\) 0 0
\(103\) 8.90081 0.877023 0.438511 0.898726i \(-0.355506\pi\)
0.438511 + 0.898726i \(0.355506\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.2877i 1.57459i 0.616575 + 0.787296i \(0.288520\pi\)
−0.616575 + 0.787296i \(0.711480\pi\)
\(108\) 0 0
\(109\) − 15.3911i − 1.47420i −0.675783 0.737101i \(-0.736194\pi\)
0.675783 0.737101i \(-0.263806\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −12.8277 −1.20673 −0.603366 0.797465i \(-0.706174\pi\)
−0.603366 + 0.797465i \(0.706174\pi\)
\(114\) 0 0
\(115\) − 2.73249i − 0.254806i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.1259 −1.11158
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 7.09536i − 0.634629i
\(126\) 0 0
\(127\) −11.1542 −0.989772 −0.494886 0.868958i \(-0.664790\pi\)
−0.494886 + 0.868958i \(0.664790\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 13.8450i − 1.20965i −0.796360 0.604823i \(-0.793244\pi\)
0.796360 0.604823i \(-0.206756\pi\)
\(132\) 0 0
\(133\) 27.8250i 2.41274i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.21313 −0.274517 −0.137258 0.990535i \(-0.543829\pi\)
−0.137258 + 0.990535i \(0.543829\pi\)
\(138\) 0 0
\(139\) 2.76943i 0.234900i 0.993079 + 0.117450i \(0.0374720\pi\)
−0.993079 + 0.117450i \(0.962528\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.420127 0.0351328
\(144\) 0 0
\(145\) 2.24813 0.186697
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 7.44736i − 0.610111i −0.952335 0.305056i \(-0.901325\pi\)
0.952335 0.305056i \(-0.0986751\pi\)
\(150\) 0 0
\(151\) 6.91137 0.562439 0.281220 0.959643i \(-0.409261\pi\)
0.281220 + 0.959643i \(0.409261\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 2.21000i − 0.177511i
\(156\) 0 0
\(157\) 19.3502i 1.54432i 0.635430 + 0.772158i \(0.280823\pi\)
−0.635430 + 0.772158i \(0.719177\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 14.3783 1.13317
\(162\) 0 0
\(163\) 7.49615i 0.587143i 0.955937 + 0.293572i \(0.0948439\pi\)
−0.955937 + 0.293572i \(0.905156\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 21.5371 1.66659 0.833297 0.552826i \(-0.186451\pi\)
0.833297 + 0.552826i \(0.186451\pi\)
\(168\) 0 0
\(169\) 12.8235 0.986423
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 23.2769i 1.76971i 0.465864 + 0.884857i \(0.345744\pi\)
−0.465864 + 0.884857i \(0.654256\pi\)
\(174\) 0 0
\(175\) 17.5486 1.32655
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.559527i 0.0418210i 0.999781 + 0.0209105i \(0.00665651\pi\)
−0.999781 + 0.0209105i \(0.993343\pi\)
\(180\) 0 0
\(181\) 5.51757i 0.410118i 0.978750 + 0.205059i \(0.0657386\pi\)
−0.978750 + 0.205059i \(0.934261\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.908701 −0.0668091
\(186\) 0 0
\(187\) − 3.06410i − 0.224069i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.51884 0.688759 0.344379 0.938831i \(-0.388089\pi\)
0.344379 + 0.938831i \(0.388089\pi\)
\(192\) 0 0
\(193\) 23.4751 1.68978 0.844888 0.534943i \(-0.179667\pi\)
0.844888 + 0.534943i \(0.179667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 20.8565i − 1.48597i −0.669310 0.742984i \(-0.733410\pi\)
0.669310 0.742984i \(-0.266590\pi\)
\(198\) 0 0
\(199\) 5.94683 0.421560 0.210780 0.977534i \(-0.432400\pi\)
0.210780 + 0.977534i \(0.432400\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 11.8296i 0.830274i
\(204\) 0 0
\(205\) 7.70447i 0.538103i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −7.03114 −0.486354
\(210\) 0 0
\(211\) 12.1108i 0.833740i 0.908966 + 0.416870i \(0.136873\pi\)
−0.908966 + 0.416870i \(0.863127\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.70447 0.525440
\(216\) 0 0
\(217\) 11.6289 0.789424
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.28731i 0.0865940i
\(222\) 0 0
\(223\) 18.2816 1.22423 0.612114 0.790770i \(-0.290319\pi\)
0.612114 + 0.790770i \(0.290319\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 4.00000i − 0.265489i −0.991150 0.132745i \(-0.957621\pi\)
0.991150 0.132745i \(-0.0423790\pi\)
\(228\) 0 0
\(229\) − 13.4647i − 0.889770i −0.895588 0.444885i \(-0.853245\pi\)
0.895588 0.444885i \(-0.146755\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −17.8803 −1.17138 −0.585689 0.810536i \(-0.699176\pi\)
−0.585689 + 0.810536i \(0.699176\pi\)
\(234\) 0 0
\(235\) − 8.42275i − 0.549439i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −26.0061 −1.68220 −0.841098 0.540882i \(-0.818090\pi\)
−0.841098 + 0.540882i \(0.818090\pi\)
\(240\) 0 0
\(241\) 0.248128 0.0159833 0.00799167 0.999968i \(-0.497456\pi\)
0.00799167 + 0.999968i \(0.497456\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 6.51371i − 0.416145i
\(246\) 0 0
\(247\) 2.95398 0.187957
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.5599i 1.23461i 0.786723 + 0.617306i \(0.211776\pi\)
−0.786723 + 0.617306i \(0.788224\pi\)
\(252\) 0 0
\(253\) 3.63326i 0.228421i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.80058 0.611343 0.305672 0.952137i \(-0.401119\pi\)
0.305672 + 0.952137i \(0.401119\pi\)
\(258\) 0 0
\(259\) − 4.78156i − 0.297112i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.13832 0.0701920 0.0350960 0.999384i \(-0.488826\pi\)
0.0350960 + 0.999384i \(0.488826\pi\)
\(264\) 0 0
\(265\) 6.30315 0.387199
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.2102i 0.805440i 0.915323 + 0.402720i \(0.131935\pi\)
−0.915323 + 0.402720i \(0.868065\pi\)
\(270\) 0 0
\(271\) 6.44831 0.391707 0.195854 0.980633i \(-0.437252\pi\)
0.195854 + 0.980633i \(0.437252\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.43438i 0.267403i
\(276\) 0 0
\(277\) − 16.4174i − 0.986423i −0.869909 0.493212i \(-0.835823\pi\)
0.869909 0.493212i \(-0.164177\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.49037 0.566148 0.283074 0.959098i \(-0.408646\pi\)
0.283074 + 0.959098i \(0.408646\pi\)
\(282\) 0 0
\(283\) 3.54475i 0.210714i 0.994434 + 0.105357i \(0.0335985\pi\)
−0.994434 + 0.105357i \(0.966402\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −40.5407 −2.39304
\(288\) 0 0
\(289\) −7.61129 −0.447723
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 24.7811i − 1.44773i −0.689943 0.723863i \(-0.742365\pi\)
0.689943 0.723863i \(-0.257635\pi\)
\(294\) 0 0
\(295\) −0.916251 −0.0533462
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 1.52643i − 0.0882759i
\(300\) 0 0
\(301\) 40.5407i 2.33673i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.90518 0.166350
\(306\) 0 0
\(307\) 18.0530i 1.03034i 0.857088 + 0.515169i \(0.172271\pi\)
−0.857088 + 0.515169i \(0.827729\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7.21589 0.409176 0.204588 0.978848i \(-0.434415\pi\)
0.204588 + 0.978848i \(0.434415\pi\)
\(312\) 0 0
\(313\) 10.1625 0.574419 0.287210 0.957868i \(-0.407272\pi\)
0.287210 + 0.957868i \(0.407272\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.2396i 0.687446i 0.939071 + 0.343723i \(0.111688\pi\)
−0.939071 + 0.343723i \(0.888312\pi\)
\(318\) 0 0
\(319\) −2.98923 −0.167365
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 21.5441i − 1.19875i
\(324\) 0 0
\(325\) − 1.86301i − 0.103341i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 44.3202 2.44345
\(330\) 0 0
\(331\) − 20.4886i − 1.12615i −0.826405 0.563077i \(-0.809618\pi\)
0.826405 0.563077i \(-0.190382\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.85927 −0.320126
\(336\) 0 0
\(337\) −8.06553 −0.439358 −0.219679 0.975572i \(-0.570501\pi\)
−0.219679 + 0.975572i \(0.570501\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.93853i 0.159130i
\(342\) 0 0
\(343\) 6.57315 0.354917
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.3996i 0.987743i 0.869535 + 0.493872i \(0.164419\pi\)
−0.869535 + 0.493872i \(0.835581\pi\)
\(348\) 0 0
\(349\) − 22.4165i − 1.19993i −0.800027 0.599964i \(-0.795182\pi\)
0.800027 0.599964i \(-0.204818\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.46509 0.184428 0.0922141 0.995739i \(-0.470606\pi\)
0.0922141 + 0.995739i \(0.470606\pi\)
\(354\) 0 0
\(355\) 5.20160i 0.276072i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −28.0676 −1.48135 −0.740677 0.671861i \(-0.765495\pi\)
−0.740677 + 0.671861i \(0.765495\pi\)
\(360\) 0 0
\(361\) −30.4370 −1.60195
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.07586i 0.108655i
\(366\) 0 0
\(367\) −31.5561 −1.64721 −0.823607 0.567160i \(-0.808042\pi\)
−0.823607 + 0.567160i \(0.808042\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 33.1670i 1.72194i
\(372\) 0 0
\(373\) 7.28434i 0.377169i 0.982057 + 0.188584i \(0.0603899\pi\)
−0.982057 + 0.188584i \(0.939610\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.25586 0.0646800
\(378\) 0 0
\(379\) 18.1593i 0.932781i 0.884579 + 0.466391i \(0.154446\pi\)
−0.884579 + 0.466391i \(0.845554\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −14.8634 −0.759486 −0.379743 0.925092i \(-0.623988\pi\)
−0.379743 + 0.925092i \(0.623988\pi\)
\(384\) 0 0
\(385\) 2.97626 0.151684
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 35.7363i − 1.81190i −0.423383 0.905951i \(-0.639158\pi\)
0.423383 0.905951i \(-0.360842\pi\)
\(390\) 0 0
\(391\) −11.1327 −0.563004
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 5.02374i − 0.252772i
\(396\) 0 0
\(397\) − 28.4926i − 1.43000i −0.699124 0.715001i \(-0.746426\pi\)
0.699124 0.715001i \(-0.253574\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 22.1691 1.10707 0.553535 0.832826i \(-0.313278\pi\)
0.553535 + 0.832826i \(0.313278\pi\)
\(402\) 0 0
\(403\) − 1.23456i − 0.0614977i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.20826 0.0598912
\(408\) 0 0
\(409\) −21.7865 −1.07727 −0.538637 0.842538i \(-0.681061\pi\)
−0.538637 + 0.842538i \(0.681061\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 4.82128i − 0.237240i
\(414\) 0 0
\(415\) −11.1546 −0.547559
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14.9249i 0.729131i 0.931178 + 0.364566i \(0.118783\pi\)
−0.931178 + 0.364566i \(0.881217\pi\)
\(420\) 0 0
\(421\) − 36.7590i − 1.79153i −0.444532 0.895763i \(-0.646630\pi\)
0.444532 0.895763i \(-0.353370\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −13.5874 −0.659086
\(426\) 0 0
\(427\) 15.2870i 0.739788i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.67329 0.273273 0.136636 0.990621i \(-0.456371\pi\)
0.136636 + 0.990621i \(0.456371\pi\)
\(432\) 0 0
\(433\) 8.16693 0.392478 0.196239 0.980556i \(-0.437127\pi\)
0.196239 + 0.980556i \(0.437127\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 25.5460i 1.22203i
\(438\) 0 0
\(439\) −27.0366 −1.29038 −0.645192 0.764020i \(-0.723223\pi\)
−0.645192 + 0.764020i \(0.723223\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 28.6719i − 1.36224i −0.732171 0.681121i \(-0.761493\pi\)
0.732171 0.681121i \(-0.238507\pi\)
\(444\) 0 0
\(445\) − 8.84279i − 0.419188i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 22.9657 1.08382 0.541909 0.840437i \(-0.317702\pi\)
0.541909 + 0.840437i \(0.317702\pi\)
\(450\) 0 0
\(451\) − 10.2443i − 0.482384i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.25041 −0.0586200
\(456\) 0 0
\(457\) −36.0634 −1.68697 −0.843487 0.537150i \(-0.819501\pi\)
−0.843487 + 0.537150i \(0.819501\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 15.0485i 0.700878i 0.936586 + 0.350439i \(0.113968\pi\)
−0.936586 + 0.350439i \(0.886032\pi\)
\(462\) 0 0
\(463\) 0.587148 0.0272871 0.0136435 0.999907i \(-0.495657\pi\)
0.0136435 + 0.999907i \(0.495657\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.52034i 0.255451i 0.991810 + 0.127726i \(0.0407677\pi\)
−0.991810 + 0.127726i \(0.959232\pi\)
\(468\) 0 0
\(469\) − 30.8313i − 1.42366i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −10.2443 −0.471032
\(474\) 0 0
\(475\) 31.1788i 1.43058i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 35.3911 1.61706 0.808530 0.588454i \(-0.200263\pi\)
0.808530 + 0.588454i \(0.200263\pi\)
\(480\) 0 0
\(481\) −0.507623 −0.0231456
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 2.42498i − 0.110113i
\(486\) 0 0
\(487\) −14.2395 −0.645252 −0.322626 0.946527i \(-0.604566\pi\)
−0.322626 + 0.946527i \(0.604566\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 23.2206i − 1.04793i −0.851740 0.523965i \(-0.824452\pi\)
0.851740 0.523965i \(-0.175548\pi\)
\(492\) 0 0
\(493\) − 9.15932i − 0.412515i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −27.3707 −1.22774
\(498\) 0 0
\(499\) − 34.4110i − 1.54045i −0.637774 0.770223i \(-0.720145\pi\)
0.637774 0.770223i \(-0.279855\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 10.0641 0.448734 0.224367 0.974505i \(-0.427969\pi\)
0.224367 + 0.974505i \(0.427969\pi\)
\(504\) 0 0
\(505\) −2.63724 −0.117356
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.13933i 0.0504999i 0.999681 + 0.0252500i \(0.00803817\pi\)
−0.999681 + 0.0252500i \(0.991962\pi\)
\(510\) 0 0
\(511\) −10.9231 −0.483209
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 6.69407i − 0.294976i
\(516\) 0 0
\(517\) 11.1993i 0.492547i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.4828 0.678315 0.339158 0.940730i \(-0.389858\pi\)
0.339158 + 0.940730i \(0.389858\pi\)
\(522\) 0 0
\(523\) − 27.4076i − 1.19845i −0.800580 0.599226i \(-0.795475\pi\)
0.800580 0.599226i \(-0.204525\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.00396 −0.392219
\(528\) 0 0
\(529\) −9.79941 −0.426061
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4.30390i 0.186423i
\(534\) 0 0
\(535\) 12.2496 0.529595
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 8.66098i 0.373055i
\(540\) 0 0
\(541\) − 25.6902i − 1.10451i −0.833675 0.552255i \(-0.813768\pi\)
0.833675 0.552255i \(-0.186232\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −11.5753 −0.495830
\(546\) 0 0
\(547\) − 24.4926i − 1.04723i −0.851956 0.523613i \(-0.824584\pi\)
0.851956 0.523613i \(-0.175416\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −21.0177 −0.895386
\(552\) 0 0
\(553\) 26.4348 1.12412
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 6.22599i − 0.263803i −0.991263 0.131902i \(-0.957892\pi\)
0.991263 0.131902i \(-0.0421083\pi\)
\(558\) 0 0
\(559\) 4.30390 0.182036
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16.4963i 0.695234i 0.937637 + 0.347617i \(0.113009\pi\)
−0.937637 + 0.347617i \(0.886991\pi\)
\(564\) 0 0
\(565\) 9.64741i 0.405870i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −35.2197 −1.47649 −0.738244 0.674534i \(-0.764345\pi\)
−0.738244 + 0.674534i \(0.764345\pi\)
\(570\) 0 0
\(571\) − 29.0142i − 1.21421i −0.794623 0.607104i \(-0.792331\pi\)
0.794623 0.607104i \(-0.207669\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 16.1113 0.671887
\(576\) 0 0
\(577\) −43.5942 −1.81485 −0.907426 0.420213i \(-0.861955\pi\)
−0.907426 + 0.420213i \(0.861955\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 58.6953i − 2.43509i
\(582\) 0 0
\(583\) −8.38101 −0.347106
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 33.3405i − 1.37611i −0.725658 0.688055i \(-0.758465\pi\)
0.725658 0.688055i \(-0.241535\pi\)
\(588\) 0 0
\(589\) 20.6613i 0.851332i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −15.9166 −0.653618 −0.326809 0.945090i \(-0.605973\pi\)
−0.326809 + 0.945090i \(0.605973\pi\)
\(594\) 0 0
\(595\) 9.11955i 0.373865i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −26.7388 −1.09252 −0.546259 0.837616i \(-0.683949\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(600\) 0 0
\(601\) −26.4502 −1.07893 −0.539464 0.842009i \(-0.681373\pi\)
−0.539464 + 0.842009i \(0.681373\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.752075i 0.0305762i
\(606\) 0 0
\(607\) 11.9898 0.486650 0.243325 0.969945i \(-0.421762\pi\)
0.243325 + 0.969945i \(0.421762\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 4.70515i − 0.190350i
\(612\) 0 0
\(613\) 47.7774i 1.92971i 0.262781 + 0.964856i \(0.415360\pi\)
−0.262781 + 0.964856i \(0.584640\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.14149 −0.247247 −0.123624 0.992329i \(-0.539452\pi\)
−0.123624 + 0.992329i \(0.539452\pi\)
\(618\) 0 0
\(619\) 16.5082i 0.663522i 0.943364 + 0.331761i \(0.107643\pi\)
−0.943364 + 0.331761i \(0.892357\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 46.5305 1.86420
\(624\) 0 0
\(625\) 16.8357 0.673427
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.70223i 0.147617i
\(630\) 0 0
\(631\) −25.7334 −1.02443 −0.512214 0.858858i \(-0.671175\pi\)
−0.512214 + 0.858858i \(0.671175\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.38876i 0.332898i
\(636\) 0 0
\(637\) − 3.63871i − 0.144171i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.10690 −0.241208 −0.120604 0.992701i \(-0.538483\pi\)
−0.120604 + 0.992701i \(0.538483\pi\)
\(642\) 0 0
\(643\) 5.49967i 0.216886i 0.994103 + 0.108443i \(0.0345865\pi\)
−0.994103 + 0.108443i \(0.965414\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 32.3248 1.27082 0.635410 0.772175i \(-0.280831\pi\)
0.635410 + 0.772175i \(0.280831\pi\)
\(648\) 0 0
\(649\) 1.21830 0.0478223
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 27.5680i 1.07882i 0.842043 + 0.539410i \(0.181353\pi\)
−0.842043 + 0.539410i \(0.818647\pi\)
\(654\) 0 0
\(655\) −10.4125 −0.406850
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 40.6890i 1.58502i 0.609860 + 0.792509i \(0.291226\pi\)
−0.609860 + 0.792509i \(0.708774\pi\)
\(660\) 0 0
\(661\) 21.4900i 0.835864i 0.908478 + 0.417932i \(0.137245\pi\)
−0.908478 + 0.417932i \(0.862755\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 20.9265 0.811495
\(666\) 0 0
\(667\) 10.8607i 0.420527i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.86288 −0.149125
\(672\) 0 0
\(673\) −35.5881 −1.37182 −0.685911 0.727686i \(-0.740596\pi\)
−0.685911 + 0.727686i \(0.740596\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 16.5364i − 0.635547i −0.948167 0.317774i \(-0.897065\pi\)
0.948167 0.317774i \(-0.102935\pi\)
\(678\) 0 0
\(679\) 12.7602 0.489690
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 29.8578i 1.14248i 0.820784 + 0.571238i \(0.193537\pi\)
−0.820784 + 0.571238i \(0.806463\pi\)
\(684\) 0 0
\(685\) 2.41652i 0.0923304i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.52109 0.134143
\(690\) 0 0
\(691\) 0.926601i 0.0352496i 0.999845 + 0.0176248i \(0.00561043\pi\)
−0.999845 + 0.0176248i \(0.994390\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.08282 0.0790060
\(696\) 0 0
\(697\) 31.3895 1.18896
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 37.2773i 1.40795i 0.710227 + 0.703973i \(0.248592\pi\)
−0.710227 + 0.703973i \(0.751408\pi\)
\(702\) 0 0
\(703\) 8.49544 0.320412
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 13.8771i − 0.521901i
\(708\) 0 0
\(709\) 2.42953i 0.0912428i 0.998959 + 0.0456214i \(0.0145268\pi\)
−0.998959 + 0.0456214i \(0.985473\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10.6765 0.399837
\(714\) 0 0
\(715\) − 0.315967i − 0.0118165i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 18.4107 0.686604 0.343302 0.939225i \(-0.388455\pi\)
0.343302 + 0.939225i \(0.388455\pi\)
\(720\) 0 0
\(721\) 35.2240 1.31181
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 13.2554i 0.492294i
\(726\) 0 0
\(727\) −51.0509 −1.89337 −0.946686 0.322157i \(-0.895592\pi\)
−0.946686 + 0.322157i \(0.895592\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 31.3895i − 1.16098i
\(732\) 0 0
\(733\) − 19.4009i − 0.716587i −0.933609 0.358294i \(-0.883359\pi\)
0.933609 0.358294i \(-0.116641\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.79081 0.286978
\(738\) 0 0
\(739\) 7.20384i 0.264997i 0.991183 + 0.132499i \(0.0423000\pi\)
−0.991183 + 0.132499i \(0.957700\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.11702 −0.0409795 −0.0204898 0.999790i \(-0.506523\pi\)
−0.0204898 + 0.999790i \(0.506523\pi\)
\(744\) 0 0
\(745\) −5.60097 −0.205204
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 64.4569i 2.35520i
\(750\) 0 0
\(751\) −1.59011 −0.0580239 −0.0290120 0.999579i \(-0.509236\pi\)
−0.0290120 + 0.999579i \(0.509236\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 5.19787i − 0.189170i
\(756\) 0 0
\(757\) − 26.6950i − 0.970246i −0.874446 0.485123i \(-0.838775\pi\)
0.874446 0.485123i \(-0.161225\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.54477 −0.0559977 −0.0279989 0.999608i \(-0.508913\pi\)
−0.0279989 + 0.999608i \(0.508913\pi\)
\(762\) 0 0
\(763\) − 60.9087i − 2.20504i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.511840 −0.0184815
\(768\) 0 0
\(769\) −14.5898 −0.526120 −0.263060 0.964779i \(-0.584732\pi\)
−0.263060 + 0.964779i \(0.584732\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 44.8370i − 1.61267i −0.591456 0.806337i \(-0.701447\pi\)
0.591456 0.806337i \(-0.298553\pi\)
\(774\) 0 0
\(775\) 13.0306 0.468072
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 72.0290i − 2.58071i
\(780\) 0 0
\(781\) − 6.91633i − 0.247486i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 14.5528 0.519413
\(786\) 0 0
\(787\) − 46.6483i − 1.66283i −0.555650 0.831417i \(-0.687530\pi\)
0.555650 0.831417i \(-0.312470\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −50.7644 −1.80497
\(792\) 0 0
\(793\) 1.62290 0.0576310
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 14.7608i − 0.522853i −0.965223 0.261427i \(-0.915807\pi\)
0.965223 0.261427i \(-0.0841930\pi\)
\(798\) 0 0
\(799\) −34.3159 −1.21401
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 2.76017i − 0.0974043i
\(804\) 0 0
\(805\) − 10.8135i − 0.381127i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −29.3649 −1.03241 −0.516207 0.856464i \(-0.672657\pi\)
−0.516207 + 0.856464i \(0.672657\pi\)
\(810\) 0 0
\(811\) − 17.8918i − 0.628267i −0.949379 0.314133i \(-0.898286\pi\)
0.949379 0.314133i \(-0.101714\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.63766 0.197479
\(816\) 0 0
\(817\) −72.0290 −2.51998
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 5.16499i − 0.180259i −0.995930 0.0901297i \(-0.971272\pi\)
0.995930 0.0901297i \(-0.0287282\pi\)
\(822\) 0 0
\(823\) 10.4520 0.364335 0.182168 0.983268i \(-0.441689\pi\)
0.182168 + 0.983268i \(0.441689\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.8284i 0.550408i 0.961386 + 0.275204i \(0.0887454\pi\)
−0.961386 + 0.275204i \(0.911255\pi\)
\(828\) 0 0
\(829\) 42.2896i 1.46878i 0.678728 + 0.734390i \(0.262531\pi\)
−0.678728 + 0.734390i \(0.737469\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −26.5381 −0.919491
\(834\) 0 0
\(835\) − 16.1975i − 0.560539i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 28.3612 0.979137 0.489569 0.871965i \(-0.337154\pi\)
0.489569 + 0.871965i \(0.337154\pi\)
\(840\) 0 0
\(841\) 20.0645 0.691879
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 9.64423i − 0.331772i
\(846\) 0 0
\(847\) −3.95740 −0.135978
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 4.38992i − 0.150485i
\(852\) 0 0
\(853\) 23.3645i 0.799986i 0.916518 + 0.399993i \(0.130987\pi\)
−0.916518 + 0.399993i \(0.869013\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −51.6593 −1.76465 −0.882325 0.470641i \(-0.844023\pi\)
−0.882325 + 0.470641i \(0.844023\pi\)
\(858\) 0 0
\(859\) 31.1517i 1.06288i 0.847095 + 0.531442i \(0.178350\pi\)
−0.847095 + 0.531442i \(0.821650\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 24.4557 0.832481 0.416241 0.909254i \(-0.363347\pi\)
0.416241 + 0.909254i \(0.363347\pi\)
\(864\) 0 0
\(865\) 17.5060 0.595222
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.67984i 0.226598i
\(870\) 0 0
\(871\) −3.27313 −0.110906
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 28.0792i − 0.949249i
\(876\) 0 0
\(877\) − 29.1117i − 0.983032i −0.870868 0.491516i \(-0.836443\pi\)
0.870868 0.491516i \(-0.163557\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −17.8993 −0.603044 −0.301522 0.953459i \(-0.597495\pi\)
−0.301522 + 0.953459i \(0.597495\pi\)
\(882\) 0 0
\(883\) − 12.3997i − 0.417282i −0.977992 0.208641i \(-0.933096\pi\)
0.977992 0.208641i \(-0.0669041\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 35.7105 1.19904 0.599520 0.800360i \(-0.295358\pi\)
0.599520 + 0.800360i \(0.295358\pi\)
\(888\) 0 0
\(889\) −44.1414 −1.48046
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 78.7442i 2.63507i
\(894\) 0 0
\(895\) 0.420807 0.0140660
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8.78396i 0.292962i
\(900\) 0 0
\(901\) − 25.6803i − 0.855534i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.14962 0.137938
\(906\) 0 0
\(907\) − 55.1827i − 1.83231i −0.400823 0.916155i \(-0.631276\pi\)
0.400823 0.916155i \(-0.368724\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −5.99434 −0.198601 −0.0993007 0.995057i \(-0.531661\pi\)
−0.0993007 + 0.995057i \(0.531661\pi\)
\(912\) 0 0
\(913\) 14.8318 0.490861
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 54.7902i − 1.80933i
\(918\) 0 0
\(919\) −30.7620 −1.01474 −0.507372 0.861727i \(-0.669383\pi\)
−0.507372 + 0.861727i \(0.669383\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.90574i 0.0956436i
\(924\) 0 0
\(925\) − 5.35788i − 0.176166i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −30.6017 −1.00401 −0.502005 0.864865i \(-0.667404\pi\)
−0.502005 + 0.864865i \(0.667404\pi\)
\(930\) 0 0
\(931\) 60.8966i 1.99581i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.30443 −0.0753630
\(936\) 0 0
\(937\) −0.804683 −0.0262879 −0.0131439 0.999914i \(-0.504184\pi\)
−0.0131439 + 0.999914i \(0.504184\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 43.1276i 1.40592i 0.711229 + 0.702961i \(0.248139\pi\)
−0.711229 + 0.702961i \(0.751861\pi\)
\(942\) 0 0
\(943\) −37.2202 −1.21205
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 40.1863i 1.30588i 0.757410 + 0.652940i \(0.226465\pi\)
−0.757410 + 0.652940i \(0.773535\pi\)
\(948\) 0 0
\(949\) 1.15962i 0.0376430i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 51.9932 1.68423 0.842113 0.539302i \(-0.181312\pi\)
0.842113 + 0.539302i \(0.181312\pi\)
\(954\) 0 0
\(955\) − 7.15888i − 0.231656i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12.7156 −0.410610
\(960\) 0 0
\(961\) −22.3650 −0.721452
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 17.6550i − 0.568336i
\(966\) 0 0
\(967\) 20.0086 0.643435 0.321717 0.946836i \(-0.395740\pi\)
0.321717 + 0.946836i \(0.395740\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 13.4880i − 0.432849i −0.976299 0.216425i \(-0.930560\pi\)
0.976299 0.216425i \(-0.0694395\pi\)
\(972\) 0 0
\(973\) 10.9597i 0.351353i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 28.1101 0.899321 0.449661 0.893200i \(-0.351545\pi\)
0.449661 + 0.893200i \(0.351545\pi\)
\(978\) 0 0
\(979\) 11.7579i 0.375783i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 58.3523 1.86115 0.930574 0.366104i \(-0.119308\pi\)
0.930574 + 0.366104i \(0.119308\pi\)
\(984\) 0 0
\(985\) −15.6857 −0.499787
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 37.2202i 1.18353i
\(990\) 0 0
\(991\) −6.41139 −0.203665 −0.101832 0.994802i \(-0.532471\pi\)
−0.101832 + 0.994802i \(0.532471\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 4.47246i − 0.141787i
\(996\) 0 0
\(997\) − 41.5619i − 1.31628i −0.752896 0.658140i \(-0.771344\pi\)
0.752896 0.658140i \(-0.228656\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3168.2.f.h.1585.9 20
3.2 odd 2 inner 3168.2.f.h.1585.11 20
4.3 odd 2 792.2.f.h.397.14 yes 20
8.3 odd 2 792.2.f.h.397.13 yes 20
8.5 even 2 inner 3168.2.f.h.1585.12 20
12.11 even 2 792.2.f.h.397.7 20
24.5 odd 2 inner 3168.2.f.h.1585.10 20
24.11 even 2 792.2.f.h.397.8 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.f.h.397.7 20 12.11 even 2
792.2.f.h.397.8 yes 20 24.11 even 2
792.2.f.h.397.13 yes 20 8.3 odd 2
792.2.f.h.397.14 yes 20 4.3 odd 2
3168.2.f.h.1585.9 20 1.1 even 1 trivial
3168.2.f.h.1585.10 20 24.5 odd 2 inner
3168.2.f.h.1585.11 20 3.2 odd 2 inner
3168.2.f.h.1585.12 20 8.5 even 2 inner