Properties

Label 3168.2.f.h.1585.14
Level $3168$
Weight $2$
Character 3168.1585
Analytic conductor $25.297$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3168,2,Mod(1585,3168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3168.1585"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2966073603\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: 20.0.74831334220841134637329678336.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2x^{18} + 5x^{16} - 8x^{14} + 28x^{12} - 64x^{10} + 112x^{8} - 128x^{6} + 320x^{4} - 512x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{29} \)
Twist minimal: no (minimal twist has level 792)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1585.14
Root \(-1.38682 + 0.277013i\) of defining polynomial
Character \(\chi\) \(=\) 3168.1585
Dual form 3168.2.f.h.1585.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.972802i q^{5} +0.372730 q^{7} +1.00000i q^{11} +4.87017i q^{13} +3.93517 q^{17} -1.92228i q^{19} +2.39623 q^{23} +4.05366 q^{25} -6.73164i q^{29} -0.891949 q^{31} +0.362592i q^{35} +3.53439i q^{37} -5.34412 q^{41} +5.34412i q^{43} +0.216045 q^{47} -6.86107 q^{49} -5.30526i q^{53} -0.972802 q^{55} +7.02352i q^{59} +11.6208i q^{61} -4.73771 q^{65} +9.68560i q^{67} +6.53455 q^{71} +8.43977 q^{73} +0.372730i q^{77} -8.59639 q^{79} +15.6098i q^{83} +3.82814i q^{85} -7.67271 q^{89} +1.81526i q^{91} +1.87000 q^{95} +4.18597 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 12 q^{25} - 40 q^{31} + 36 q^{49} + 16 q^{55} - 56 q^{73} + 16 q^{79} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3168\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(991\) \(1189\) \(1729\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.972802i 0.435050i 0.976055 + 0.217525i \(0.0697984\pi\)
−0.976055 + 0.217525i \(0.930202\pi\)
\(6\) 0 0
\(7\) 0.372730 0.140879 0.0704393 0.997516i \(-0.477560\pi\)
0.0704393 + 0.997516i \(0.477560\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 4.87017i 1.35074i 0.737478 + 0.675371i \(0.236017\pi\)
−0.737478 + 0.675371i \(0.763983\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.93517 0.954419 0.477209 0.878790i \(-0.341648\pi\)
0.477209 + 0.878790i \(0.341648\pi\)
\(18\) 0 0
\(19\) − 1.92228i − 0.441002i −0.975387 0.220501i \(-0.929231\pi\)
0.975387 0.220501i \(-0.0707693\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.39623 0.499648 0.249824 0.968291i \(-0.419627\pi\)
0.249824 + 0.968291i \(0.419627\pi\)
\(24\) 0 0
\(25\) 4.05366 0.810731
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 6.73164i − 1.25003i −0.780611 0.625017i \(-0.785092\pi\)
0.780611 0.625017i \(-0.214908\pi\)
\(30\) 0 0
\(31\) −0.891949 −0.160199 −0.0800994 0.996787i \(-0.525524\pi\)
−0.0800994 + 0.996787i \(0.525524\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.362592i 0.0612893i
\(36\) 0 0
\(37\) 3.53439i 0.581049i 0.956867 + 0.290525i \(0.0938298\pi\)
−0.956867 + 0.290525i \(0.906170\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.34412 −0.834611 −0.417305 0.908766i \(-0.637025\pi\)
−0.417305 + 0.908766i \(0.637025\pi\)
\(42\) 0 0
\(43\) 5.34412i 0.814970i 0.913212 + 0.407485i \(0.133594\pi\)
−0.913212 + 0.407485i \(0.866406\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.216045 0.0315134 0.0157567 0.999876i \(-0.494984\pi\)
0.0157567 + 0.999876i \(0.494984\pi\)
\(48\) 0 0
\(49\) −6.86107 −0.980153
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 5.30526i − 0.728733i −0.931256 0.364367i \(-0.881286\pi\)
0.931256 0.364367i \(-0.118714\pi\)
\(54\) 0 0
\(55\) −0.972802 −0.131173
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.02352i 0.914384i 0.889368 + 0.457192i \(0.151145\pi\)
−0.889368 + 0.457192i \(0.848855\pi\)
\(60\) 0 0
\(61\) 11.6208i 1.48789i 0.668242 + 0.743944i \(0.267047\pi\)
−0.668242 + 0.743944i \(0.732953\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.73771 −0.587641
\(66\) 0 0
\(67\) 9.68560i 1.18328i 0.806201 + 0.591642i \(0.201520\pi\)
−0.806201 + 0.591642i \(0.798480\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.53455 0.775509 0.387754 0.921763i \(-0.373251\pi\)
0.387754 + 0.921763i \(0.373251\pi\)
\(72\) 0 0
\(73\) 8.43977 0.987800 0.493900 0.869519i \(-0.335571\pi\)
0.493900 + 0.869519i \(0.335571\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.372730i 0.0424765i
\(78\) 0 0
\(79\) −8.59639 −0.967170 −0.483585 0.875297i \(-0.660666\pi\)
−0.483585 + 0.875297i \(0.660666\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 15.6098i 1.71340i 0.515819 + 0.856698i \(0.327488\pi\)
−0.515819 + 0.856698i \(0.672512\pi\)
\(84\) 0 0
\(85\) 3.82814i 0.415220i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −7.67271 −0.813306 −0.406653 0.913583i \(-0.633304\pi\)
−0.406653 + 0.913583i \(0.633304\pi\)
\(90\) 0 0
\(91\) 1.81526i 0.190291i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.87000 0.191858
\(96\) 0 0
\(97\) 4.18597 0.425020 0.212510 0.977159i \(-0.431836\pi\)
0.212510 + 0.977159i \(0.431836\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 16.6772i − 1.65945i −0.558174 0.829724i \(-0.688498\pi\)
0.558174 0.829724i \(-0.311502\pi\)
\(102\) 0 0
\(103\) 4.57869 0.451152 0.225576 0.974226i \(-0.427574\pi\)
0.225576 + 0.974226i \(0.427574\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.90717i 0.474394i 0.971462 + 0.237197i \(0.0762286\pi\)
−0.971462 + 0.237197i \(0.923771\pi\)
\(108\) 0 0
\(109\) 5.27648i 0.505395i 0.967545 + 0.252698i \(0.0813178\pi\)
−0.967545 + 0.252698i \(0.918682\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.18851 0.770310 0.385155 0.922852i \(-0.374148\pi\)
0.385155 + 0.922852i \(0.374148\pi\)
\(114\) 0 0
\(115\) 2.33106i 0.217372i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.46675 0.134457
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.80742i 0.787759i
\(126\) 0 0
\(127\) 20.1141 1.78484 0.892418 0.451210i \(-0.149007\pi\)
0.892418 + 0.451210i \(0.149007\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 9.74472i − 0.851400i −0.904864 0.425700i \(-0.860028\pi\)
0.904864 0.425700i \(-0.139972\pi\)
\(132\) 0 0
\(133\) − 0.716492i − 0.0621277i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.26640 −0.620811 −0.310405 0.950604i \(-0.600465\pi\)
−0.310405 + 0.950604i \(0.600465\pi\)
\(138\) 0 0
\(139\) 19.7674i 1.67665i 0.545170 + 0.838326i \(0.316465\pi\)
−0.545170 + 0.838326i \(0.683535\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.87017 −0.407264
\(144\) 0 0
\(145\) 6.54856 0.543828
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 0.684605i − 0.0560850i −0.999607 0.0280425i \(-0.991073\pi\)
0.999607 0.0280425i \(-0.00892738\pi\)
\(150\) 0 0
\(151\) 9.73458 0.792189 0.396095 0.918210i \(-0.370365\pi\)
0.396095 + 0.918210i \(0.370365\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 0.867690i − 0.0696945i
\(156\) 0 0
\(157\) − 1.97457i − 0.157588i −0.996891 0.0787938i \(-0.974893\pi\)
0.996891 0.0787938i \(-0.0251069\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.893146 0.0703897
\(162\) 0 0
\(163\) 14.0170i 1.09790i 0.835856 + 0.548948i \(0.184972\pi\)
−0.835856 + 0.548948i \(0.815028\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −18.2679 −1.41361 −0.706805 0.707408i \(-0.749864\pi\)
−0.706805 + 0.707408i \(0.749864\pi\)
\(168\) 0 0
\(169\) −10.7186 −0.824505
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.17552i 0.165402i 0.996574 + 0.0827010i \(0.0263546\pi\)
−0.996574 + 0.0827010i \(0.973645\pi\)
\(174\) 0 0
\(175\) 1.51092 0.114215
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 8.26314i − 0.617616i −0.951124 0.308808i \(-0.900070\pi\)
0.951124 0.308808i \(-0.0999301\pi\)
\(180\) 0 0
\(181\) 11.0945i 0.824651i 0.911037 + 0.412325i \(0.135283\pi\)
−0.911037 + 0.412325i \(0.864717\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.43826 −0.252786
\(186\) 0 0
\(187\) 3.93517i 0.287768i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.6967 1.42521 0.712603 0.701568i \(-0.247516\pi\)
0.712603 + 0.701568i \(0.247516\pi\)
\(192\) 0 0
\(193\) −16.6240 −1.19662 −0.598309 0.801265i \(-0.704161\pi\)
−0.598309 + 0.801265i \(0.704161\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.71137i 0.193177i 0.995324 + 0.0965885i \(0.0307931\pi\)
−0.995324 + 0.0965885i \(0.969207\pi\)
\(198\) 0 0
\(199\) −4.78316 −0.339069 −0.169535 0.985524i \(-0.554226\pi\)
−0.169535 + 0.985524i \(0.554226\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 2.50908i − 0.176103i
\(204\) 0 0
\(205\) − 5.19877i − 0.363098i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.92228 0.132967
\(210\) 0 0
\(211\) 19.1635i 1.31927i 0.751587 + 0.659634i \(0.229289\pi\)
−0.751587 + 0.659634i \(0.770711\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.19877 −0.354553
\(216\) 0 0
\(217\) −0.332456 −0.0225686
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 19.1650i 1.28917i
\(222\) 0 0
\(223\) −2.30232 −0.154175 −0.0770873 0.997024i \(-0.524562\pi\)
−0.0770873 + 0.997024i \(0.524562\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 4.00000i − 0.265489i −0.991150 0.132745i \(-0.957621\pi\)
0.991150 0.132745i \(-0.0423790\pi\)
\(228\) 0 0
\(229\) 19.2751i 1.27373i 0.770974 + 0.636866i \(0.219770\pi\)
−0.770974 + 0.636866i \(0.780230\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.0333 0.853837 0.426918 0.904290i \(-0.359599\pi\)
0.426918 + 0.904290i \(0.359599\pi\)
\(234\) 0 0
\(235\) 0.210169i 0.0137099i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −21.7828 −1.40901 −0.704505 0.709699i \(-0.748831\pi\)
−0.704505 + 0.709699i \(0.748831\pi\)
\(240\) 0 0
\(241\) 4.54856 0.292998 0.146499 0.989211i \(-0.453199\pi\)
0.146499 + 0.989211i \(0.453199\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 6.67447i − 0.426416i
\(246\) 0 0
\(247\) 9.36185 0.595680
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 18.5209i − 1.16903i −0.811383 0.584515i \(-0.801285\pi\)
0.811383 0.584515i \(-0.198715\pi\)
\(252\) 0 0
\(253\) 2.39623i 0.150650i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 17.8451 1.11315 0.556575 0.830798i \(-0.312115\pi\)
0.556575 + 0.830798i \(0.312115\pi\)
\(258\) 0 0
\(259\) 1.31737i 0.0818574i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.6628 0.780822 0.390411 0.920641i \(-0.372333\pi\)
0.390411 + 0.920641i \(0.372333\pi\)
\(264\) 0 0
\(265\) 5.16097 0.317036
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.4434i 0.880632i 0.897843 + 0.440316i \(0.145134\pi\)
−0.897843 + 0.440316i \(0.854866\pi\)
\(270\) 0 0
\(271\) −26.9274 −1.63572 −0.817861 0.575416i \(-0.804840\pi\)
−0.817861 + 0.575416i \(0.804840\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.05366i 0.244445i
\(276\) 0 0
\(277\) − 18.2832i − 1.09853i −0.835647 0.549266i \(-0.814907\pi\)
0.835647 0.549266i \(-0.185093\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.5976 0.632202 0.316101 0.948726i \(-0.397626\pi\)
0.316101 + 0.948726i \(0.397626\pi\)
\(282\) 0 0
\(283\) 5.66229i 0.336588i 0.985737 + 0.168294i \(0.0538258\pi\)
−0.985737 + 0.168294i \(0.946174\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.99191 −0.117579
\(288\) 0 0
\(289\) −1.51444 −0.0890845
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 0.229918i − 0.0134320i −0.999977 0.00671598i \(-0.997862\pi\)
0.999977 0.00671598i \(-0.00213778\pi\)
\(294\) 0 0
\(295\) −6.83250 −0.397803
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 11.6700i 0.674896i
\(300\) 0 0
\(301\) 1.99191i 0.114812i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −11.3047 −0.647306
\(306\) 0 0
\(307\) − 22.0069i − 1.25600i −0.778213 0.628000i \(-0.783874\pi\)
0.778213 0.628000i \(-0.216126\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.5072 −0.765923 −0.382961 0.923764i \(-0.625096\pi\)
−0.382961 + 0.923764i \(0.625096\pi\)
\(312\) 0 0
\(313\) 2.14251 0.121102 0.0605508 0.998165i \(-0.480714\pi\)
0.0605508 + 0.998165i \(0.480714\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.8640i 1.17184i 0.810369 + 0.585920i \(0.199267\pi\)
−0.810369 + 0.585920i \(0.800733\pi\)
\(318\) 0 0
\(319\) 6.73164 0.376900
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 7.56451i − 0.420901i
\(324\) 0 0
\(325\) 19.7420i 1.09509i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.0805264 0.00443956
\(330\) 0 0
\(331\) − 10.6882i − 0.587478i −0.955886 0.293739i \(-0.905100\pi\)
0.955886 0.293739i \(-0.0948997\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.42217 −0.514788
\(336\) 0 0
\(337\) 20.3795 1.11014 0.555071 0.831803i \(-0.312691\pi\)
0.555071 + 0.831803i \(0.312691\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 0.891949i − 0.0483017i
\(342\) 0 0
\(343\) −5.16643 −0.278961
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 27.7641i − 1.49046i −0.666810 0.745228i \(-0.732341\pi\)
0.666810 0.745228i \(-0.267659\pi\)
\(348\) 0 0
\(349\) 4.68897i 0.250995i 0.992094 + 0.125497i \(0.0400527\pi\)
−0.992094 + 0.125497i \(0.959947\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −36.0249 −1.91741 −0.958706 0.284401i \(-0.908205\pi\)
−0.958706 + 0.284401i \(0.908205\pi\)
\(354\) 0 0
\(355\) 6.35683i 0.337385i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 25.8873 1.36628 0.683141 0.730287i \(-0.260614\pi\)
0.683141 + 0.730287i \(0.260614\pi\)
\(360\) 0 0
\(361\) 15.3048 0.805517
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.21022i 0.429743i
\(366\) 0 0
\(367\) 26.7496 1.39632 0.698160 0.715942i \(-0.254002\pi\)
0.698160 + 0.715942i \(0.254002\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 1.97743i − 0.102663i
\(372\) 0 0
\(373\) − 0.328598i − 0.0170142i −0.999964 0.00850708i \(-0.997292\pi\)
0.999964 0.00850708i \(-0.00270792\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 32.7843 1.68847
\(378\) 0 0
\(379\) − 30.3940i − 1.56124i −0.625008 0.780618i \(-0.714904\pi\)
0.625008 0.780618i \(-0.285096\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 36.9042 1.88571 0.942857 0.333197i \(-0.108127\pi\)
0.942857 + 0.333197i \(0.108127\pi\)
\(384\) 0 0
\(385\) −0.362592 −0.0184794
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 23.7033i − 1.20181i −0.799322 0.600904i \(-0.794808\pi\)
0.799322 0.600904i \(-0.205192\pi\)
\(390\) 0 0
\(391\) 9.42957 0.476874
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 8.36259i − 0.420768i
\(396\) 0 0
\(397\) 1.48318i 0.0744387i 0.999307 + 0.0372193i \(0.0118500\pi\)
−0.999307 + 0.0372193i \(0.988150\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8.79245 −0.439074 −0.219537 0.975604i \(-0.570455\pi\)
−0.219537 + 0.975604i \(0.570455\pi\)
\(402\) 0 0
\(403\) − 4.34394i − 0.216387i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.53439 −0.175193
\(408\) 0 0
\(409\) 31.4357 1.55439 0.777197 0.629258i \(-0.216641\pi\)
0.777197 + 0.629258i \(0.216641\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.61787i 0.128817i
\(414\) 0 0
\(415\) −15.1852 −0.745413
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 15.3165i − 0.748260i −0.927376 0.374130i \(-0.877941\pi\)
0.927376 0.374130i \(-0.122059\pi\)
\(420\) 0 0
\(421\) − 18.9907i − 0.925548i −0.886476 0.462774i \(-0.846854\pi\)
0.886476 0.462774i \(-0.153146\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 15.9518 0.773777
\(426\) 0 0
\(427\) 4.33140i 0.209611i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −23.8779 −1.15016 −0.575079 0.818098i \(-0.695029\pi\)
−0.575079 + 0.818098i \(0.695029\pi\)
\(432\) 0 0
\(433\) −32.0589 −1.54065 −0.770326 0.637651i \(-0.779906\pi\)
−0.770326 + 0.637651i \(0.779906\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 4.60623i − 0.220346i
\(438\) 0 0
\(439\) −26.4992 −1.26474 −0.632370 0.774667i \(-0.717918\pi\)
−0.632370 + 0.774667i \(0.717918\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 39.1108i 1.85821i 0.369818 + 0.929104i \(0.379420\pi\)
−0.369818 + 0.929104i \(0.620580\pi\)
\(444\) 0 0
\(445\) − 7.46403i − 0.353829i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.54272 0.261577 0.130789 0.991410i \(-0.458249\pi\)
0.130789 + 0.991410i \(0.458249\pi\)
\(450\) 0 0
\(451\) − 5.34412i − 0.251645i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.76589 −0.0827860
\(456\) 0 0
\(457\) −28.8027 −1.34733 −0.673666 0.739036i \(-0.735281\pi\)
−0.673666 + 0.739036i \(0.735281\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 25.2610i 1.17652i 0.808671 + 0.588261i \(0.200187\pi\)
−0.808671 + 0.588261i \(0.799813\pi\)
\(462\) 0 0
\(463\) 20.4096 0.948516 0.474258 0.880386i \(-0.342716\pi\)
0.474258 + 0.880386i \(0.342716\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 16.8795i − 0.781092i −0.920583 0.390546i \(-0.872286\pi\)
0.920583 0.390546i \(-0.127714\pi\)
\(468\) 0 0
\(469\) 3.61011i 0.166699i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5.34412 −0.245723
\(474\) 0 0
\(475\) − 7.79228i − 0.357534i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.89668 −0.132353 −0.0661763 0.997808i \(-0.521080\pi\)
−0.0661763 + 0.997808i \(0.521080\pi\)
\(480\) 0 0
\(481\) −17.2131 −0.784848
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.07212i 0.184905i
\(486\) 0 0
\(487\) −25.3697 −1.14961 −0.574806 0.818290i \(-0.694922\pi\)
−0.574806 + 0.818290i \(0.694922\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 3.95724i − 0.178588i −0.996005 0.0892939i \(-0.971539\pi\)
0.996005 0.0892939i \(-0.0284611\pi\)
\(492\) 0 0
\(493\) − 26.4902i − 1.19306i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.43562 0.109253
\(498\) 0 0
\(499\) − 39.2380i − 1.75654i −0.478169 0.878268i \(-0.658699\pi\)
0.478169 0.878268i \(-0.341301\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −30.4657 −1.35840 −0.679200 0.733953i \(-0.737673\pi\)
−0.679200 + 0.733953i \(0.737673\pi\)
\(504\) 0 0
\(505\) 16.2237 0.721944
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 7.57428i − 0.335724i −0.985811 0.167862i \(-0.946314\pi\)
0.985811 0.167862i \(-0.0536863\pi\)
\(510\) 0 0
\(511\) 3.14575 0.139160
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.45416i 0.196274i
\(516\) 0 0
\(517\) 0.216045i 0.00950165i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 33.7994 1.48078 0.740390 0.672178i \(-0.234641\pi\)
0.740390 + 0.672178i \(0.234641\pi\)
\(522\) 0 0
\(523\) − 19.6629i − 0.859797i −0.902877 0.429898i \(-0.858549\pi\)
0.902877 0.429898i \(-0.141451\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.50997 −0.152897
\(528\) 0 0
\(529\) −17.2581 −0.750351
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 26.0268i − 1.12734i
\(534\) 0 0
\(535\) −4.77370 −0.206385
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 6.86107i − 0.295527i
\(540\) 0 0
\(541\) − 4.50069i − 0.193500i −0.995309 0.0967499i \(-0.969155\pi\)
0.995309 0.0967499i \(-0.0308447\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5.13297 −0.219872
\(546\) 0 0
\(547\) − 34.7996i − 1.48792i −0.668222 0.743962i \(-0.732944\pi\)
0.668222 0.743962i \(-0.267056\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −12.9401 −0.551268
\(552\) 0 0
\(553\) −3.20413 −0.136253
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 41.7083i 1.76724i 0.468206 + 0.883619i \(0.344901\pi\)
−0.468206 + 0.883619i \(0.655099\pi\)
\(558\) 0 0
\(559\) −26.0268 −1.10081
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 25.0971i 1.05772i 0.848710 + 0.528859i \(0.177380\pi\)
−0.848710 + 0.528859i \(0.822620\pi\)
\(564\) 0 0
\(565\) 7.96580i 0.335124i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −38.4176 −1.61055 −0.805274 0.592902i \(-0.797982\pi\)
−0.805274 + 0.592902i \(0.797982\pi\)
\(570\) 0 0
\(571\) 44.0148i 1.84196i 0.389608 + 0.920981i \(0.372611\pi\)
−0.389608 + 0.920981i \(0.627389\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 9.71349 0.405081
\(576\) 0 0
\(577\) 9.06878 0.377538 0.188769 0.982021i \(-0.439550\pi\)
0.188769 + 0.982021i \(0.439550\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5.81822i 0.241381i
\(582\) 0 0
\(583\) 5.30526 0.219721
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 32.6203i − 1.34638i −0.739468 0.673191i \(-0.764923\pi\)
0.739468 0.673191i \(-0.235077\pi\)
\(588\) 0 0
\(589\) 1.71458i 0.0706480i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −25.1304 −1.03198 −0.515992 0.856594i \(-0.672576\pi\)
−0.515992 + 0.856594i \(0.672576\pi\)
\(594\) 0 0
\(595\) 1.42686i 0.0584956i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 24.4554 0.999221 0.499611 0.866250i \(-0.333476\pi\)
0.499611 + 0.866250i \(0.333476\pi\)
\(600\) 0 0
\(601\) −7.04967 −0.287562 −0.143781 0.989610i \(-0.545926\pi\)
−0.143781 + 0.989610i \(0.545926\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 0.972802i − 0.0395500i
\(606\) 0 0
\(607\) −29.4951 −1.19717 −0.598585 0.801059i \(-0.704270\pi\)
−0.598585 + 0.801059i \(0.704270\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.05218i 0.0425665i
\(612\) 0 0
\(613\) − 34.6553i − 1.39972i −0.714282 0.699858i \(-0.753247\pi\)
0.714282 0.699858i \(-0.246753\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −34.4034 −1.38503 −0.692514 0.721405i \(-0.743497\pi\)
−0.692514 + 0.721405i \(0.743497\pi\)
\(618\) 0 0
\(619\) − 33.5984i − 1.35043i −0.737620 0.675216i \(-0.764050\pi\)
0.737620 0.675216i \(-0.235950\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.85985 −0.114577
\(624\) 0 0
\(625\) 11.7004 0.468016
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13.9084i 0.554565i
\(630\) 0 0
\(631\) 38.2188 1.52147 0.760733 0.649064i \(-0.224839\pi\)
0.760733 + 0.649064i \(0.224839\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 19.5670i 0.776493i
\(636\) 0 0
\(637\) − 33.4146i − 1.32393i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 36.3107 1.43418 0.717092 0.696978i \(-0.245473\pi\)
0.717092 + 0.696978i \(0.245473\pi\)
\(642\) 0 0
\(643\) 28.7600i 1.13418i 0.823655 + 0.567091i \(0.191931\pi\)
−0.823655 + 0.567091i \(0.808069\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.182275 −0.00716597 −0.00358299 0.999994i \(-0.501141\pi\)
−0.00358299 + 0.999994i \(0.501141\pi\)
\(648\) 0 0
\(649\) −7.02352 −0.275697
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 19.9879i − 0.782187i −0.920351 0.391093i \(-0.872097\pi\)
0.920351 0.391093i \(-0.127903\pi\)
\(654\) 0 0
\(655\) 9.47969 0.370402
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 24.5539i 0.956485i 0.878228 + 0.478242i \(0.158726\pi\)
−0.878228 + 0.478242i \(0.841274\pi\)
\(660\) 0 0
\(661\) − 3.00617i − 0.116926i −0.998290 0.0584632i \(-0.981380\pi\)
0.998290 0.0584632i \(-0.0186200\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.697005 0.0270287
\(666\) 0 0
\(667\) − 16.1306i − 0.624578i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −11.6208 −0.448615
\(672\) 0 0
\(673\) 26.2783 1.01295 0.506476 0.862254i \(-0.330948\pi\)
0.506476 + 0.862254i \(0.330948\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 42.2493i − 1.62377i −0.583815 0.811887i \(-0.698441\pi\)
0.583815 0.811887i \(-0.301559\pi\)
\(678\) 0 0
\(679\) 1.56023 0.0598762
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 8.26642i − 0.316306i −0.987415 0.158153i \(-0.949446\pi\)
0.987415 0.158153i \(-0.0505539\pi\)
\(684\) 0 0
\(685\) − 7.06877i − 0.270084i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 25.8375 0.984331
\(690\) 0 0
\(691\) − 14.2272i − 0.541227i −0.962688 0.270614i \(-0.912773\pi\)
0.962688 0.270614i \(-0.0872265\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −19.2298 −0.729428
\(696\) 0 0
\(697\) −21.0300 −0.796568
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 21.3270i 0.805511i 0.915308 + 0.402755i \(0.131947\pi\)
−0.915308 + 0.402755i \(0.868053\pi\)
\(702\) 0 0
\(703\) 6.79409 0.256244
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 6.21610i − 0.233781i
\(708\) 0 0
\(709\) − 41.4642i − 1.55722i −0.627509 0.778609i \(-0.715925\pi\)
0.627509 0.778609i \(-0.284075\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.13731 −0.0800431
\(714\) 0 0
\(715\) − 4.73771i − 0.177180i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 34.1036 1.27185 0.635925 0.771751i \(-0.280619\pi\)
0.635925 + 0.771751i \(0.280619\pi\)
\(720\) 0 0
\(721\) 1.70661 0.0635576
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 27.2878i − 1.01344i
\(726\) 0 0
\(727\) 11.7396 0.435397 0.217698 0.976016i \(-0.430145\pi\)
0.217698 + 0.976016i \(0.430145\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 21.0300i 0.777823i
\(732\) 0 0
\(733\) − 16.3251i − 0.602981i −0.953469 0.301491i \(-0.902516\pi\)
0.953469 0.301491i \(-0.0974842\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −9.68560 −0.356774
\(738\) 0 0
\(739\) − 10.8959i − 0.400814i −0.979713 0.200407i \(-0.935774\pi\)
0.979713 0.200407i \(-0.0642264\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 15.7775 0.578821 0.289410 0.957205i \(-0.406541\pi\)
0.289410 + 0.957205i \(0.406541\pi\)
\(744\) 0 0
\(745\) 0.665985 0.0243998
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.82905i 0.0668319i
\(750\) 0 0
\(751\) 23.8788 0.871350 0.435675 0.900104i \(-0.356510\pi\)
0.435675 + 0.900104i \(0.356510\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 9.46982i 0.344642i
\(756\) 0 0
\(757\) − 49.4564i − 1.79752i −0.438437 0.898762i \(-0.644468\pi\)
0.438437 0.898762i \(-0.355532\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.5915 −0.420190 −0.210095 0.977681i \(-0.567377\pi\)
−0.210095 + 0.977681i \(0.567377\pi\)
\(762\) 0 0
\(763\) 1.96670i 0.0711993i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −34.2057 −1.23510
\(768\) 0 0
\(769\) 10.9488 0.394826 0.197413 0.980320i \(-0.436746\pi\)
0.197413 + 0.980320i \(0.436746\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 55.2931i − 1.98876i −0.105888 0.994378i \(-0.533769\pi\)
0.105888 0.994378i \(-0.466231\pi\)
\(774\) 0 0
\(775\) −3.61565 −0.129878
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10.2729i 0.368065i
\(780\) 0 0
\(781\) 6.53455i 0.233825i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.92086 0.0685585
\(786\) 0 0
\(787\) 16.2666i 0.579840i 0.957051 + 0.289920i \(0.0936287\pi\)
−0.957051 + 0.289920i \(0.906371\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.05210 0.108520
\(792\) 0 0
\(793\) −56.5951 −2.00975
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 23.1218i 0.819016i 0.912307 + 0.409508i \(0.134300\pi\)
−0.912307 + 0.409508i \(0.865700\pi\)
\(798\) 0 0
\(799\) 0.850174 0.0300770
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.43977i 0.297833i
\(804\) 0 0
\(805\) 0.868854i 0.0306231i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5.85499 0.205850 0.102925 0.994689i \(-0.467180\pi\)
0.102925 + 0.994689i \(0.467180\pi\)
\(810\) 0 0
\(811\) 18.0528i 0.633921i 0.948439 + 0.316961i \(0.102662\pi\)
−0.948439 + 0.316961i \(0.897338\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −13.6358 −0.477640
\(816\) 0 0
\(817\) 10.2729 0.359404
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 48.1747i − 1.68131i −0.541573 0.840654i \(-0.682171\pi\)
0.541573 0.840654i \(-0.317829\pi\)
\(822\) 0 0
\(823\) 4.20676 0.146639 0.0733193 0.997309i \(-0.476641\pi\)
0.0733193 + 0.997309i \(0.476641\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25.5271i 0.887666i 0.896110 + 0.443833i \(0.146382\pi\)
−0.896110 + 0.443833i \(0.853618\pi\)
\(828\) 0 0
\(829\) − 4.31017i − 0.149699i −0.997195 0.0748493i \(-0.976152\pi\)
0.997195 0.0748493i \(-0.0238476\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −26.9995 −0.935477
\(834\) 0 0
\(835\) − 17.7710i − 0.614992i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 43.9106 1.51596 0.757981 0.652277i \(-0.226186\pi\)
0.757981 + 0.652277i \(0.226186\pi\)
\(840\) 0 0
\(841\) −16.3150 −0.562587
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 10.4270i − 0.358701i
\(846\) 0 0
\(847\) −0.372730 −0.0128071
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.46920i 0.290320i
\(852\) 0 0
\(853\) − 27.7678i − 0.950750i −0.879783 0.475375i \(-0.842312\pi\)
0.879783 0.475375i \(-0.157688\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −16.7294 −0.571464 −0.285732 0.958310i \(-0.592237\pi\)
−0.285732 + 0.958310i \(0.592237\pi\)
\(858\) 0 0
\(859\) − 33.7228i − 1.15061i −0.817940 0.575303i \(-0.804884\pi\)
0.817940 0.575303i \(-0.195116\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.156749 0.00533580 0.00266790 0.999996i \(-0.499151\pi\)
0.00266790 + 0.999996i \(0.499151\pi\)
\(864\) 0 0
\(865\) −2.11635 −0.0719582
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 8.59639i − 0.291613i
\(870\) 0 0
\(871\) −47.1705 −1.59831
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.28278i 0.110978i
\(876\) 0 0
\(877\) 7.44868i 0.251524i 0.992060 + 0.125762i \(0.0401376\pi\)
−0.992060 + 0.125762i \(0.959862\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −26.7307 −0.900579 −0.450289 0.892883i \(-0.648679\pi\)
−0.450289 + 0.892883i \(0.648679\pi\)
\(882\) 0 0
\(883\) 2.02931i 0.0682918i 0.999417 + 0.0341459i \(0.0108711\pi\)
−0.999417 + 0.0341459i \(0.989129\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 47.9468 1.60990 0.804948 0.593346i \(-0.202193\pi\)
0.804948 + 0.593346i \(0.202193\pi\)
\(888\) 0 0
\(889\) 7.49711 0.251445
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 0.415300i − 0.0138975i
\(894\) 0 0
\(895\) 8.03840 0.268694
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.00428i 0.200254i
\(900\) 0 0
\(901\) − 20.8771i − 0.695517i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −10.7928 −0.358765
\(906\) 0 0
\(907\) − 31.2433i − 1.03742i −0.854952 0.518708i \(-0.826413\pi\)
0.854952 0.518708i \(-0.173587\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 52.2465 1.73100 0.865502 0.500905i \(-0.166999\pi\)
0.865502 + 0.500905i \(0.166999\pi\)
\(912\) 0 0
\(913\) −15.6098 −0.516608
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 3.63214i − 0.119944i
\(918\) 0 0
\(919\) 26.7583 0.882675 0.441338 0.897341i \(-0.354504\pi\)
0.441338 + 0.897341i \(0.354504\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 31.8244i 1.04751i
\(924\) 0 0
\(925\) 14.3272i 0.471075i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.8346 0.421091 0.210546 0.977584i \(-0.432476\pi\)
0.210546 + 0.977584i \(0.432476\pi\)
\(930\) 0 0
\(931\) 13.1889i 0.432250i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3.82814 −0.125194
\(936\) 0 0
\(937\) −7.16455 −0.234055 −0.117028 0.993129i \(-0.537337\pi\)
−0.117028 + 0.993129i \(0.537337\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 21.9782i 0.716469i 0.933632 + 0.358235i \(0.116621\pi\)
−0.933632 + 0.358235i \(0.883379\pi\)
\(942\) 0 0
\(943\) −12.8057 −0.417012
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 40.5866i 1.31889i 0.751755 + 0.659443i \(0.229208\pi\)
−0.751755 + 0.659443i \(0.770792\pi\)
\(948\) 0 0
\(949\) 41.1031i 1.33426i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3.80164 0.123147 0.0615736 0.998103i \(-0.480388\pi\)
0.0615736 + 0.998103i \(0.480388\pi\)
\(954\) 0 0
\(955\) 19.1610i 0.620036i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.70840 −0.0874589
\(960\) 0 0
\(961\) −30.2044 −0.974336
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 16.1718i − 0.520589i
\(966\) 0 0
\(967\) −46.2968 −1.48880 −0.744402 0.667732i \(-0.767265\pi\)
−0.744402 + 0.667732i \(0.767265\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 28.9883i − 0.930280i −0.885237 0.465140i \(-0.846004\pi\)
0.885237 0.465140i \(-0.153996\pi\)
\(972\) 0 0
\(973\) 7.36790i 0.236204i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 56.0820 1.79422 0.897112 0.441804i \(-0.145661\pi\)
0.897112 + 0.441804i \(0.145661\pi\)
\(978\) 0 0
\(979\) − 7.67271i − 0.245221i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 50.0408 1.59605 0.798027 0.602622i \(-0.205877\pi\)
0.798027 + 0.602622i \(0.205877\pi\)
\(984\) 0 0
\(985\) −2.63763 −0.0840417
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.8057i 0.407199i
\(990\) 0 0
\(991\) 26.4967 0.841694 0.420847 0.907132i \(-0.361733\pi\)
0.420847 + 0.907132i \(0.361733\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 4.65307i − 0.147512i
\(996\) 0 0
\(997\) − 21.3660i − 0.676669i −0.941026 0.338335i \(-0.890136\pi\)
0.941026 0.338335i \(-0.109864\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3168.2.f.h.1585.14 20
3.2 odd 2 inner 3168.2.f.h.1585.8 20
4.3 odd 2 792.2.f.h.397.20 yes 20
8.3 odd 2 792.2.f.h.397.19 yes 20
8.5 even 2 inner 3168.2.f.h.1585.7 20
12.11 even 2 792.2.f.h.397.1 20
24.5 odd 2 inner 3168.2.f.h.1585.13 20
24.11 even 2 792.2.f.h.397.2 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.f.h.397.1 20 12.11 even 2
792.2.f.h.397.2 yes 20 24.11 even 2
792.2.f.h.397.19 yes 20 8.3 odd 2
792.2.f.h.397.20 yes 20 4.3 odd 2
3168.2.f.h.1585.7 20 8.5 even 2 inner
3168.2.f.h.1585.8 20 3.2 odd 2 inner
3168.2.f.h.1585.13 20 24.5 odd 2 inner
3168.2.f.h.1585.14 20 1.1 even 1 trivial