Properties

Label 3168.2.a.bi.1.3
Level $3168$
Weight $2$
Character 3168.1
Self dual yes
Analytic conductor $25.297$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3168,2,Mod(1,3168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3168.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,-4,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.2966073603\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.93185\) of defining polynomial
Character \(\chi\) \(=\) 3168.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.82843 q^{5} -3.46410 q^{7} -1.00000 q^{11} -2.89898 q^{13} -0.635674 q^{17} -0.635674 q^{19} +4.89898 q^{23} +3.00000 q^{25} +6.29253 q^{29} -5.65685 q^{31} -9.79796 q^{35} +11.7980 q^{37} +6.29253 q^{41} +6.29253 q^{43} -0.898979 q^{47} +5.00000 q^{49} +4.09978 q^{53} -2.82843 q^{55} +5.79796 q^{59} +10.8990 q^{61} -8.19955 q^{65} +8.89898 q^{71} +6.00000 q^{73} +3.46410 q^{77} +4.73545 q^{79} +5.79796 q^{83} -1.79796 q^{85} -11.3137 q^{89} +10.0424 q^{91} -1.79796 q^{95} +10.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{11} + 8 q^{13} + 12 q^{25} + 8 q^{37} + 16 q^{47} + 20 q^{49} - 16 q^{59} + 24 q^{61} + 16 q^{71} + 24 q^{73} - 16 q^{83} + 32 q^{85} + 32 q^{95} + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.82843 1.26491 0.632456 0.774597i \(-0.282047\pi\)
0.632456 + 0.774597i \(0.282047\pi\)
\(6\) 0 0
\(7\) −3.46410 −1.30931 −0.654654 0.755929i \(-0.727186\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −2.89898 −0.804032 −0.402016 0.915633i \(-0.631690\pi\)
−0.402016 + 0.915633i \(0.631690\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.635674 −0.154174 −0.0770869 0.997024i \(-0.524562\pi\)
−0.0770869 + 0.997024i \(0.524562\pi\)
\(18\) 0 0
\(19\) −0.635674 −0.145834 −0.0729169 0.997338i \(-0.523231\pi\)
−0.0729169 + 0.997338i \(0.523231\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.89898 1.02151 0.510754 0.859727i \(-0.329366\pi\)
0.510754 + 0.859727i \(0.329366\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.29253 1.16849 0.584247 0.811576i \(-0.301390\pi\)
0.584247 + 0.811576i \(0.301390\pi\)
\(30\) 0 0
\(31\) −5.65685 −1.01600 −0.508001 0.861357i \(-0.669615\pi\)
−0.508001 + 0.861357i \(0.669615\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −9.79796 −1.65616
\(36\) 0 0
\(37\) 11.7980 1.93957 0.969786 0.243956i \(-0.0784453\pi\)
0.969786 + 0.243956i \(0.0784453\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.29253 0.982728 0.491364 0.870954i \(-0.336499\pi\)
0.491364 + 0.870954i \(0.336499\pi\)
\(42\) 0 0
\(43\) 6.29253 0.959602 0.479801 0.877377i \(-0.340709\pi\)
0.479801 + 0.877377i \(0.340709\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.898979 −0.131130 −0.0655648 0.997848i \(-0.520885\pi\)
−0.0655648 + 0.997848i \(0.520885\pi\)
\(48\) 0 0
\(49\) 5.00000 0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.09978 0.563148 0.281574 0.959540i \(-0.409144\pi\)
0.281574 + 0.959540i \(0.409144\pi\)
\(54\) 0 0
\(55\) −2.82843 −0.381385
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.79796 0.754830 0.377415 0.926044i \(-0.376813\pi\)
0.377415 + 0.926044i \(0.376813\pi\)
\(60\) 0 0
\(61\) 10.8990 1.39547 0.697736 0.716355i \(-0.254191\pi\)
0.697736 + 0.716355i \(0.254191\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −8.19955 −1.01703
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.89898 1.05611 0.528057 0.849209i \(-0.322921\pi\)
0.528057 + 0.849209i \(0.322921\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.46410 0.394771
\(78\) 0 0
\(79\) 4.73545 0.532780 0.266390 0.963865i \(-0.414169\pi\)
0.266390 + 0.963865i \(0.414169\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.79796 0.636409 0.318204 0.948022i \(-0.396920\pi\)
0.318204 + 0.948022i \(0.396920\pi\)
\(84\) 0 0
\(85\) −1.79796 −0.195016
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −11.3137 −1.19925 −0.599625 0.800281i \(-0.704684\pi\)
−0.599625 + 0.800281i \(0.704684\pi\)
\(90\) 0 0
\(91\) 10.0424 1.05273
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.79796 −0.184467
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −13.2207 −1.31551 −0.657756 0.753231i \(-0.728494\pi\)
−0.657756 + 0.753231i \(0.728494\pi\)
\(102\) 0 0
\(103\) 12.5851 1.24004 0.620021 0.784585i \(-0.287124\pi\)
0.620021 + 0.784585i \(0.287124\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) 5.10102 0.488589 0.244295 0.969701i \(-0.421444\pi\)
0.244295 + 0.969701i \(0.421444\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.27135 0.119598 0.0597992 0.998210i \(-0.480954\pi\)
0.0597992 + 0.998210i \(0.480954\pi\)
\(114\) 0 0
\(115\) 13.8564 1.29212
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.20204 0.201861
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −5.65685 −0.505964
\(126\) 0 0
\(127\) −20.4347 −1.81328 −0.906642 0.421902i \(-0.861363\pi\)
−0.906642 + 0.421902i \(0.861363\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −13.7980 −1.20553 −0.602767 0.797918i \(-0.705935\pi\)
−0.602767 + 0.797918i \(0.705935\pi\)
\(132\) 0 0
\(133\) 2.20204 0.190941
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.92820 0.591916 0.295958 0.955201i \(-0.404361\pi\)
0.295958 + 0.955201i \(0.404361\pi\)
\(138\) 0 0
\(139\) 1.90702 0.161752 0.0808758 0.996724i \(-0.474228\pi\)
0.0808758 + 0.996724i \(0.474228\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.89898 0.242425
\(144\) 0 0
\(145\) 17.7980 1.47804
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −20.1489 −1.65067 −0.825333 0.564647i \(-0.809012\pi\)
−0.825333 + 0.564647i \(0.809012\pi\)
\(150\) 0 0
\(151\) 13.5065 1.09914 0.549570 0.835448i \(-0.314792\pi\)
0.549570 + 0.835448i \(0.314792\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −16.0000 −1.28515
\(156\) 0 0
\(157\) 15.7980 1.26081 0.630407 0.776265i \(-0.282888\pi\)
0.630407 + 0.776265i \(0.282888\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −16.9706 −1.33747
\(162\) 0 0
\(163\) −23.8988 −1.87190 −0.935948 0.352138i \(-0.885455\pi\)
−0.935948 + 0.352138i \(0.885455\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) −4.59592 −0.353532
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.83523 0.671730 0.335865 0.941910i \(-0.390971\pi\)
0.335865 + 0.941910i \(0.390971\pi\)
\(174\) 0 0
\(175\) −10.3923 −0.785584
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.79796 0.732334 0.366167 0.930549i \(-0.380670\pi\)
0.366167 + 0.930549i \(0.380670\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 33.3697 2.45339
\(186\) 0 0
\(187\) 0.635674 0.0464851
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 26.6969 1.93172 0.965861 0.259060i \(-0.0834126\pi\)
0.965861 + 0.259060i \(0.0834126\pi\)
\(192\) 0 0
\(193\) −7.79796 −0.561309 −0.280655 0.959809i \(-0.590552\pi\)
−0.280655 + 0.959809i \(0.590552\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −24.5344 −1.74801 −0.874003 0.485920i \(-0.838485\pi\)
−0.874003 + 0.485920i \(0.838485\pi\)
\(198\) 0 0
\(199\) 5.65685 0.401004 0.200502 0.979693i \(-0.435743\pi\)
0.200502 + 0.979693i \(0.435743\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −21.7980 −1.52992
\(204\) 0 0
\(205\) 17.7980 1.24306
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.635674 0.0439705
\(210\) 0 0
\(211\) −20.1489 −1.38711 −0.693555 0.720404i \(-0.743957\pi\)
−0.693555 + 0.720404i \(0.743957\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 17.7980 1.21381
\(216\) 0 0
\(217\) 19.5959 1.33026
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.84281 0.123961
\(222\) 0 0
\(223\) 23.8988 1.60038 0.800190 0.599747i \(-0.204732\pi\)
0.800190 + 0.599747i \(0.204732\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.00000 0.265489 0.132745 0.991150i \(-0.457621\pi\)
0.132745 + 0.991150i \(0.457621\pi\)
\(228\) 0 0
\(229\) 7.79796 0.515304 0.257652 0.966238i \(-0.417051\pi\)
0.257652 + 0.966238i \(0.417051\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.56388 −0.495526 −0.247763 0.968821i \(-0.579695\pi\)
−0.247763 + 0.968821i \(0.579695\pi\)
\(234\) 0 0
\(235\) −2.54270 −0.165867
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) 15.7980 1.01764 0.508818 0.860874i \(-0.330083\pi\)
0.508818 + 0.860874i \(0.330083\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 14.1421 0.903508
\(246\) 0 0
\(247\) 1.84281 0.117255
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −9.79796 −0.618442 −0.309221 0.950990i \(-0.600068\pi\)
−0.309221 + 0.950990i \(0.600068\pi\)
\(252\) 0 0
\(253\) −4.89898 −0.307996
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.54270 −0.158609 −0.0793046 0.996850i \(-0.525270\pi\)
−0.0793046 + 0.996850i \(0.525270\pi\)
\(258\) 0 0
\(259\) −40.8693 −2.53950
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.20204 0.382434 0.191217 0.981548i \(-0.438757\pi\)
0.191217 + 0.981548i \(0.438757\pi\)
\(264\) 0 0
\(265\) 11.5959 0.712332
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.21393 −0.439841 −0.219921 0.975518i \(-0.570580\pi\)
−0.219921 + 0.975518i \(0.570580\pi\)
\(270\) 0 0
\(271\) −29.9056 −1.81663 −0.908317 0.418283i \(-0.862632\pi\)
−0.908317 + 0.418283i \(0.862632\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.00000 −0.180907
\(276\) 0 0
\(277\) 6.89898 0.414520 0.207260 0.978286i \(-0.433545\pi\)
0.207260 + 0.978286i \(0.433545\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.9494 0.712840 0.356420 0.934326i \(-0.383997\pi\)
0.356420 + 0.934326i \(0.383997\pi\)
\(282\) 0 0
\(283\) 17.6062 1.04658 0.523291 0.852154i \(-0.324704\pi\)
0.523291 + 0.852154i \(0.324704\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −21.7980 −1.28669
\(288\) 0 0
\(289\) −16.5959 −0.976230
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.6780 0.623817 0.311909 0.950112i \(-0.399032\pi\)
0.311909 + 0.950112i \(0.399032\pi\)
\(294\) 0 0
\(295\) 16.3991 0.954793
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −14.2020 −0.821325
\(300\) 0 0
\(301\) −21.7980 −1.25641
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 30.8270 1.76515
\(306\) 0 0
\(307\) 1.90702 0.108840 0.0544198 0.998518i \(-0.482669\pi\)
0.0544198 + 0.998518i \(0.482669\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 28.8990 1.63871 0.819355 0.573286i \(-0.194332\pi\)
0.819355 + 0.573286i \(0.194332\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.3417 1.25483 0.627417 0.778683i \(-0.284112\pi\)
0.627417 + 0.778683i \(0.284112\pi\)
\(318\) 0 0
\(319\) −6.29253 −0.352314
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.404082 0.0224837
\(324\) 0 0
\(325\) −8.69694 −0.482419
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.11416 0.171689
\(330\) 0 0
\(331\) −23.8988 −1.31359 −0.656797 0.754067i \(-0.728089\pi\)
−0.656797 + 0.754067i \(0.728089\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −29.5959 −1.61219 −0.806096 0.591785i \(-0.798424\pi\)
−0.806096 + 0.591785i \(0.798424\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.65685 0.306336
\(342\) 0 0
\(343\) 6.92820 0.374088
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −21.7980 −1.17018 −0.585088 0.810970i \(-0.698940\pi\)
−0.585088 + 0.810970i \(0.698940\pi\)
\(348\) 0 0
\(349\) 9.10102 0.487166 0.243583 0.969880i \(-0.421677\pi\)
0.243583 + 0.969880i \(0.421677\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −25.1701 −1.33967 −0.669835 0.742510i \(-0.733635\pi\)
−0.669835 + 0.742510i \(0.733635\pi\)
\(354\) 0 0
\(355\) 25.1701 1.33589
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 33.7980 1.78379 0.891894 0.452244i \(-0.149377\pi\)
0.891894 + 0.452244i \(0.149377\pi\)
\(360\) 0 0
\(361\) −18.5959 −0.978733
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 16.9706 0.888280
\(366\) 0 0
\(367\) 23.8988 1.24751 0.623753 0.781622i \(-0.285607\pi\)
0.623753 + 0.781622i \(0.285607\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −14.2020 −0.737333
\(372\) 0 0
\(373\) −3.30306 −0.171026 −0.0855130 0.996337i \(-0.527253\pi\)
−0.0855130 + 0.996337i \(0.527253\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −18.2419 −0.939506
\(378\) 0 0
\(379\) 35.2125 1.80874 0.904372 0.426746i \(-0.140340\pi\)
0.904372 + 0.426746i \(0.140340\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 32.4949 1.66041 0.830206 0.557457i \(-0.188223\pi\)
0.830206 + 0.557457i \(0.188223\pi\)
\(384\) 0 0
\(385\) 9.79796 0.499350
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 27.9985 1.41958 0.709791 0.704412i \(-0.248789\pi\)
0.709791 + 0.704412i \(0.248789\pi\)
\(390\) 0 0
\(391\) −3.11416 −0.157490
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 13.3939 0.673919
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 32.0983 1.60291 0.801457 0.598053i \(-0.204059\pi\)
0.801457 + 0.598053i \(0.204059\pi\)
\(402\) 0 0
\(403\) 16.3991 0.816898
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11.7980 −0.584803
\(408\) 0 0
\(409\) −11.7980 −0.583372 −0.291686 0.956514i \(-0.594216\pi\)
−0.291686 + 0.956514i \(0.594216\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −20.0847 −0.988304
\(414\) 0 0
\(415\) 16.3991 0.805000
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −14.2020 −0.693815 −0.346908 0.937899i \(-0.612768\pi\)
−0.346908 + 0.937899i \(0.612768\pi\)
\(420\) 0 0
\(421\) −7.79796 −0.380049 −0.190025 0.981779i \(-0.560857\pi\)
−0.190025 + 0.981779i \(0.560857\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.90702 −0.0925042
\(426\) 0 0
\(427\) −37.7552 −1.82710
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −25.7980 −1.24264 −0.621322 0.783555i \(-0.713404\pi\)
−0.621322 + 0.783555i \(0.713404\pi\)
\(432\) 0 0
\(433\) 17.5959 0.845606 0.422803 0.906222i \(-0.361046\pi\)
0.422803 + 0.906222i \(0.361046\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.11416 −0.148970
\(438\) 0 0
\(439\) 12.2351 0.583950 0.291975 0.956426i \(-0.405688\pi\)
0.291975 + 0.956426i \(0.405688\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −25.3939 −1.20650 −0.603250 0.797552i \(-0.706128\pi\)
−0.603250 + 0.797552i \(0.706128\pi\)
\(444\) 0 0
\(445\) −32.0000 −1.51695
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −19.5133 −0.920888 −0.460444 0.887689i \(-0.652310\pi\)
−0.460444 + 0.887689i \(0.652310\pi\)
\(450\) 0 0
\(451\) −6.29253 −0.296304
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 28.4041 1.33160
\(456\) 0 0
\(457\) 19.3939 0.907207 0.453604 0.891204i \(-0.350138\pi\)
0.453604 + 0.891204i \(0.350138\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −23.2631 −1.08347 −0.541735 0.840549i \(-0.682232\pi\)
−0.541735 + 0.840549i \(0.682232\pi\)
\(462\) 0 0
\(463\) 15.1278 0.703046 0.351523 0.936179i \(-0.385664\pi\)
0.351523 + 0.936179i \(0.385664\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 23.5959 1.09189 0.545944 0.837821i \(-0.316171\pi\)
0.545944 + 0.837821i \(0.316171\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −6.29253 −0.289331
\(474\) 0 0
\(475\) −1.90702 −0.0875002
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −21.3939 −0.977511 −0.488756 0.872421i \(-0.662549\pi\)
−0.488756 + 0.872421i \(0.662549\pi\)
\(480\) 0 0
\(481\) −34.2020 −1.55948
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 28.2843 1.28432
\(486\) 0 0
\(487\) 3.11416 0.141116 0.0705579 0.997508i \(-0.477522\pi\)
0.0705579 + 0.997508i \(0.477522\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.00000 −0.180517 −0.0902587 0.995918i \(-0.528769\pi\)
−0.0902587 + 0.995918i \(0.528769\pi\)
\(492\) 0 0
\(493\) −4.00000 −0.180151
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −30.8270 −1.38278
\(498\) 0 0
\(499\) 11.3137 0.506471 0.253236 0.967405i \(-0.418505\pi\)
0.253236 + 0.967405i \(0.418505\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −43.5959 −1.94385 −0.971923 0.235299i \(-0.924393\pi\)
−0.971923 + 0.235299i \(0.924393\pi\)
\(504\) 0 0
\(505\) −37.3939 −1.66401
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.55708 0.0690163 0.0345081 0.999404i \(-0.489014\pi\)
0.0345081 + 0.999404i \(0.489014\pi\)
\(510\) 0 0
\(511\) −20.7846 −0.919457
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 35.5959 1.56854
\(516\) 0 0
\(517\) 0.898979 0.0395371
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −27.0129 −1.18346 −0.591729 0.806137i \(-0.701554\pi\)
−0.591729 + 0.806137i \(0.701554\pi\)
\(522\) 0 0
\(523\) 22.6916 0.992236 0.496118 0.868255i \(-0.334758\pi\)
0.496118 + 0.868255i \(0.334758\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.59592 0.156641
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −18.2419 −0.790145
\(534\) 0 0
\(535\) −33.9411 −1.46740
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.00000 −0.215365
\(540\) 0 0
\(541\) −34.8990 −1.50042 −0.750212 0.661197i \(-0.770049\pi\)
−0.750212 + 0.661197i \(0.770049\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.4279 0.618022
\(546\) 0 0
\(547\) 11.9494 0.510919 0.255459 0.966820i \(-0.417773\pi\)
0.255459 + 0.966820i \(0.417773\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.00000 −0.170406
\(552\) 0 0
\(553\) −16.4041 −0.697573
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 21.9917 0.931820 0.465910 0.884832i \(-0.345727\pi\)
0.465910 + 0.884832i \(0.345727\pi\)
\(558\) 0 0
\(559\) −18.2419 −0.771551
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7.59592 0.320130 0.160065 0.987106i \(-0.448830\pi\)
0.160065 + 0.987106i \(0.448830\pi\)
\(564\) 0 0
\(565\) 3.59592 0.151281
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11.9494 −0.500944 −0.250472 0.968124i \(-0.580586\pi\)
−0.250472 + 0.968124i \(0.580586\pi\)
\(570\) 0 0
\(571\) 11.9494 0.500066 0.250033 0.968237i \(-0.419559\pi\)
0.250033 + 0.968237i \(0.419559\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 14.6969 0.612905
\(576\) 0 0
\(577\) 10.0000 0.416305 0.208153 0.978096i \(-0.433255\pi\)
0.208153 + 0.978096i \(0.433255\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −20.0847 −0.833255
\(582\) 0 0
\(583\) −4.09978 −0.169795
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.2020 0.421083 0.210542 0.977585i \(-0.432477\pi\)
0.210542 + 0.977585i \(0.432477\pi\)
\(588\) 0 0
\(589\) 3.59592 0.148167
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 28.3485 1.16413 0.582066 0.813141i \(-0.302244\pi\)
0.582066 + 0.813141i \(0.302244\pi\)
\(594\) 0 0
\(595\) 6.22831 0.255336
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.30306 0.0532417 0.0266208 0.999646i \(-0.491525\pi\)
0.0266208 + 0.999646i \(0.491525\pi\)
\(600\) 0 0
\(601\) −14.0000 −0.571072 −0.285536 0.958368i \(-0.592172\pi\)
−0.285536 + 0.958368i \(0.592172\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.82843 0.114992
\(606\) 0 0
\(607\) 2.19275 0.0890011 0.0445005 0.999009i \(-0.485830\pi\)
0.0445005 + 0.999009i \(0.485830\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.60612 0.105432
\(612\) 0 0
\(613\) 18.8990 0.763323 0.381661 0.924302i \(-0.375352\pi\)
0.381661 + 0.924302i \(0.375352\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −46.5262 −1.87307 −0.936537 0.350569i \(-0.885988\pi\)
−0.936537 + 0.350569i \(0.885988\pi\)
\(618\) 0 0
\(619\) −23.8988 −0.960573 −0.480286 0.877112i \(-0.659467\pi\)
−0.480286 + 0.877112i \(0.659467\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 39.1918 1.57019
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7.49966 −0.299031
\(630\) 0 0
\(631\) −16.9706 −0.675587 −0.337794 0.941220i \(-0.609681\pi\)
−0.337794 + 0.941220i \(0.609681\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −57.7980 −2.29364
\(636\) 0 0
\(637\) −14.4949 −0.574309
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5.65685 −0.223432 −0.111716 0.993740i \(-0.535635\pi\)
−0.111716 + 0.993740i \(0.535635\pi\)
\(642\) 0 0
\(643\) 12.5851 0.496306 0.248153 0.968721i \(-0.420176\pi\)
0.248153 + 0.968721i \(0.420176\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28.8990 1.13614 0.568068 0.822982i \(-0.307691\pi\)
0.568068 + 0.822982i \(0.307691\pi\)
\(648\) 0 0
\(649\) −5.79796 −0.227590
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −43.1263 −1.68766 −0.843831 0.536609i \(-0.819705\pi\)
−0.843831 + 0.536609i \(0.819705\pi\)
\(654\) 0 0
\(655\) −39.0265 −1.52489
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −15.5959 −0.607531 −0.303765 0.952747i \(-0.598244\pi\)
−0.303765 + 0.952747i \(0.598244\pi\)
\(660\) 0 0
\(661\) −43.7980 −1.70354 −0.851772 0.523913i \(-0.824472\pi\)
−0.851772 + 0.523913i \(0.824472\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.22831 0.241524
\(666\) 0 0
\(667\) 30.8270 1.19363
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.8990 −0.420750
\(672\) 0 0
\(673\) 8.20204 0.316165 0.158083 0.987426i \(-0.449469\pi\)
0.158083 + 0.987426i \(0.449469\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.17837 0.122155 0.0610774 0.998133i \(-0.480546\pi\)
0.0610774 + 0.998133i \(0.480546\pi\)
\(678\) 0 0
\(679\) −34.6410 −1.32940
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −33.7980 −1.29324 −0.646621 0.762811i \(-0.723819\pi\)
−0.646621 + 0.762811i \(0.723819\pi\)
\(684\) 0 0
\(685\) 19.5959 0.748722
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −11.8852 −0.452789
\(690\) 0 0
\(691\) −28.9842 −1.10261 −0.551305 0.834304i \(-0.685870\pi\)
−0.551305 + 0.834304i \(0.685870\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.39388 0.204601
\(696\) 0 0
\(697\) −4.00000 −0.151511
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −42.2049 −1.59406 −0.797028 0.603942i \(-0.793596\pi\)
−0.797028 + 0.603942i \(0.793596\pi\)
\(702\) 0 0
\(703\) −7.49966 −0.282855
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 45.7980 1.72241
\(708\) 0 0
\(709\) −27.7980 −1.04397 −0.521987 0.852953i \(-0.674809\pi\)
−0.521987 + 0.852953i \(0.674809\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −27.7128 −1.03785
\(714\) 0 0
\(715\) 8.19955 0.306646
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −22.2929 −0.831383 −0.415692 0.909506i \(-0.636460\pi\)
−0.415692 + 0.909506i \(0.636460\pi\)
\(720\) 0 0
\(721\) −43.5959 −1.62360
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 18.8776 0.701096
\(726\) 0 0
\(727\) −3.11416 −0.115498 −0.0577488 0.998331i \(-0.518392\pi\)
−0.0577488 + 0.998331i \(0.518392\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.00000 −0.147945
\(732\) 0 0
\(733\) −18.8990 −0.698050 −0.349025 0.937113i \(-0.613487\pi\)
−0.349025 + 0.937113i \(0.613487\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 6.29253 0.231474 0.115737 0.993280i \(-0.463077\pi\)
0.115737 + 0.993280i \(0.463077\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 33.7980 1.23993 0.619963 0.784631i \(-0.287147\pi\)
0.619963 + 0.784631i \(0.287147\pi\)
\(744\) 0 0
\(745\) −56.9898 −2.08794
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 41.5692 1.51891
\(750\) 0 0
\(751\) 19.5133 0.712049 0.356024 0.934477i \(-0.384132\pi\)
0.356024 + 0.934477i \(0.384132\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 38.2020 1.39031
\(756\) 0 0
\(757\) −7.79796 −0.283422 −0.141711 0.989908i \(-0.545260\pi\)
−0.141711 + 0.989908i \(0.545260\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 52.2473 1.89396 0.946981 0.321290i \(-0.104117\pi\)
0.946981 + 0.321290i \(0.104117\pi\)
\(762\) 0 0
\(763\) −17.6705 −0.639713
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −16.8082 −0.606908
\(768\) 0 0
\(769\) 15.3939 0.555117 0.277559 0.960709i \(-0.410475\pi\)
0.277559 + 0.960709i \(0.410475\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 17.9562 0.645839 0.322919 0.946426i \(-0.395336\pi\)
0.322919 + 0.946426i \(0.395336\pi\)
\(774\) 0 0
\(775\) −16.9706 −0.609601
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.00000 −0.143315
\(780\) 0 0
\(781\) −8.89898 −0.318431
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 44.6834 1.59482
\(786\) 0 0
\(787\) 1.20713 0.0430296 0.0215148 0.999769i \(-0.493151\pi\)
0.0215148 + 0.999769i \(0.493151\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −4.40408 −0.156591
\(792\) 0 0
\(793\) −31.5959 −1.12200
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −31.1127 −1.10207 −0.551034 0.834483i \(-0.685767\pi\)
−0.551034 + 0.834483i \(0.685767\pi\)
\(798\) 0 0
\(799\) 0.571458 0.0202167
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −6.00000 −0.211735
\(804\) 0 0
\(805\) −48.0000 −1.69178
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 30.1913 1.06147 0.530735 0.847538i \(-0.321916\pi\)
0.530735 + 0.847538i \(0.321916\pi\)
\(810\) 0 0
\(811\) −42.7764 −1.50208 −0.751040 0.660256i \(-0.770448\pi\)
−0.751040 + 0.660256i \(0.770448\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −67.5959 −2.36778
\(816\) 0 0
\(817\) −4.00000 −0.139942
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −15.7634 −0.550147 −0.275074 0.961423i \(-0.588702\pi\)
−0.275074 + 0.961423i \(0.588702\pi\)
\(822\) 0 0
\(823\) 28.9842 1.01032 0.505162 0.863024i \(-0.331433\pi\)
0.505162 + 0.863024i \(0.331433\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.20204 −0.0765725 −0.0382862 0.999267i \(-0.512190\pi\)
−0.0382862 + 0.999267i \(0.512190\pi\)
\(828\) 0 0
\(829\) −21.5959 −0.750057 −0.375029 0.927013i \(-0.622367\pi\)
−0.375029 + 0.927013i \(0.622367\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.17837 −0.110124
\(834\) 0 0
\(835\) 22.6274 0.783054
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 35.1010 1.21182 0.605911 0.795533i \(-0.292809\pi\)
0.605911 + 0.795533i \(0.292809\pi\)
\(840\) 0 0
\(841\) 10.5959 0.365376
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −12.9992 −0.447187
\(846\) 0 0
\(847\) −3.46410 −0.119028
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 57.7980 1.98129
\(852\) 0 0
\(853\) 7.30306 0.250052 0.125026 0.992153i \(-0.460099\pi\)
0.125026 + 0.992153i \(0.460099\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 41.5050 1.41778 0.708892 0.705317i \(-0.249195\pi\)
0.708892 + 0.705317i \(0.249195\pi\)
\(858\) 0 0
\(859\) 15.1278 0.516152 0.258076 0.966125i \(-0.416911\pi\)
0.258076 + 0.966125i \(0.416911\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −48.4949 −1.65079 −0.825393 0.564559i \(-0.809046\pi\)
−0.825393 + 0.564559i \(0.809046\pi\)
\(864\) 0 0
\(865\) 24.9898 0.849679
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.73545 −0.160639
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 19.5959 0.662463
\(876\) 0 0
\(877\) −6.89898 −0.232962 −0.116481 0.993193i \(-0.537161\pi\)
−0.116481 + 0.993193i \(0.537161\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 28.9842 0.976501 0.488251 0.872703i \(-0.337635\pi\)
0.488251 + 0.872703i \(0.337635\pi\)
\(882\) 0 0
\(883\) 27.7128 0.932610 0.466305 0.884624i \(-0.345585\pi\)
0.466305 + 0.884624i \(0.345585\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −5.39388 −0.181109 −0.0905543 0.995892i \(-0.528864\pi\)
−0.0905543 + 0.995892i \(0.528864\pi\)
\(888\) 0 0
\(889\) 70.7878 2.37415
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.571458 0.0191231
\(894\) 0 0
\(895\) 27.7128 0.926337
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −35.5959 −1.18719
\(900\) 0 0
\(901\) −2.60612 −0.0868225
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.65685 0.188040
\(906\) 0 0
\(907\) −46.5262 −1.54488 −0.772438 0.635090i \(-0.780963\pi\)
−0.772438 + 0.635090i \(0.780963\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −30.2929 −1.00365 −0.501824 0.864970i \(-0.667337\pi\)
−0.501824 + 0.864970i \(0.667337\pi\)
\(912\) 0 0
\(913\) −5.79796 −0.191884
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 47.7975 1.57841
\(918\) 0 0
\(919\) 45.6048 1.50436 0.752181 0.658956i \(-0.229002\pi\)
0.752181 + 0.658956i \(0.229002\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −25.7980 −0.849150
\(924\) 0 0
\(925\) 35.3939 1.16374
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −9.47090 −0.310730 −0.155365 0.987857i \(-0.549655\pi\)
−0.155365 + 0.987857i \(0.549655\pi\)
\(930\) 0 0
\(931\) −3.17837 −0.104167
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.79796 0.0587995
\(936\) 0 0
\(937\) 53.5959 1.75090 0.875451 0.483307i \(-0.160564\pi\)
0.875451 + 0.483307i \(0.160564\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −38.3908 −1.25151 −0.625753 0.780021i \(-0.715208\pi\)
−0.625753 + 0.780021i \(0.715208\pi\)
\(942\) 0 0
\(943\) 30.8270 1.00386
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −39.1918 −1.27356 −0.636782 0.771044i \(-0.719735\pi\)
−0.636782 + 0.771044i \(0.719735\pi\)
\(948\) 0 0
\(949\) −17.3939 −0.564629
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −17.6062 −0.570322 −0.285161 0.958480i \(-0.592047\pi\)
−0.285161 + 0.958480i \(0.592047\pi\)
\(954\) 0 0
\(955\) 75.5103 2.44346
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −24.0000 −0.775000
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −22.0560 −0.710006
\(966\) 0 0
\(967\) −34.2911 −1.10273 −0.551363 0.834265i \(-0.685892\pi\)
−0.551363 + 0.834265i \(0.685892\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 60.9898 1.95726 0.978628 0.205639i \(-0.0659274\pi\)
0.978628 + 0.205639i \(0.0659274\pi\)
\(972\) 0 0
\(973\) −6.60612 −0.211783
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.38551 0.140305 0.0701524 0.997536i \(-0.477651\pi\)
0.0701524 + 0.997536i \(0.477651\pi\)
\(978\) 0 0
\(979\) 11.3137 0.361588
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 48.4949 1.54675 0.773374 0.633951i \(-0.218568\pi\)
0.773374 + 0.633951i \(0.218568\pi\)
\(984\) 0 0
\(985\) −69.3939 −2.21107
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 30.8270 0.980241
\(990\) 0 0
\(991\) 16.9706 0.539088 0.269544 0.962988i \(-0.413127\pi\)
0.269544 + 0.962988i \(0.413127\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 16.0000 0.507234
\(996\) 0 0
\(997\) 41.1010 1.30168 0.650841 0.759214i \(-0.274416\pi\)
0.650841 + 0.759214i \(0.274416\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3168.2.a.bi.1.3 yes 4
3.2 odd 2 3168.2.a.bj.1.1 yes 4
4.3 odd 2 3168.2.a.bj.1.4 yes 4
8.3 odd 2 6336.2.a.da.1.2 4
8.5 even 2 6336.2.a.db.1.1 4
12.11 even 2 inner 3168.2.a.bi.1.2 4
24.5 odd 2 6336.2.a.da.1.3 4
24.11 even 2 6336.2.a.db.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3168.2.a.bi.1.2 4 12.11 even 2 inner
3168.2.a.bi.1.3 yes 4 1.1 even 1 trivial
3168.2.a.bj.1.1 yes 4 3.2 odd 2
3168.2.a.bj.1.4 yes 4 4.3 odd 2
6336.2.a.da.1.2 4 8.3 odd 2
6336.2.a.da.1.3 4 24.5 odd 2
6336.2.a.db.1.1 4 8.5 even 2
6336.2.a.db.1.4 4 24.11 even 2