Properties

Label 3168.2.a
Level $3168$
Weight $2$
Character orbit 3168.a
Rep. character $\chi_{3168}(1,\cdot)$
Character field $\Q$
Dimension $50$
Newform subspaces $36$
Sturm bound $1152$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 36 \)
Sturm bound: \(1152\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(7\), \(13\), \(17\), \(19\), \(47\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3168))\).

Total New Old
Modular forms 608 50 558
Cusp forms 545 50 495
Eisenstein series 63 0 63

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(11\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(4\)
\(+\)\(+\)\(-\)\(-\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(8\)
\(+\)\(-\)\(-\)\(+\)\(7\)
\(-\)\(+\)\(+\)\(-\)\(6\)
\(-\)\(+\)\(-\)\(+\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(7\)
\(-\)\(-\)\(-\)\(-\)\(8\)
Plus space\(+\)\(22\)
Minus space\(-\)\(28\)

Trace form

\( 50 q + 4 q^{5} + O(q^{10}) \) \( 50 q + 4 q^{5} + 20 q^{13} - 12 q^{17} + 38 q^{25} - 12 q^{29} + 20 q^{37} - 12 q^{41} + 66 q^{49} + 28 q^{53} + 20 q^{61} - 56 q^{65} + 4 q^{73} + 8 q^{85} + 44 q^{89} + 12 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3168))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 11
3168.2.a.a 3168.a 1.a $1$ $25.297$ \(\Q\) None 1056.2.a.e \(0\) \(0\) \(-2\) \(-4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}-4q^{7}-q^{11}-2q^{13}-2q^{17}+\cdots\)
3168.2.a.b 3168.a 1.a $1$ $25.297$ \(\Q\) None 3168.2.a.b \(0\) \(0\) \(-2\) \(-4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}-4q^{7}-q^{11}+4q^{13}+6q^{17}+\cdots\)
3168.2.a.c 3168.a 1.a $1$ $25.297$ \(\Q\) None 3168.2.a.c \(0\) \(0\) \(-2\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}-q^{11}+2q^{17}+6q^{19}-6q^{23}+\cdots\)
3168.2.a.d 3168.a 1.a $1$ $25.297$ \(\Q\) None 3168.2.a.c \(0\) \(0\) \(-2\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{5}+q^{11}+2q^{17}-6q^{19}+6q^{23}+\cdots\)
3168.2.a.e 3168.a 1.a $1$ $25.297$ \(\Q\) None 1056.2.a.e \(0\) \(0\) \(-2\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{5}+4q^{7}+q^{11}-2q^{13}-2q^{17}+\cdots\)
3168.2.a.f 3168.a 1.a $1$ $25.297$ \(\Q\) None 3168.2.a.b \(0\) \(0\) \(-2\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{5}+4q^{7}+q^{11}+4q^{13}+6q^{17}+\cdots\)
3168.2.a.g 3168.a 1.a $1$ $25.297$ \(\Q\) None 352.2.a.c \(0\) \(0\) \(-1\) \(-4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-4q^{7}+q^{11}-2q^{13}+2q^{19}+\cdots\)
3168.2.a.h 3168.a 1.a $1$ $25.297$ \(\Q\) None 352.2.a.a \(0\) \(0\) \(-1\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}-q^{11}-6q^{13}+4q^{17}-6q^{19}+\cdots\)
3168.2.a.i 3168.a 1.a $1$ $25.297$ \(\Q\) None 352.2.a.a \(0\) \(0\) \(-1\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}+q^{11}-6q^{13}+4q^{17}+6q^{19}+\cdots\)
3168.2.a.j 3168.a 1.a $1$ $25.297$ \(\Q\) None 352.2.a.c \(0\) \(0\) \(-1\) \(4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}+4q^{7}-q^{11}-2q^{13}-2q^{19}+\cdots\)
3168.2.a.k 3168.a 1.a $1$ $25.297$ \(\Q\) None 3168.2.a.k \(0\) \(0\) \(0\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{7}-q^{11}-2q^{13}-2q^{17}+6q^{19}+\cdots\)
3168.2.a.l 3168.a 1.a $1$ $25.297$ \(\Q\) None 3168.2.a.k \(0\) \(0\) \(0\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{7}+q^{11}-2q^{13}+2q^{17}+6q^{19}+\cdots\)
3168.2.a.m 3168.a 1.a $1$ $25.297$ \(\Q\) None 1056.2.a.d \(0\) \(0\) \(0\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{7}+q^{11}+4q^{13}+2q^{17}+2q^{23}+\cdots\)
3168.2.a.n 3168.a 1.a $1$ $25.297$ \(\Q\) None 3168.2.a.k \(0\) \(0\) \(0\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{7}-q^{11}-2q^{13}+2q^{17}-6q^{19}+\cdots\)
3168.2.a.o 3168.a 1.a $1$ $25.297$ \(\Q\) None 1056.2.a.d \(0\) \(0\) \(0\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{7}-q^{11}+4q^{13}+2q^{17}-2q^{23}+\cdots\)
3168.2.a.p 3168.a 1.a $1$ $25.297$ \(\Q\) None 3168.2.a.k \(0\) \(0\) \(0\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{7}+q^{11}-2q^{13}-2q^{17}-6q^{19}+\cdots\)
3168.2.a.q 3168.a 1.a $1$ $25.297$ \(\Q\) None 3168.2.a.b \(0\) \(0\) \(2\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}-4q^{7}+q^{11}+4q^{13}-6q^{17}+\cdots\)
3168.2.a.r 3168.a 1.a $1$ $25.297$ \(\Q\) None 1056.2.a.c \(0\) \(0\) \(2\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{5}-2q^{7}-q^{11}-2q^{13}-2q^{19}+\cdots\)
3168.2.a.s 3168.a 1.a $1$ $25.297$ \(\Q\) None 1056.2.a.b \(0\) \(0\) \(2\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{5}-q^{11}-6q^{13}-2q^{17}+4q^{19}+\cdots\)
3168.2.a.t 3168.a 1.a $1$ $25.297$ \(\Q\) None 3168.2.a.c \(0\) \(0\) \(2\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{5}-q^{11}-2q^{17}-6q^{19}-6q^{23}+\cdots\)
3168.2.a.u 3168.a 1.a $1$ $25.297$ \(\Q\) None 1056.2.a.b \(0\) \(0\) \(2\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}+q^{11}-6q^{13}-2q^{17}-4q^{19}+\cdots\)
3168.2.a.v 3168.a 1.a $1$ $25.297$ \(\Q\) None 3168.2.a.c \(0\) \(0\) \(2\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}+q^{11}-2q^{17}+6q^{19}+6q^{23}+\cdots\)
3168.2.a.w 3168.a 1.a $1$ $25.297$ \(\Q\) None 1056.2.a.c \(0\) \(0\) \(2\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}+2q^{7}+q^{11}-2q^{13}+2q^{19}+\cdots\)
3168.2.a.x 3168.a 1.a $1$ $25.297$ \(\Q\) None 3168.2.a.b \(0\) \(0\) \(2\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{5}+4q^{7}-q^{11}+4q^{13}-6q^{17}+\cdots\)
3168.2.a.y 3168.a 1.a $1$ $25.297$ \(\Q\) None 352.2.a.b \(0\) \(0\) \(3\) \(-4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{5}-4q^{7}-q^{11}-2q^{13}+8q^{17}+\cdots\)
3168.2.a.z 3168.a 1.a $1$ $25.297$ \(\Q\) None 352.2.a.b \(0\) \(0\) \(3\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{5}+4q^{7}+q^{11}-2q^{13}+8q^{17}+\cdots\)
3168.2.a.ba 3168.a 1.a $1$ $25.297$ \(\Q\) None 1056.2.a.a \(0\) \(0\) \(4\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{5}-2q^{7}+q^{11}+4q^{13}-2q^{17}+\cdots\)
3168.2.a.bb 3168.a 1.a $1$ $25.297$ \(\Q\) None 1056.2.a.a \(0\) \(0\) \(4\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{5}+2q^{7}-q^{11}+4q^{13}-2q^{17}+\cdots\)
3168.2.a.bc 3168.a 1.a $2$ $25.297$ \(\Q(\sqrt{17}) \) None 352.2.a.g \(0\) \(0\) \(-3\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{5}-q^{11}+2q^{13}+(-4+\cdots)q^{17}+\cdots\)
3168.2.a.bd 3168.a 1.a $2$ $25.297$ \(\Q(\sqrt{17}) \) None 352.2.a.g \(0\) \(0\) \(-3\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{5}+q^{11}+2q^{13}+(-4+\cdots)q^{17}+\cdots\)
3168.2.a.be 3168.a 1.a $2$ $25.297$ \(\Q(\sqrt{5}) \) None 1056.2.a.k \(0\) \(0\) \(-2\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{5}+(-1+\beta )q^{7}-q^{11}+\cdots\)
3168.2.a.bf 3168.a 1.a $2$ $25.297$ \(\Q(\sqrt{5}) \) None 1056.2.a.k \(0\) \(0\) \(-2\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{5}+(1-\beta )q^{7}+q^{11}+(3+\cdots)q^{13}+\cdots\)
3168.2.a.bg 3168.a 1.a $3$ $25.297$ 3.3.229.1 None 1056.2.a.m \(0\) \(0\) \(0\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{5}+(-1-\beta _{2})q^{7}+q^{11}-\beta _{1}q^{13}+\cdots\)
3168.2.a.bh 3168.a 1.a $3$ $25.297$ 3.3.229.1 None 1056.2.a.m \(0\) \(0\) \(0\) \(4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{5}+(1+\beta _{2})q^{7}-q^{11}-\beta _{1}q^{13}+\cdots\)
3168.2.a.bi 3168.a 1.a $4$ $25.297$ \(\Q(\zeta_{24})^+\) None 3168.2.a.bi \(0\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{5}-\beta _{3}q^{7}-q^{11}+(2-\beta _{2})q^{13}+\cdots\)
3168.2.a.bj 3168.a 1.a $4$ $25.297$ \(\Q(\zeta_{24})^+\) None 3168.2.a.bi \(0\) \(0\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{5}-\beta _{3}q^{7}+q^{11}+(2+\beta _{2})q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3168))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(3168)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(198))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(264))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(288))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(352))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(396))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(528))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(792))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1056))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1584))\)\(^{\oplus 2}\)