Properties

Label 315.2.ce.a.233.8
Level $315$
Weight $2$
Character 315.233
Analytic conductor $2.515$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [315,2,Mod(53,315)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("315.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(315, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.ce (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 233.8
Character \(\chi\) \(=\) 315.233
Dual form 315.2.ce.a.242.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.135317 + 0.0362581i) q^{2} +(-1.71505 + 0.990187i) q^{4} +(-1.99289 - 1.01410i) q^{5} +(2.55076 - 0.702570i) q^{7} +(0.394292 - 0.394292i) q^{8} +(0.306441 + 0.0649676i) q^{10} +(4.85164 - 2.80110i) q^{11} +(2.57764 + 2.57764i) q^{13} +(-0.319688 + 0.187556i) q^{14} +(1.94132 - 3.36246i) q^{16} +(0.0721789 - 0.269375i) q^{17} +(4.44554 + 2.56664i) q^{19} +(4.42206 - 0.234084i) q^{20} +(-0.554948 + 0.554948i) q^{22} +(-1.19764 - 4.46964i) q^{23} +(2.94318 + 4.04199i) q^{25} +(-0.442260 - 0.255339i) q^{26} +(-3.67902 + 3.73068i) q^{28} -2.91358 q^{29} +(-1.09319 - 1.89346i) q^{31} +(-0.429419 + 1.60261i) q^{32} +0.0390682i q^{34} +(-5.79586 - 1.18660i) q^{35} +(-1.96975 - 7.35120i) q^{37} +(-0.694620 - 0.186123i) q^{38} +(-1.18563 + 0.385926i) q^{40} +8.73280i q^{41} +(-5.90533 - 5.90533i) q^{43} +(-5.54722 + 9.60806i) q^{44} +(0.324122 + 0.561396i) q^{46} +(10.8696 - 2.91250i) q^{47} +(6.01279 - 3.58418i) q^{49} +(-0.544818 - 0.440237i) q^{50} +(-6.97315 - 1.86845i) q^{52} +(-1.55853 - 0.417606i) q^{53} +(-12.5094 + 0.662190i) q^{55} +(0.728729 - 1.28276i) q^{56} +(0.394257 - 0.105641i) q^{58} +(1.62708 + 2.81818i) q^{59} +(-1.06088 + 1.83751i) q^{61} +(0.216580 + 0.216580i) q^{62} +7.53283i q^{64} +(-2.52295 - 7.75095i) q^{65} +(6.92780 + 1.85630i) q^{67} +(0.142941 + 0.533464i) q^{68} +(0.827304 - 0.0495794i) q^{70} +8.16308i q^{71} +(2.12220 - 7.92016i) q^{73} +(0.533082 + 0.923325i) q^{74} -10.1658 q^{76} +(10.4074 - 10.5535i) q^{77} +(0.500892 + 0.289190i) q^{79} +(-7.27871 + 4.73230i) q^{80} +(-0.316635 - 1.18170i) q^{82} +(-3.12616 + 3.12616i) q^{83} +(-0.417019 + 0.463637i) q^{85} +(1.01321 + 0.584977i) q^{86} +(0.808514 - 3.01741i) q^{88} +(-6.29155 + 10.8973i) q^{89} +(8.38594 + 4.76399i) q^{91} +(6.47980 + 6.47980i) q^{92} +(-1.36524 + 0.788224i) q^{94} +(-6.25662 - 9.62326i) q^{95} +(-8.25038 + 8.25038i) q^{97} +(-0.683679 + 0.703014i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 8 q^{7} + 8 q^{10} + 32 q^{16} - 48 q^{22} - 16 q^{25} + 88 q^{28} + 32 q^{31} - 16 q^{37} - 40 q^{40} - 16 q^{43} - 80 q^{52} - 32 q^{55} - 88 q^{58} + 48 q^{61} - 32 q^{67} - 112 q^{70} - 88 q^{73}+ \cdots + 208 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.135317 + 0.0362581i −0.0956837 + 0.0256384i −0.306343 0.951921i \(-0.599106\pi\)
0.210660 + 0.977559i \(0.432439\pi\)
\(3\) 0 0
\(4\) −1.71505 + 0.990187i −0.857527 + 0.495094i
\(5\) −1.99289 1.01410i −0.891245 0.453522i
\(6\) 0 0
\(7\) 2.55076 0.702570i 0.964098 0.265546i
\(8\) 0.394292 0.394292i 0.139403 0.139403i
\(9\) 0 0
\(10\) 0.306441 + 0.0649676i 0.0969053 + 0.0205446i
\(11\) 4.85164 2.80110i 1.46282 0.844562i 0.463683 0.886001i \(-0.346528\pi\)
0.999141 + 0.0414391i \(0.0131942\pi\)
\(12\) 0 0
\(13\) 2.57764 + 2.57764i 0.714910 + 0.714910i 0.967558 0.252648i \(-0.0813016\pi\)
−0.252648 + 0.967558i \(0.581302\pi\)
\(14\) −0.319688 + 0.187556i −0.0854403 + 0.0501264i
\(15\) 0 0
\(16\) 1.94132 3.36246i 0.485329 0.840615i
\(17\) 0.0721789 0.269375i 0.0175059 0.0653331i −0.956620 0.291338i \(-0.905900\pi\)
0.974126 + 0.226004i \(0.0725664\pi\)
\(18\) 0 0
\(19\) 4.44554 + 2.56664i 1.01988 + 0.588827i 0.914069 0.405560i \(-0.132923\pi\)
0.105809 + 0.994386i \(0.466257\pi\)
\(20\) 4.42206 0.234084i 0.988803 0.0523428i
\(21\) 0 0
\(22\) −0.554948 + 0.554948i −0.118315 + 0.118315i
\(23\) −1.19764 4.46964i −0.249725 0.931985i −0.970950 0.239284i \(-0.923087\pi\)
0.721225 0.692701i \(-0.243579\pi\)
\(24\) 0 0
\(25\) 2.94318 + 4.04199i 0.588636 + 0.808398i
\(26\) −0.442260 0.255339i −0.0867344 0.0500761i
\(27\) 0 0
\(28\) −3.67902 + 3.73068i −0.695270 + 0.705032i
\(29\) −2.91358 −0.541038 −0.270519 0.962715i \(-0.587195\pi\)
−0.270519 + 0.962715i \(0.587195\pi\)
\(30\) 0 0
\(31\) −1.09319 1.89346i −0.196342 0.340075i 0.750998 0.660305i \(-0.229573\pi\)
−0.947340 + 0.320230i \(0.896240\pi\)
\(32\) −0.429419 + 1.60261i −0.0759113 + 0.283305i
\(33\) 0 0
\(34\) 0.0390682i 0.00670014i
\(35\) −5.79586 1.18660i −0.979679 0.200572i
\(36\) 0 0
\(37\) −1.96975 7.35120i −0.323825 1.20853i −0.915488 0.402345i \(-0.868195\pi\)
0.591664 0.806185i \(-0.298471\pi\)
\(38\) −0.694620 0.186123i −0.112682 0.0301931i
\(39\) 0 0
\(40\) −1.18563 + 0.385926i −0.187465 + 0.0610202i
\(41\) 8.73280i 1.36383i 0.731429 + 0.681917i \(0.238854\pi\)
−0.731429 + 0.681917i \(0.761146\pi\)
\(42\) 0 0
\(43\) −5.90533 5.90533i −0.900554 0.900554i 0.0949298 0.995484i \(-0.469737\pi\)
−0.995484 + 0.0949298i \(0.969737\pi\)
\(44\) −5.54722 + 9.60806i −0.836275 + 1.44847i
\(45\) 0 0
\(46\) 0.324122 + 0.561396i 0.0477892 + 0.0827733i
\(47\) 10.8696 2.91250i 1.58549 0.424832i 0.644873 0.764289i \(-0.276910\pi\)
0.940621 + 0.339457i \(0.110243\pi\)
\(48\) 0 0
\(49\) 6.01279 3.58418i 0.858970 0.512025i
\(50\) −0.544818 0.440237i −0.0770490 0.0622589i
\(51\) 0 0
\(52\) −6.97315 1.86845i −0.967002 0.259107i
\(53\) −1.55853 0.417606i −0.214080 0.0573627i 0.150185 0.988658i \(-0.452013\pi\)
−0.364265 + 0.931295i \(0.618680\pi\)
\(54\) 0 0
\(55\) −12.5094 + 0.662190i −1.68676 + 0.0892896i
\(56\) 0.728729 1.28276i 0.0973805 0.171417i
\(57\) 0 0
\(58\) 0.394257 0.105641i 0.0517685 0.0138713i
\(59\) 1.62708 + 2.81818i 0.211827 + 0.366896i 0.952286 0.305206i \(-0.0987252\pi\)
−0.740459 + 0.672101i \(0.765392\pi\)
\(60\) 0 0
\(61\) −1.06088 + 1.83751i −0.135832 + 0.235269i −0.925915 0.377732i \(-0.876704\pi\)
0.790083 + 0.613000i \(0.210038\pi\)
\(62\) 0.216580 + 0.216580i 0.0275057 + 0.0275057i
\(63\) 0 0
\(64\) 7.53283i 0.941604i
\(65\) −2.52295 7.75095i −0.312933 0.961387i
\(66\) 0 0
\(67\) 6.92780 + 1.85630i 0.846366 + 0.226783i 0.655841 0.754899i \(-0.272314\pi\)
0.190525 + 0.981682i \(0.438981\pi\)
\(68\) 0.142941 + 0.533464i 0.0173342 + 0.0646920i
\(69\) 0 0
\(70\) 0.827304 0.0495794i 0.0988817 0.00592587i
\(71\) 8.16308i 0.968779i 0.874852 + 0.484390i \(0.160958\pi\)
−0.874852 + 0.484390i \(0.839042\pi\)
\(72\) 0 0
\(73\) 2.12220 7.92016i 0.248385 0.926985i −0.723267 0.690569i \(-0.757360\pi\)
0.971652 0.236416i \(-0.0759730\pi\)
\(74\) 0.533082 + 0.923325i 0.0619695 + 0.107334i
\(75\) 0 0
\(76\) −10.1658 −1.16610
\(77\) 10.4074 10.5535i 1.18604 1.20269i
\(78\) 0 0
\(79\) 0.500892 + 0.289190i 0.0563548 + 0.0325364i 0.527913 0.849299i \(-0.322975\pi\)
−0.471558 + 0.881835i \(0.656308\pi\)
\(80\) −7.27871 + 4.73230i −0.813784 + 0.529087i
\(81\) 0 0
\(82\) −0.316635 1.18170i −0.0349665 0.130497i
\(83\) −3.12616 + 3.12616i −0.343140 + 0.343140i −0.857547 0.514406i \(-0.828012\pi\)
0.514406 + 0.857547i \(0.328012\pi\)
\(84\) 0 0
\(85\) −0.417019 + 0.463637i −0.0452321 + 0.0502885i
\(86\) 1.01321 + 0.584977i 0.109257 + 0.0630796i
\(87\) 0 0
\(88\) 0.808514 3.01741i 0.0861879 0.321657i
\(89\) −6.29155 + 10.8973i −0.666903 + 1.15511i 0.311863 + 0.950127i \(0.399047\pi\)
−0.978766 + 0.204982i \(0.934286\pi\)
\(90\) 0 0
\(91\) 8.38594 + 4.76399i 0.879085 + 0.499402i
\(92\) 6.47980 + 6.47980i 0.675566 + 0.675566i
\(93\) 0 0
\(94\) −1.36524 + 0.788224i −0.140814 + 0.0812991i
\(95\) −6.25662 9.62326i −0.641916 0.987326i
\(96\) 0 0
\(97\) −8.25038 + 8.25038i −0.837699 + 0.837699i −0.988556 0.150857i \(-0.951797\pi\)
0.150857 + 0.988556i \(0.451797\pi\)
\(98\) −0.683679 + 0.703014i −0.0690620 + 0.0710151i
\(99\) 0 0
\(100\) −9.05005 4.01793i −0.905005 0.401793i
\(101\) −4.26270 + 2.46107i −0.424155 + 0.244886i −0.696853 0.717214i \(-0.745417\pi\)
0.272698 + 0.962100i \(0.412084\pi\)
\(102\) 0 0
\(103\) −15.1530 + 4.06023i −1.49307 + 0.400066i −0.910771 0.412911i \(-0.864512\pi\)
−0.582295 + 0.812977i \(0.697845\pi\)
\(104\) 2.03269 0.199322
\(105\) 0 0
\(106\) 0.226037 0.0219547
\(107\) −18.3663 + 4.92124i −1.77554 + 0.475755i −0.989759 0.142749i \(-0.954406\pi\)
−0.785782 + 0.618504i \(0.787739\pi\)
\(108\) 0 0
\(109\) 9.50313 5.48663i 0.910234 0.525524i 0.0297279 0.999558i \(-0.490536\pi\)
0.880507 + 0.474034i \(0.157203\pi\)
\(110\) 1.66872 0.543172i 0.159107 0.0517894i
\(111\) 0 0
\(112\) 2.58948 9.94075i 0.244683 0.939312i
\(113\) 6.16850 6.16850i 0.580283 0.580283i −0.354698 0.934981i \(-0.615416\pi\)
0.934981 + 0.354698i \(0.115416\pi\)
\(114\) 0 0
\(115\) −2.14593 + 10.1220i −0.200109 + 0.943883i
\(116\) 4.99695 2.88499i 0.463955 0.267864i
\(117\) 0 0
\(118\) −0.322353 0.322353i −0.0296750 0.0296750i
\(119\) −0.00514358 0.737823i −0.000471512 0.0676361i
\(120\) 0 0
\(121\) 10.1923 17.6535i 0.926570 1.60487i
\(122\) 0.0769314 0.287112i 0.00696504 0.0259939i
\(123\) 0 0
\(124\) 3.74975 + 2.16492i 0.336738 + 0.194416i
\(125\) −1.76642 11.0399i −0.157994 0.987440i
\(126\) 0 0
\(127\) 2.05336 2.05336i 0.182207 0.182207i −0.610110 0.792317i \(-0.708875\pi\)
0.792317 + 0.610110i \(0.208875\pi\)
\(128\) −1.13196 4.22455i −0.100053 0.373401i
\(129\) 0 0
\(130\) 0.622433 + 0.957360i 0.0545910 + 0.0839660i
\(131\) 8.49260 + 4.90320i 0.742002 + 0.428395i 0.822797 0.568336i \(-0.192413\pi\)
−0.0807949 + 0.996731i \(0.525746\pi\)
\(132\) 0 0
\(133\) 13.1428 + 3.42358i 1.13962 + 0.296862i
\(134\) −1.00476 −0.0867978
\(135\) 0 0
\(136\) −0.0777530 0.134672i −0.00666727 0.0115480i
\(137\) 0.448946 1.67549i 0.0383560 0.143147i −0.944092 0.329681i \(-0.893059\pi\)
0.982448 + 0.186534i \(0.0597255\pi\)
\(138\) 0 0
\(139\) 2.52988i 0.214581i 0.994228 + 0.107291i \(0.0342175\pi\)
−0.994228 + 0.107291i \(0.965782\pi\)
\(140\) 11.1152 3.70390i 0.939404 0.313037i
\(141\) 0 0
\(142\) −0.295978 1.10461i −0.0248379 0.0926964i
\(143\) 19.7260 + 5.28557i 1.64957 + 0.442002i
\(144\) 0 0
\(145\) 5.80643 + 2.95467i 0.482198 + 0.245372i
\(146\) 1.14868i 0.0950656i
\(147\) 0 0
\(148\) 10.6573 + 10.6573i 0.876024 + 0.876024i
\(149\) −0.245378 + 0.425006i −0.0201021 + 0.0348179i −0.875901 0.482490i \(-0.839732\pi\)
0.855799 + 0.517308i \(0.173066\pi\)
\(150\) 0 0
\(151\) 2.23973 + 3.87932i 0.182266 + 0.315695i 0.942652 0.333777i \(-0.108323\pi\)
−0.760386 + 0.649472i \(0.774990\pi\)
\(152\) 2.76485 0.740839i 0.224259 0.0600900i
\(153\) 0 0
\(154\) −1.02565 + 1.80543i −0.0826494 + 0.145486i
\(155\) 0.258434 + 4.88205i 0.0207579 + 0.392135i
\(156\) 0 0
\(157\) −4.84326 1.29775i −0.386534 0.103572i 0.0603181 0.998179i \(-0.480788\pi\)
−0.446853 + 0.894608i \(0.647455\pi\)
\(158\) −0.0782649 0.0209710i −0.00622642 0.00166836i
\(159\) 0 0
\(160\) 2.48100 2.75835i 0.196140 0.218067i
\(161\) −6.19512 10.5596i −0.488244 0.832211i
\(162\) 0 0
\(163\) −3.71540 + 0.995538i −0.291013 + 0.0779766i −0.401372 0.915915i \(-0.631466\pi\)
0.110359 + 0.993892i \(0.464800\pi\)
\(164\) −8.64711 14.9772i −0.675226 1.16953i
\(165\) 0 0
\(166\) 0.309674 0.536372i 0.0240354 0.0416305i
\(167\) 6.52767 + 6.52767i 0.505126 + 0.505126i 0.913026 0.407900i \(-0.133739\pi\)
−0.407900 + 0.913026i \(0.633739\pi\)
\(168\) 0 0
\(169\) 0.288498i 0.0221921i
\(170\) 0.0396192 0.0778584i 0.00303866 0.00597147i
\(171\) 0 0
\(172\) 15.9753 + 4.28058i 1.21811 + 0.326391i
\(173\) −5.72648 21.3715i −0.435376 1.62485i −0.740164 0.672426i \(-0.765252\pi\)
0.304788 0.952420i \(-0.401414\pi\)
\(174\) 0 0
\(175\) 10.3471 + 8.24237i 0.782170 + 0.623065i
\(176\) 21.7512i 1.63956i
\(177\) 0 0
\(178\) 0.456240 1.70271i 0.0341966 0.127624i
\(179\) 0.559683 + 0.969400i 0.0418327 + 0.0724564i 0.886184 0.463334i \(-0.153347\pi\)
−0.844351 + 0.535790i \(0.820014\pi\)
\(180\) 0 0
\(181\) 13.1037 0.973990 0.486995 0.873405i \(-0.338093\pi\)
0.486995 + 0.873405i \(0.338093\pi\)
\(182\) −1.30750 0.340591i −0.0969180 0.0252463i
\(183\) 0 0
\(184\) −2.23457 1.29013i −0.164734 0.0951094i
\(185\) −3.52941 + 16.6476i −0.259487 + 1.22396i
\(186\) 0 0
\(187\) −0.404360 1.50909i −0.0295697 0.110356i
\(188\) −15.7580 + 15.7580i −1.14927 + 1.14927i
\(189\) 0 0
\(190\) 1.19555 + 1.07534i 0.0867343 + 0.0780133i
\(191\) 4.65087 + 2.68518i 0.336525 + 0.194293i 0.658734 0.752375i \(-0.271092\pi\)
−0.322209 + 0.946669i \(0.604425\pi\)
\(192\) 0 0
\(193\) −3.80447 + 14.1985i −0.273852 + 1.02203i 0.682756 + 0.730647i \(0.260781\pi\)
−0.956607 + 0.291381i \(0.905885\pi\)
\(194\) 0.817275 1.41556i 0.0586769 0.101631i
\(195\) 0 0
\(196\) −6.76326 + 12.1009i −0.483090 + 0.864347i
\(197\) −8.27206 8.27206i −0.589360 0.589360i 0.348098 0.937458i \(-0.386828\pi\)
−0.937458 + 0.348098i \(0.886828\pi\)
\(198\) 0 0
\(199\) −18.3771 + 10.6100i −1.30272 + 0.752123i −0.980869 0.194669i \(-0.937637\pi\)
−0.321847 + 0.946792i \(0.604304\pi\)
\(200\) 2.75420 + 0.433251i 0.194751 + 0.0306355i
\(201\) 0 0
\(202\) 0.487583 0.487583i 0.0343063 0.0343063i
\(203\) −7.43185 + 2.04699i −0.521614 + 0.143671i
\(204\) 0 0
\(205\) 8.85598 17.4035i 0.618528 1.21551i
\(206\) 1.90324 1.09884i 0.132605 0.0765596i
\(207\) 0 0
\(208\) 13.6712 3.66320i 0.947930 0.253997i
\(209\) 28.7576 1.98920
\(210\) 0 0
\(211\) −6.90207 −0.475158 −0.237579 0.971368i \(-0.576354\pi\)
−0.237579 + 0.971368i \(0.576354\pi\)
\(212\) 3.08647 0.827017i 0.211980 0.0567998i
\(213\) 0 0
\(214\) 2.30685 1.33186i 0.157693 0.0910440i
\(215\) 5.78002 + 17.7573i 0.394194 + 1.21104i
\(216\) 0 0
\(217\) −4.11875 4.06172i −0.279599 0.275727i
\(218\) −1.08700 + 1.08700i −0.0736211 + 0.0736211i
\(219\) 0 0
\(220\) 20.7986 13.5223i 1.40224 0.911674i
\(221\) 0.880405 0.508302i 0.0592224 0.0341921i
\(222\) 0 0
\(223\) 1.35446 + 1.35446i 0.0907015 + 0.0907015i 0.751002 0.660300i \(-0.229571\pi\)
−0.660300 + 0.751002i \(0.729571\pi\)
\(224\) 0.0306011 + 4.38959i 0.00204462 + 0.293292i
\(225\) 0 0
\(226\) −0.611046 + 1.05836i −0.0406462 + 0.0704012i
\(227\) 2.10755 7.86549i 0.139883 0.522051i −0.860047 0.510215i \(-0.829566\pi\)
0.999930 0.0118356i \(-0.00376749\pi\)
\(228\) 0 0
\(229\) −11.4727 6.62377i −0.758138 0.437711i 0.0704890 0.997513i \(-0.477544\pi\)
−0.828627 + 0.559802i \(0.810877\pi\)
\(230\) −0.0766237 1.44749i −0.00505242 0.0954447i
\(231\) 0 0
\(232\) −1.14880 + 1.14880i −0.0754225 + 0.0754225i
\(233\) −2.10782 7.86648i −0.138088 0.515350i −0.999966 0.00823515i \(-0.997379\pi\)
0.861878 0.507115i \(-0.169288\pi\)
\(234\) 0 0
\(235\) −24.6155 5.21864i −1.60574 0.340426i
\(236\) −5.58105 3.22222i −0.363295 0.209749i
\(237\) 0 0
\(238\) 0.0274481 + 0.0996537i 0.00177920 + 0.00645959i
\(239\) −8.41041 −0.544024 −0.272012 0.962294i \(-0.587689\pi\)
−0.272012 + 0.962294i \(0.587689\pi\)
\(240\) 0 0
\(241\) 0.122931 + 0.212922i 0.00791866 + 0.0137155i 0.869958 0.493127i \(-0.164146\pi\)
−0.862039 + 0.506842i \(0.830813\pi\)
\(242\) −0.739106 + 2.75838i −0.0475115 + 0.177315i
\(243\) 0 0
\(244\) 4.20190i 0.268999i
\(245\) −15.6175 + 1.04525i −0.997768 + 0.0667788i
\(246\) 0 0
\(247\) 4.84316 + 18.0749i 0.308163 + 1.15008i
\(248\) −1.17761 0.315540i −0.0747783 0.0200368i
\(249\) 0 0
\(250\) 0.639314 + 1.42984i 0.0404338 + 0.0904313i
\(251\) 0.458108i 0.0289155i −0.999895 0.0144577i \(-0.995398\pi\)
0.999895 0.0144577i \(-0.00460220\pi\)
\(252\) 0 0
\(253\) −18.3304 18.3304i −1.15242 1.15242i
\(254\) −0.203404 + 0.352307i −0.0127627 + 0.0221057i
\(255\) 0 0
\(256\) −7.22649 12.5166i −0.451655 0.782290i
\(257\) −24.1439 + 6.46934i −1.50605 + 0.403546i −0.915123 0.403175i \(-0.867907\pi\)
−0.590932 + 0.806721i \(0.701240\pi\)
\(258\) 0 0
\(259\) −10.1891 17.3673i −0.633119 1.07915i
\(260\) 12.0019 + 10.7951i 0.744325 + 0.669485i
\(261\) 0 0
\(262\) −1.32698 0.355562i −0.0819809 0.0219667i
\(263\) 16.8221 + 4.50748i 1.03730 + 0.277943i 0.736993 0.675901i \(-0.236245\pi\)
0.300304 + 0.953843i \(0.402912\pi\)
\(264\) 0 0
\(265\) 2.68247 + 2.41275i 0.164783 + 0.148214i
\(266\) −1.90258 + 0.0132634i −0.116654 + 0.000813233i
\(267\) 0 0
\(268\) −13.7196 + 3.67617i −0.838061 + 0.224558i
\(269\) −7.44692 12.8984i −0.454047 0.786432i 0.544586 0.838705i \(-0.316687\pi\)
−0.998633 + 0.0522730i \(0.983353\pi\)
\(270\) 0 0
\(271\) −7.64716 + 13.2453i −0.464532 + 0.804593i −0.999180 0.0404815i \(-0.987111\pi\)
0.534648 + 0.845075i \(0.320444\pi\)
\(272\) −0.765641 0.765641i −0.0464238 0.0464238i
\(273\) 0 0
\(274\) 0.243001i 0.0146802i
\(275\) 25.6013 + 11.3661i 1.54381 + 0.685404i
\(276\) 0 0
\(277\) −9.97926 2.67393i −0.599595 0.160661i −0.0537606 0.998554i \(-0.517121\pi\)
−0.545835 + 0.837893i \(0.683787\pi\)
\(278\) −0.0917287 0.342336i −0.00550152 0.0205319i
\(279\) 0 0
\(280\) −2.75313 + 1.81739i −0.164531 + 0.108610i
\(281\) 23.6675i 1.41189i 0.708268 + 0.705943i \(0.249477\pi\)
−0.708268 + 0.705943i \(0.750523\pi\)
\(282\) 0 0
\(283\) 1.88659 7.04083i 0.112146 0.418534i −0.886912 0.461939i \(-0.847154\pi\)
0.999058 + 0.0434049i \(0.0138206\pi\)
\(284\) −8.08298 14.0001i −0.479636 0.830755i
\(285\) 0 0
\(286\) −2.86092 −0.169170
\(287\) 6.13540 + 22.2753i 0.362161 + 1.31487i
\(288\) 0 0
\(289\) 14.6551 + 8.46111i 0.862063 + 0.497713i
\(290\) −0.892841 0.189288i −0.0524294 0.0111154i
\(291\) 0 0
\(292\) 4.20275 + 15.6849i 0.245948 + 0.917889i
\(293\) −10.0145 + 10.0145i −0.585052 + 0.585052i −0.936287 0.351235i \(-0.885762\pi\)
0.351235 + 0.936287i \(0.385762\pi\)
\(294\) 0 0
\(295\) −0.384647 7.26633i −0.0223950 0.423062i
\(296\) −3.67518 2.12187i −0.213615 0.123331i
\(297\) 0 0
\(298\) 0.0177939 0.0664076i 0.00103077 0.00384689i
\(299\) 8.43407 14.6082i 0.487755 0.844816i
\(300\) 0 0
\(301\) −19.2120 10.9142i −1.10736 0.629084i
\(302\) −0.443731 0.443731i −0.0255338 0.0255338i
\(303\) 0 0
\(304\) 17.2604 9.96531i 0.989953 0.571550i
\(305\) 3.97764 2.58609i 0.227759 0.148079i
\(306\) 0 0
\(307\) −4.93300 + 4.93300i −0.281541 + 0.281541i −0.833723 0.552182i \(-0.813795\pi\)
0.552182 + 0.833723i \(0.313795\pi\)
\(308\) −7.39931 + 28.4052i −0.421615 + 1.61854i
\(309\) 0 0
\(310\) −0.211984 0.651255i −0.0120399 0.0369888i
\(311\) −24.2000 + 13.9719i −1.37226 + 0.792272i −0.991212 0.132284i \(-0.957769\pi\)
−0.381044 + 0.924557i \(0.624435\pi\)
\(312\) 0 0
\(313\) 13.9090 3.72690i 0.786182 0.210657i 0.156674 0.987650i \(-0.449923\pi\)
0.629509 + 0.776994i \(0.283256\pi\)
\(314\) 0.702431 0.0396405
\(315\) 0 0
\(316\) −1.14541 −0.0644343
\(317\) −11.6964 + 3.13404i −0.656935 + 0.176025i −0.571863 0.820349i \(-0.693779\pi\)
−0.0850728 + 0.996375i \(0.527112\pi\)
\(318\) 0 0
\(319\) −14.1356 + 8.16121i −0.791444 + 0.456940i
\(320\) 7.63908 15.0121i 0.427038 0.839200i
\(321\) 0 0
\(322\) 1.22118 + 1.20427i 0.0680536 + 0.0671113i
\(323\) 1.01226 1.01226i 0.0563238 0.0563238i
\(324\) 0 0
\(325\) −2.83233 + 18.0053i −0.157110 + 0.998754i
\(326\) 0.466661 0.269427i 0.0258460 0.0149222i
\(327\) 0 0
\(328\) 3.44328 + 3.44328i 0.190123 + 0.190123i
\(329\) 25.6796 15.0658i 1.41576 0.830602i
\(330\) 0 0
\(331\) −10.7503 + 18.6201i −0.590892 + 1.02345i 0.403221 + 0.915103i \(0.367891\pi\)
−0.994113 + 0.108352i \(0.965443\pi\)
\(332\) 2.26605 8.45701i 0.124366 0.464139i
\(333\) 0 0
\(334\) −1.11999 0.646625i −0.0612830 0.0353817i
\(335\) −11.9238 10.7249i −0.651469 0.585964i
\(336\) 0 0
\(337\) −8.10178 + 8.10178i −0.441332 + 0.441332i −0.892460 0.451127i \(-0.851022\pi\)
0.451127 + 0.892460i \(0.351022\pi\)
\(338\) −0.0104604 0.0390387i −0.000568970 0.00212343i
\(339\) 0 0
\(340\) 0.256123 1.20809i 0.0138902 0.0655178i
\(341\) −10.6075 6.12424i −0.574428 0.331646i
\(342\) 0 0
\(343\) 12.8191 13.3668i 0.692165 0.721739i
\(344\) −4.65685 −0.251081
\(345\) 0 0
\(346\) 1.54978 + 2.68430i 0.0833169 + 0.144309i
\(347\) −5.34680 + 19.9545i −0.287031 + 1.07121i 0.660311 + 0.750992i \(0.270424\pi\)
−0.947342 + 0.320222i \(0.896242\pi\)
\(348\) 0 0
\(349\) 22.3959i 1.19882i −0.800441 0.599411i \(-0.795401\pi\)
0.800441 0.599411i \(-0.204599\pi\)
\(350\) −1.69900 0.740167i −0.0908154 0.0395636i
\(351\) 0 0
\(352\) 2.40569 + 8.97815i 0.128224 + 0.478537i
\(353\) 32.6654 + 8.75267i 1.73860 + 0.465857i 0.982136 0.188173i \(-0.0602566\pi\)
0.756468 + 0.654031i \(0.226923\pi\)
\(354\) 0 0
\(355\) 8.27822 16.2681i 0.439362 0.863420i
\(356\) 24.9192i 1.32072i
\(357\) 0 0
\(358\) −0.110883 0.110883i −0.00586037 0.00586037i
\(359\) 5.51983 9.56063i 0.291326 0.504591i −0.682798 0.730607i \(-0.739237\pi\)
0.974123 + 0.226017i \(0.0725703\pi\)
\(360\) 0 0
\(361\) 3.67525 + 6.36571i 0.193434 + 0.335038i
\(362\) −1.77316 + 0.475116i −0.0931950 + 0.0249715i
\(363\) 0 0
\(364\) −19.0996 + 0.133149i −1.00109 + 0.00697889i
\(365\) −12.2612 + 13.6318i −0.641780 + 0.713523i
\(366\) 0 0
\(367\) 3.72578 + 0.998319i 0.194484 + 0.0521118i 0.354746 0.934963i \(-0.384567\pi\)
−0.160262 + 0.987074i \(0.551234\pi\)
\(368\) −17.3540 4.64999i −0.904639 0.242397i
\(369\) 0 0
\(370\) −0.126023 2.38068i −0.00655160 0.123766i
\(371\) −4.26884 + 0.0297593i −0.221627 + 0.00154503i
\(372\) 0 0
\(373\) −10.0751 + 2.69962i −0.521669 + 0.139781i −0.510039 0.860151i \(-0.670369\pi\)
−0.0116307 + 0.999932i \(0.503702\pi\)
\(374\) 0.109434 + 0.189545i 0.00565868 + 0.00980112i
\(375\) 0 0
\(376\) 3.13743 5.43418i 0.161800 0.280246i
\(377\) −7.51017 7.51017i −0.386793 0.386793i
\(378\) 0 0
\(379\) 19.1988i 0.986177i −0.869979 0.493089i \(-0.835868\pi\)
0.869979 0.493089i \(-0.164132\pi\)
\(380\) 20.2593 + 10.3092i 1.03928 + 0.528850i
\(381\) 0 0
\(382\) −0.726703 0.194720i −0.0371814 0.00996272i
\(383\) 9.12303 + 34.0476i 0.466165 + 1.73975i 0.652998 + 0.757359i \(0.273511\pi\)
−0.186834 + 0.982392i \(0.559823\pi\)
\(384\) 0 0
\(385\) −31.4432 + 10.4778i −1.60249 + 0.533998i
\(386\) 2.05924i 0.104813i
\(387\) 0 0
\(388\) 5.98043 22.3193i 0.303610 1.13309i
\(389\) 17.2123 + 29.8126i 0.872700 + 1.51156i 0.859192 + 0.511652i \(0.170966\pi\)
0.0135078 + 0.999909i \(0.495700\pi\)
\(390\) 0 0
\(391\) −1.29046 −0.0652611
\(392\) 0.957584 3.78401i 0.0483653 0.191121i
\(393\) 0 0
\(394\) 1.41928 + 0.819423i 0.0715024 + 0.0412819i
\(395\) −0.704951 1.08428i −0.0354700 0.0545561i
\(396\) 0 0
\(397\) −3.57770 13.3522i −0.179560 0.670127i −0.995730 0.0923147i \(-0.970573\pi\)
0.816170 0.577812i \(-0.196093\pi\)
\(398\) 2.10203 2.10203i 0.105365 0.105365i
\(399\) 0 0
\(400\) 19.3047 2.04955i 0.965233 0.102477i
\(401\) 10.4832 + 6.05249i 0.523507 + 0.302247i 0.738368 0.674398i \(-0.235597\pi\)
−0.214862 + 0.976645i \(0.568930\pi\)
\(402\) 0 0
\(403\) 2.06281 7.69850i 0.102756 0.383490i
\(404\) 4.87385 8.44175i 0.242483 0.419993i
\(405\) 0 0
\(406\) 0.931438 0.546459i 0.0462265 0.0271203i
\(407\) −30.1479 30.1479i −1.49438 1.49438i
\(408\) 0 0
\(409\) −25.3797 + 14.6530i −1.25495 + 0.724544i −0.972088 0.234617i \(-0.924616\pi\)
−0.282860 + 0.959161i \(0.591283\pi\)
\(410\) −0.567349 + 2.67609i −0.0280194 + 0.132163i
\(411\) 0 0
\(412\) 21.9678 21.9678i 1.08228 1.08228i
\(413\) 6.13025 + 6.04537i 0.301650 + 0.297473i
\(414\) 0 0
\(415\) 9.40032 3.05982i 0.461444 0.150201i
\(416\) −5.23786 + 3.02408i −0.256807 + 0.148268i
\(417\) 0 0
\(418\) −3.89140 + 1.04270i −0.190334 + 0.0509999i
\(419\) −4.45393 −0.217589 −0.108794 0.994064i \(-0.534699\pi\)
−0.108794 + 0.994064i \(0.534699\pi\)
\(420\) 0 0
\(421\) 27.1950 1.32540 0.662701 0.748884i \(-0.269410\pi\)
0.662701 + 0.748884i \(0.269410\pi\)
\(422\) 0.933969 0.250256i 0.0454649 0.0121823i
\(423\) 0 0
\(424\) −0.779175 + 0.449857i −0.0378401 + 0.0218470i
\(425\) 1.30125 0.501074i 0.0631198 0.0243057i
\(426\) 0 0
\(427\) −1.41509 + 5.43239i −0.0684810 + 0.262892i
\(428\) 26.6263 26.6263i 1.28703 1.28703i
\(429\) 0 0
\(430\) −1.42598 2.19329i −0.0687670 0.105770i
\(431\) −22.2647 + 12.8545i −1.07245 + 0.619180i −0.928850 0.370456i \(-0.879201\pi\)
−0.143601 + 0.989636i \(0.545868\pi\)
\(432\) 0 0
\(433\) 23.5411 + 23.5411i 1.13131 + 1.13131i 0.989959 + 0.141353i \(0.0451452\pi\)
0.141353 + 0.989959i \(0.454855\pi\)
\(434\) 0.704608 + 0.400282i 0.0338223 + 0.0192142i
\(435\) 0 0
\(436\) −10.8656 + 18.8198i −0.520367 + 0.901303i
\(437\) 6.14780 22.9439i 0.294089 1.09756i
\(438\) 0 0
\(439\) −8.62144 4.97759i −0.411479 0.237567i 0.279946 0.960016i \(-0.409683\pi\)
−0.691425 + 0.722448i \(0.743017\pi\)
\(440\) −4.67125 + 5.19344i −0.222693 + 0.247588i
\(441\) 0 0
\(442\) −0.100704 + 0.100704i −0.00478999 + 0.00478999i
\(443\) −7.68062 28.6645i −0.364918 1.36189i −0.867533 0.497380i \(-0.834295\pi\)
0.502615 0.864510i \(-0.332371\pi\)
\(444\) 0 0
\(445\) 23.5893 15.3367i 1.11824 0.727031i
\(446\) −0.232393 0.134172i −0.0110041 0.00635322i
\(447\) 0 0
\(448\) 5.29234 + 19.2145i 0.250040 + 0.907799i
\(449\) 26.4145 1.24658 0.623290 0.781991i \(-0.285796\pi\)
0.623290 + 0.781991i \(0.285796\pi\)
\(450\) 0 0
\(451\) 24.4614 + 42.3684i 1.15184 + 1.99505i
\(452\) −4.47134 + 16.6873i −0.210314 + 0.784903i
\(453\) 0 0
\(454\) 1.14075i 0.0535381i
\(455\) −11.8810 17.9983i −0.556991 0.843773i
\(456\) 0 0
\(457\) 8.97102 + 33.4803i 0.419646 + 1.56614i 0.775343 + 0.631540i \(0.217577\pi\)
−0.355696 + 0.934602i \(0.615756\pi\)
\(458\) 1.79262 + 0.480331i 0.0837637 + 0.0224444i
\(459\) 0 0
\(460\) −6.34230 19.4847i −0.295711 0.908478i
\(461\) 39.9716i 1.86166i −0.365449 0.930831i \(-0.619085\pi\)
0.365449 0.930831i \(-0.380915\pi\)
\(462\) 0 0
\(463\) 6.57833 + 6.57833i 0.305721 + 0.305721i 0.843247 0.537526i \(-0.180641\pi\)
−0.537526 + 0.843247i \(0.680641\pi\)
\(464\) −5.65618 + 9.79679i −0.262581 + 0.454804i
\(465\) 0 0
\(466\) 0.570448 + 0.988045i 0.0264255 + 0.0457703i
\(467\) 13.5661 3.63502i 0.627763 0.168208i 0.0691084 0.997609i \(-0.477985\pi\)
0.558654 + 0.829401i \(0.311318\pi\)
\(468\) 0 0
\(469\) 18.9754 0.132283i 0.876201 0.00610826i
\(470\) 3.52011 0.186339i 0.162371 0.00859518i
\(471\) 0 0
\(472\) 1.75273 + 0.469643i 0.0806759 + 0.0216171i
\(473\) −45.1919 12.1091i −2.07793 0.556779i
\(474\) 0 0
\(475\) 2.70973 + 25.5229i 0.124331 + 1.17107i
\(476\) 0.739405 + 1.26031i 0.0338906 + 0.0577664i
\(477\) 0 0
\(478\) 1.13807 0.304946i 0.0520543 0.0139479i
\(479\) −13.6012 23.5580i −0.621454 1.07639i −0.989215 0.146470i \(-0.953209\pi\)
0.367761 0.929920i \(-0.380124\pi\)
\(480\) 0 0
\(481\) 13.8715 24.0261i 0.632484 1.09550i
\(482\) −0.0243548 0.0243548i −0.00110933 0.00110933i
\(483\) 0 0
\(484\) 40.3690i 1.83496i
\(485\) 24.8088 8.07531i 1.12651 0.366681i
\(486\) 0 0
\(487\) −14.7386 3.94920i −0.667870 0.178955i −0.0910748 0.995844i \(-0.529030\pi\)
−0.576795 + 0.816889i \(0.695697\pi\)
\(488\) 0.306216 + 1.14281i 0.0138617 + 0.0517327i
\(489\) 0 0
\(490\) 2.07542 0.707704i 0.0937581 0.0319708i
\(491\) 1.26640i 0.0571518i −0.999592 0.0285759i \(-0.990903\pi\)
0.999592 0.0285759i \(-0.00909723\pi\)
\(492\) 0 0
\(493\) −0.210299 + 0.784846i −0.00947138 + 0.0353477i
\(494\) −1.31073 2.27024i −0.0589723 0.102143i
\(495\) 0 0
\(496\) −8.48889 −0.381162
\(497\) 5.73513 + 20.8221i 0.257256 + 0.933998i
\(498\) 0 0
\(499\) 12.5885 + 7.26798i 0.563539 + 0.325359i 0.754565 0.656226i \(-0.227848\pi\)
−0.191026 + 0.981585i \(0.561181\pi\)
\(500\) 13.9611 + 17.1850i 0.624359 + 0.768535i
\(501\) 0 0
\(502\) 0.0166101 + 0.0619899i 0.000741347 + 0.00276674i
\(503\) 16.6937 16.6937i 0.744336 0.744336i −0.229073 0.973409i \(-0.573569\pi\)
0.973409 + 0.229073i \(0.0735694\pi\)
\(504\) 0 0
\(505\) 10.9909 0.581807i 0.489087 0.0258901i
\(506\) 3.14505 + 1.81579i 0.139814 + 0.0807218i
\(507\) 0 0
\(508\) −1.48842 + 5.55485i −0.0660378 + 0.246456i
\(509\) −12.4710 + 21.6005i −0.552769 + 0.957424i 0.445304 + 0.895379i \(0.353096\pi\)
−0.998073 + 0.0620449i \(0.980238\pi\)
\(510\) 0 0
\(511\) −0.151232 21.6935i −0.00669009 0.959662i
\(512\) 7.61687 + 7.61687i 0.336621 + 0.336621i
\(513\) 0 0
\(514\) 3.03252 1.75083i 0.133759 0.0772256i
\(515\) 34.3156 + 7.27514i 1.51213 + 0.320581i
\(516\) 0 0
\(517\) 44.5772 44.5772i 1.96050 1.96050i
\(518\) 2.00847 + 1.98066i 0.0882469 + 0.0870250i
\(519\) 0 0
\(520\) −4.05092 2.06136i −0.177645 0.0903967i
\(521\) 20.1930 11.6584i 0.884670 0.510765i 0.0124748 0.999922i \(-0.496029\pi\)
0.872195 + 0.489158i \(0.162696\pi\)
\(522\) 0 0
\(523\) −28.0009 + 7.50283i −1.22440 + 0.328076i −0.812395 0.583108i \(-0.801836\pi\)
−0.412001 + 0.911184i \(0.635170\pi\)
\(524\) −19.4204 −0.848382
\(525\) 0 0
\(526\) −2.43976 −0.106378
\(527\) −0.588955 + 0.157810i −0.0256553 + 0.00687431i
\(528\) 0 0
\(529\) 1.37521 0.793979i 0.0597918 0.0345208i
\(530\) −0.450467 0.229226i −0.0195670 0.00995693i
\(531\) 0 0
\(532\) −25.9306 + 7.14218i −1.12423 + 0.309653i
\(533\) −22.5101 + 22.5101i −0.975019 + 0.975019i
\(534\) 0 0
\(535\) 41.5926 + 8.81792i 1.79821 + 0.381232i
\(536\) 3.46350 1.99965i 0.149601 0.0863719i
\(537\) 0 0
\(538\) 1.47537 + 1.47537i 0.0636077 + 0.0636077i
\(539\) 19.1323 34.2315i 0.824085 1.47446i
\(540\) 0 0
\(541\) −1.50038 + 2.59873i −0.0645063 + 0.111728i −0.896475 0.443095i \(-0.853881\pi\)
0.831969 + 0.554823i \(0.187214\pi\)
\(542\) 0.554544 2.06959i 0.0238197 0.0888964i
\(543\) 0 0
\(544\) 0.400709 + 0.231350i 0.0171803 + 0.00991904i
\(545\) −24.5027 + 1.29706i −1.04958 + 0.0555600i
\(546\) 0 0
\(547\) −2.21247 + 2.21247i −0.0945983 + 0.0945983i −0.752822 0.658224i \(-0.771308\pi\)
0.658224 + 0.752822i \(0.271308\pi\)
\(548\) 0.889081 + 3.31810i 0.0379797 + 0.141742i
\(549\) 0 0
\(550\) −3.87641 0.609781i −0.165291 0.0260011i
\(551\) −12.9524 7.47810i −0.551793 0.318578i
\(552\) 0 0
\(553\) 1.48083 + 0.385744i 0.0629715 + 0.0164035i
\(554\) 1.44732 0.0614906
\(555\) 0 0
\(556\) −2.50505 4.33888i −0.106238 0.184009i
\(557\) 8.04984 30.0424i 0.341083 1.27294i −0.556039 0.831156i \(-0.687680\pi\)
0.897122 0.441782i \(-0.145654\pi\)
\(558\) 0 0
\(559\) 30.4437i 1.28763i
\(560\) −15.2415 + 17.1848i −0.644071 + 0.726189i
\(561\) 0 0
\(562\) −0.858141 3.20263i −0.0361985 0.135095i
\(563\) 36.0117 + 9.64932i 1.51771 + 0.406670i 0.918989 0.394284i \(-0.129007\pi\)
0.598726 + 0.800954i \(0.295674\pi\)
\(564\) 0 0
\(565\) −18.5486 + 6.03760i −0.780346 + 0.254004i
\(566\) 1.02115i 0.0429222i
\(567\) 0 0
\(568\) 3.21864 + 3.21864i 0.135051 + 0.135051i
\(569\) −8.69925 + 15.0675i −0.364692 + 0.631664i −0.988727 0.149732i \(-0.952159\pi\)
0.624035 + 0.781396i \(0.285492\pi\)
\(570\) 0 0
\(571\) −17.3894 30.1193i −0.727723 1.26045i −0.957843 0.287292i \(-0.907245\pi\)
0.230120 0.973162i \(-0.426088\pi\)
\(572\) −39.0649 + 10.4674i −1.63339 + 0.437665i
\(573\) 0 0
\(574\) −1.63789 2.79178i −0.0683641 0.116527i
\(575\) 14.5414 17.9958i 0.606418 0.750477i
\(576\) 0 0
\(577\) −23.1695 6.20825i −0.964560 0.258453i −0.258030 0.966137i \(-0.583074\pi\)
−0.706529 + 0.707684i \(0.749740\pi\)
\(578\) −2.28987 0.613569i −0.0952460 0.0255211i
\(579\) 0 0
\(580\) −12.8840 + 0.682022i −0.534980 + 0.0283194i
\(581\) −5.77775 + 10.1704i −0.239701 + 0.421941i
\(582\) 0 0
\(583\) −8.73117 + 2.33951i −0.361608 + 0.0968926i
\(584\) −2.28609 3.95963i −0.0945992 0.163851i
\(585\) 0 0
\(586\) 0.992026 1.71824i 0.0409802 0.0709798i
\(587\) 15.2114 + 15.2114i 0.627840 + 0.627840i 0.947524 0.319684i \(-0.103577\pi\)
−0.319684 + 0.947524i \(0.603577\pi\)
\(588\) 0 0
\(589\) 11.2233i 0.462446i
\(590\) 0.315513 + 0.969314i 0.0129895 + 0.0399060i
\(591\) 0 0
\(592\) −28.5420 7.64781i −1.17307 0.314323i
\(593\) −5.29885 19.7756i −0.217598 0.812085i −0.985236 0.171202i \(-0.945235\pi\)
0.767638 0.640883i \(-0.221432\pi\)
\(594\) 0 0
\(595\) −0.737980 + 1.47561i −0.0302542 + 0.0604942i
\(596\) 0.971879i 0.0398097i
\(597\) 0 0
\(598\) −0.611607 + 2.28255i −0.0250105 + 0.0933404i
\(599\) −2.45403 4.25050i −0.100269 0.173671i 0.811527 0.584315i \(-0.198637\pi\)
−0.911795 + 0.410645i \(0.865304\pi\)
\(600\) 0 0
\(601\) −10.2782 −0.419258 −0.209629 0.977781i \(-0.567226\pi\)
−0.209629 + 0.977781i \(0.567226\pi\)
\(602\) 2.99544 + 0.780287i 0.122085 + 0.0318021i
\(603\) 0 0
\(604\) −7.68251 4.43550i −0.312597 0.180478i
\(605\) −38.2145 + 24.8454i −1.55364 + 1.01011i
\(606\) 0 0
\(607\) 6.97762 + 26.0408i 0.283213 + 1.05696i 0.950135 + 0.311838i \(0.100945\pi\)
−0.666922 + 0.745127i \(0.732389\pi\)
\(608\) −6.02233 + 6.02233i −0.244238 + 0.244238i
\(609\) 0 0
\(610\) −0.444477 + 0.494165i −0.0179964 + 0.0200081i
\(611\) 35.5254 + 20.5106i 1.43720 + 0.829769i
\(612\) 0 0
\(613\) 2.56939 9.58910i 0.103777 0.387300i −0.894427 0.447215i \(-0.852416\pi\)
0.998204 + 0.0599142i \(0.0190827\pi\)
\(614\) 0.488658 0.846381i 0.0197206 0.0341572i
\(615\) 0 0
\(616\) −0.0576160 8.26475i −0.00232142 0.332996i
\(617\) 13.2957 + 13.2957i 0.535264 + 0.535264i 0.922134 0.386870i \(-0.126444\pi\)
−0.386870 + 0.922134i \(0.626444\pi\)
\(618\) 0 0
\(619\) −1.14004 + 0.658202i −0.0458220 + 0.0264554i −0.522736 0.852495i \(-0.675089\pi\)
0.476914 + 0.878950i \(0.341755\pi\)
\(620\) −5.27737 8.11708i −0.211944 0.325990i
\(621\) 0 0
\(622\) 2.76808 2.76808i 0.110990 0.110990i
\(623\) −8.39215 + 32.2166i −0.336225 + 1.29073i
\(624\) 0 0
\(625\) −7.67536 + 23.7926i −0.307014 + 0.951705i
\(626\) −1.74699 + 1.00863i −0.0698240 + 0.0403129i
\(627\) 0 0
\(628\) 9.59147 2.57003i 0.382741 0.102555i
\(629\) −2.12241 −0.0846258
\(630\) 0 0
\(631\) 6.81277 0.271212 0.135606 0.990763i \(-0.456702\pi\)
0.135606 + 0.990763i \(0.456702\pi\)
\(632\) 0.311523 0.0834725i 0.0123917 0.00332036i
\(633\) 0 0
\(634\) 1.46909 0.848180i 0.0583450 0.0336855i
\(635\) −6.17445 + 2.00979i −0.245025 + 0.0797562i
\(636\) 0 0
\(637\) 24.7376 + 6.26010i 0.980138 + 0.248034i
\(638\) 1.61688 1.61688i 0.0640131 0.0640131i
\(639\) 0 0
\(640\) −2.02826 + 9.56697i −0.0801741 + 0.378168i
\(641\) 10.6830 6.16781i 0.421951 0.243614i −0.273960 0.961741i \(-0.588334\pi\)
0.695912 + 0.718127i \(0.255000\pi\)
\(642\) 0 0
\(643\) 0.219128 + 0.219128i 0.00864157 + 0.00864157i 0.711414 0.702773i \(-0.248055\pi\)
−0.702773 + 0.711414i \(0.748055\pi\)
\(644\) 21.0809 + 11.9759i 0.830705 + 0.471917i
\(645\) 0 0
\(646\) −0.100274 + 0.173679i −0.00394522 + 0.00683332i
\(647\) 0.715393 2.66988i 0.0281250 0.104964i −0.950437 0.310919i \(-0.899363\pi\)
0.978562 + 0.205955i \(0.0660300\pi\)
\(648\) 0 0
\(649\) 15.7880 + 9.11519i 0.619732 + 0.357803i
\(650\) −0.269575 2.53912i −0.0105736 0.0995925i
\(651\) 0 0
\(652\) 5.38634 5.38634i 0.210946 0.210946i
\(653\) −6.36119 23.7403i −0.248933 0.929030i −0.971366 0.237589i \(-0.923643\pi\)
0.722433 0.691441i \(-0.243024\pi\)
\(654\) 0 0
\(655\) −11.9524 18.3839i −0.467019 0.718319i
\(656\) 29.3637 + 16.9531i 1.14646 + 0.661909i
\(657\) 0 0
\(658\) −2.92863 + 2.96975i −0.114170 + 0.115773i
\(659\) −47.4163 −1.84708 −0.923538 0.383506i \(-0.874716\pi\)
−0.923538 + 0.383506i \(0.874716\pi\)
\(660\) 0 0
\(661\) −9.31689 16.1373i −0.362385 0.627669i 0.625968 0.779849i \(-0.284704\pi\)
−0.988353 + 0.152180i \(0.951371\pi\)
\(662\) 0.779575 2.90941i 0.0302990 0.113078i
\(663\) 0 0
\(664\) 2.46524i 0.0956699i
\(665\) −22.7202 20.1510i −0.881051 0.781420i
\(666\) 0 0
\(667\) 3.48941 + 13.0227i 0.135111 + 0.504239i
\(668\) −17.6589 4.73169i −0.683244 0.183075i
\(669\) 0 0
\(670\) 2.00237 + 1.01893i 0.0773581 + 0.0393647i
\(671\) 11.8866i 0.458875i
\(672\) 0 0
\(673\) −23.8659 23.8659i −0.919962 0.919962i 0.0770643 0.997026i \(-0.475445\pi\)
−0.997026 + 0.0770643i \(0.975445\pi\)
\(674\) 0.802555 1.39007i 0.0309133 0.0535434i
\(675\) 0 0
\(676\) −0.285667 0.494789i −0.0109872 0.0190303i
\(677\) −2.20069 + 0.589674i −0.0845796 + 0.0226630i −0.300861 0.953668i \(-0.597274\pi\)
0.216281 + 0.976331i \(0.430607\pi\)
\(678\) 0 0
\(679\) −15.2483 + 26.8412i −0.585176 + 1.03007i
\(680\) 0.0183811 + 0.347236i 0.000704883 + 0.0133159i
\(681\) 0 0
\(682\) 1.65743 + 0.444107i 0.0634663 + 0.0170057i
\(683\) −28.2798 7.57756i −1.08210 0.289947i −0.326643 0.945148i \(-0.605917\pi\)
−0.755455 + 0.655201i \(0.772584\pi\)
\(684\) 0 0
\(685\) −2.59382 + 2.88378i −0.0991048 + 0.110184i
\(686\) −1.24999 + 2.27355i −0.0477247 + 0.0868047i
\(687\) 0 0
\(688\) −31.3205 + 8.39231i −1.19408 + 0.319954i
\(689\) −2.94089 5.09377i −0.112039 0.194057i
\(690\) 0 0
\(691\) −7.90637 + 13.6942i −0.300773 + 0.520953i −0.976311 0.216371i \(-0.930578\pi\)
0.675539 + 0.737325i \(0.263911\pi\)
\(692\) 30.9830 + 30.9830i 1.17780 + 1.17780i
\(693\) 0 0
\(694\) 2.89405i 0.109857i
\(695\) 2.56556 5.04175i 0.0973173 0.191245i
\(696\) 0 0
\(697\) 2.35240 + 0.630324i 0.0891035 + 0.0238752i
\(698\) 0.812032 + 3.03055i 0.0307359 + 0.114708i
\(699\) 0 0
\(700\) −25.9074 3.89051i −0.979208 0.147047i
\(701\) 12.7450i 0.481372i 0.970603 + 0.240686i \(0.0773723\pi\)
−0.970603 + 0.240686i \(0.922628\pi\)
\(702\) 0 0
\(703\) 10.1113 37.7357i 0.381353 1.42323i
\(704\) 21.1002 + 36.5466i 0.795243 + 1.37740i
\(705\) 0 0
\(706\) −4.73755 −0.178300
\(707\) −9.14408 + 9.27246i −0.343898 + 0.348727i
\(708\) 0 0
\(709\) 33.8769 + 19.5589i 1.27228 + 0.734549i 0.975416 0.220373i \(-0.0707273\pi\)
0.296860 + 0.954921i \(0.404061\pi\)
\(710\) −0.530335 + 2.50150i −0.0199031 + 0.0938798i
\(711\) 0 0
\(712\) 1.81601 + 6.77742i 0.0680577 + 0.253995i
\(713\) −7.15383 + 7.15383i −0.267913 + 0.267913i
\(714\) 0 0
\(715\) −33.9516 30.5378i −1.26972 1.14205i
\(716\) −1.91978 1.10838i −0.0717454 0.0414222i
\(717\) 0 0
\(718\) −0.400278 + 1.49386i −0.0149382 + 0.0557503i
\(719\) −3.29942 + 5.71477i −0.123048 + 0.213125i −0.920968 0.389638i \(-0.872600\pi\)
0.797920 + 0.602763i \(0.205933\pi\)
\(720\) 0 0
\(721\) −35.7991 + 21.0027i −1.33323 + 0.782181i
\(722\) −0.728133 0.728133i −0.0270983 0.0270983i
\(723\) 0 0
\(724\) −22.4735 + 12.9751i −0.835223 + 0.482216i
\(725\) −8.57519 11.7767i −0.318475 0.437374i
\(726\) 0 0
\(727\) 6.51144 6.51144i 0.241496 0.241496i −0.575973 0.817469i \(-0.695377\pi\)
0.817469 + 0.575973i \(0.195377\pi\)
\(728\) 5.18491 1.42811i 0.192166 0.0529292i
\(729\) 0 0
\(730\) 1.16488 2.28919i 0.0431143 0.0847268i
\(731\) −2.01699 + 1.16451i −0.0746010 + 0.0430709i
\(732\) 0 0
\(733\) −9.73928 + 2.60963i −0.359728 + 0.0963890i −0.434157 0.900837i \(-0.642954\pi\)
0.0744281 + 0.997226i \(0.476287\pi\)
\(734\) −0.540359 −0.0199450
\(735\) 0 0
\(736\) 7.67740 0.282993
\(737\) 38.8109 10.3993i 1.42962 0.383065i
\(738\) 0 0
\(739\) 11.1510 6.43804i 0.410196 0.236827i −0.280678 0.959802i \(-0.590559\pi\)
0.690874 + 0.722975i \(0.257226\pi\)
\(740\) −10.4311 32.0464i −0.383457 1.17805i
\(741\) 0 0
\(742\) 0.576568 0.158807i 0.0211665 0.00582999i
\(743\) 8.34588 8.34588i 0.306181 0.306181i −0.537245 0.843426i \(-0.680535\pi\)
0.843426 + 0.537245i \(0.180535\pi\)
\(744\) 0 0
\(745\) 0.920010 0.598150i 0.0337066 0.0219145i
\(746\) 1.26545 0.730610i 0.0463315 0.0267495i
\(747\) 0 0
\(748\) 2.18778 + 2.18778i 0.0799932 + 0.0799932i
\(749\) −43.3907 + 25.4566i −1.58546 + 0.930162i
\(750\) 0 0
\(751\) 21.5986 37.4098i 0.788143 1.36510i −0.138961 0.990298i \(-0.544376\pi\)
0.927104 0.374805i \(-0.122290\pi\)
\(752\) 11.3082 42.2027i 0.412367 1.53897i
\(753\) 0 0
\(754\) 1.28856 + 0.743951i 0.0469266 + 0.0270931i
\(755\) −0.529480 10.0024i −0.0192698 0.364023i
\(756\) 0 0
\(757\) −19.7726 + 19.7726i −0.718648 + 0.718648i −0.968328 0.249680i \(-0.919674\pi\)
0.249680 + 0.968328i \(0.419674\pi\)
\(758\) 0.696114 + 2.59793i 0.0252840 + 0.0943611i
\(759\) 0 0
\(760\) −6.26132 1.32744i −0.227122 0.0481513i
\(761\) 39.3328 + 22.7088i 1.42581 + 0.823193i 0.996787 0.0801000i \(-0.0255240\pi\)
0.429025 + 0.903293i \(0.358857\pi\)
\(762\) 0 0
\(763\) 20.3855 20.6717i 0.738004 0.748366i
\(764\) −10.6353 −0.384773
\(765\) 0 0
\(766\) −2.46901 4.27644i −0.0892088 0.154514i
\(767\) −3.07024 + 11.4583i −0.110860 + 0.413735i
\(768\) 0 0
\(769\) 23.0900i 0.832646i 0.909217 + 0.416323i \(0.136681\pi\)
−0.909217 + 0.416323i \(0.863319\pi\)
\(770\) 3.87490 2.55790i 0.139642 0.0921802i
\(771\) 0 0
\(772\) −7.53427 28.1183i −0.271164 1.01200i
\(773\) 20.2807 + 5.43421i 0.729448 + 0.195455i 0.604383 0.796694i \(-0.293420\pi\)
0.125064 + 0.992149i \(0.460086\pi\)
\(774\) 0 0
\(775\) 4.43588 9.99143i 0.159341 0.358903i
\(776\) 6.50612i 0.233556i
\(777\) 0 0
\(778\) −3.41008 3.41008i −0.122257 0.122257i
\(779\) −22.4139 + 38.8221i −0.803062 + 1.39094i
\(780\) 0 0
\(781\) 22.8656 + 39.6043i 0.818194 + 1.41715i
\(782\) 0.174621 0.0467895i 0.00624443 0.00167319i
\(783\) 0 0
\(784\) −0.378919 27.1758i −0.0135328 0.970564i
\(785\) 8.33601 + 7.49784i 0.297525 + 0.267609i
\(786\) 0 0
\(787\) −8.93832 2.39502i −0.318617 0.0853731i 0.0959663 0.995385i \(-0.469406\pi\)
−0.414583 + 0.910011i \(0.636073\pi\)
\(788\) 22.3779 + 5.99614i 0.797180 + 0.213604i
\(789\) 0 0
\(790\) 0.134706 + 0.121162i 0.00479263 + 0.00431074i
\(791\) 11.4006 20.0682i 0.405358 0.713542i
\(792\) 0 0
\(793\) −7.47102 + 2.00185i −0.265304 + 0.0710879i
\(794\) 0.968250 + 1.67706i 0.0343619 + 0.0595166i
\(795\) 0 0
\(796\) 21.0118 36.3935i 0.744743 1.28993i
\(797\) 5.16770 + 5.16770i 0.183049 + 0.183049i 0.792683 0.609634i \(-0.208684\pi\)
−0.609634 + 0.792683i \(0.708684\pi\)
\(798\) 0 0
\(799\) 3.13822i 0.111022i
\(800\) −7.74161 + 2.98108i −0.273707 + 0.105397i
\(801\) 0 0
\(802\) −1.63801 0.438904i −0.0578402 0.0154982i
\(803\) −11.8890 44.3703i −0.419553 1.56579i
\(804\) 0 0
\(805\) 1.63765 + 27.3265i 0.0577196 + 0.963134i
\(806\) 1.11653i 0.0393282i
\(807\) 0 0
\(808\) −0.710369 + 2.65113i −0.0249907 + 0.0932666i
\(809\) 6.23501 + 10.7994i 0.219211 + 0.379685i 0.954567 0.297996i \(-0.0963183\pi\)
−0.735356 + 0.677681i \(0.762985\pi\)
\(810\) 0 0
\(811\) 21.2698 0.746883 0.373442 0.927654i \(-0.378178\pi\)
0.373442 + 0.927654i \(0.378178\pi\)
\(812\) 10.7191 10.8696i 0.376168 0.381449i
\(813\) 0 0
\(814\) 5.17264 + 2.98643i 0.181301 + 0.104674i
\(815\) 8.41394 + 1.78381i 0.294728 + 0.0624842i
\(816\) 0 0
\(817\) −11.0956 41.4092i −0.388185 1.44873i
\(818\) 2.90303 2.90303i 0.101502 0.101502i
\(819\) 0 0
\(820\) 2.04421 + 38.6170i 0.0713869 + 1.34856i
\(821\) −17.0359 9.83568i −0.594557 0.343268i 0.172340 0.985037i \(-0.444867\pi\)
−0.766897 + 0.641770i \(0.778200\pi\)
\(822\) 0 0
\(823\) −13.8605 + 51.7281i −0.483146 + 1.80313i 0.105120 + 0.994460i \(0.466477\pi\)
−0.588266 + 0.808667i \(0.700189\pi\)
\(824\) −4.37378 + 7.57562i −0.152368 + 0.263909i
\(825\) 0 0
\(826\) −1.04872 0.595772i −0.0364898 0.0207296i
\(827\) −19.0500 19.0500i −0.662432 0.662432i 0.293521 0.955953i \(-0.405173\pi\)
−0.955953 + 0.293521i \(0.905173\pi\)
\(828\) 0 0
\(829\) 35.0623 20.2433i 1.21777 0.703077i 0.253326 0.967381i \(-0.418475\pi\)
0.964440 + 0.264304i \(0.0851421\pi\)
\(830\) −1.16108 + 0.754885i −0.0403018 + 0.0262024i
\(831\) 0 0
\(832\) −19.4170 + 19.4170i −0.673162 + 0.673162i
\(833\) −0.531492 1.87840i −0.0184151 0.0650827i
\(834\) 0 0
\(835\) −6.38915 19.6286i −0.221106 0.679277i
\(836\) −49.3208 + 28.4754i −1.70580 + 0.984842i
\(837\) 0 0
\(838\) 0.602694 0.161491i 0.0208197 0.00557862i
\(839\) 27.5643 0.951626 0.475813 0.879546i \(-0.342154\pi\)
0.475813 + 0.879546i \(0.342154\pi\)
\(840\) 0 0
\(841\) −20.5111 −0.707278
\(842\) −3.67995 + 0.986040i −0.126819 + 0.0339812i
\(843\) 0 0
\(844\) 11.8374 6.83434i 0.407461 0.235248i
\(845\) 0.292567 0.574942i 0.0100646 0.0197786i
\(846\) 0 0
\(847\) 13.5952 52.1908i 0.467138 1.79330i
\(848\) −4.42978 + 4.42978i −0.152119 + 0.152119i
\(849\) 0 0
\(850\) −0.157913 + 0.114985i −0.00541638 + 0.00394395i
\(851\) −30.4982 + 17.6081i −1.04546 + 0.603599i
\(852\) 0 0
\(853\) −20.4305 20.4305i −0.699527 0.699527i 0.264781 0.964308i \(-0.414700\pi\)
−0.964308 + 0.264781i \(0.914700\pi\)
\(854\) −0.00548226 0.786404i −0.000187599 0.0269102i
\(855\) 0 0
\(856\) −5.30130 + 9.18211i −0.181195 + 0.313838i
\(857\) 0.867998 3.23941i 0.0296503 0.110656i −0.949515 0.313722i \(-0.898424\pi\)
0.979165 + 0.203066i \(0.0650906\pi\)
\(858\) 0 0
\(859\) 32.2014 + 18.5915i 1.09870 + 0.634332i 0.935878 0.352324i \(-0.114608\pi\)
0.162818 + 0.986656i \(0.447942\pi\)
\(860\) −27.4961 24.7314i −0.937608 0.843333i
\(861\) 0 0
\(862\) 2.54671 2.54671i 0.0867413 0.0867413i
\(863\) −9.95503 37.1527i −0.338873 1.26469i −0.899609 0.436697i \(-0.856148\pi\)
0.560735 0.827995i \(-0.310518\pi\)
\(864\) 0 0
\(865\) −10.2607 + 48.3982i −0.348876 + 1.64559i
\(866\) −4.03907 2.33196i −0.137253 0.0792432i
\(867\) 0 0
\(868\) 11.0857 + 2.88774i 0.376274 + 0.0980162i
\(869\) 3.24020 0.109916
\(870\) 0 0
\(871\) 13.0725 + 22.6423i 0.442946 + 0.767205i
\(872\) 1.58367 5.91035i 0.0536299 0.200150i
\(873\) 0 0
\(874\) 3.32761i 0.112558i
\(875\) −12.2620 26.9192i −0.414533 0.910035i
\(876\) 0 0
\(877\) −6.32325 23.5987i −0.213521 0.796871i −0.986682 0.162661i \(-0.947992\pi\)
0.773161 0.634210i \(-0.218674\pi\)
\(878\) 1.34711 + 0.360956i 0.0454627 + 0.0121817i
\(879\) 0 0
\(880\) −22.0580 + 43.3477i −0.743577 + 1.46125i
\(881\) 13.5509i 0.456542i −0.973598 0.228271i \(-0.926693\pi\)
0.973598 0.228271i \(-0.0733073\pi\)
\(882\) 0 0
\(883\) 32.5237 + 32.5237i 1.09451 + 1.09451i 0.995041 + 0.0994691i \(0.0317144\pi\)
0.0994691 + 0.995041i \(0.468286\pi\)
\(884\) −1.00663 + 1.74353i −0.0338566 + 0.0586413i
\(885\) 0 0
\(886\) 2.07864 + 3.60031i 0.0698334 + 0.120955i
\(887\) 36.4202 9.75876i 1.22287 0.327667i 0.411070 0.911604i \(-0.365155\pi\)
0.811799 + 0.583937i \(0.198488\pi\)
\(888\) 0 0
\(889\) 3.79502 6.68028i 0.127281 0.224049i
\(890\) −2.63596 + 2.93063i −0.0883576 + 0.0982350i
\(891\) 0 0
\(892\) −3.66415 0.981806i −0.122685 0.0328733i
\(893\) 55.7967 + 14.9507i 1.86716 + 0.500305i
\(894\) 0 0
\(895\) −0.132311 2.49948i −0.00442268 0.0835484i
\(896\) −5.85542 9.98055i −0.195616 0.333427i
\(897\) 0 0
\(898\) −3.57434 + 0.957742i −0.119277 + 0.0319603i
\(899\) 3.18509 + 5.51673i 0.106229 + 0.183993i
\(900\) 0 0
\(901\) −0.224986 + 0.389687i −0.00749536 + 0.0129823i
\(902\) −4.84625 4.84625i −0.161363 0.161363i
\(903\) 0 0
\(904\) 4.86438i 0.161787i
\(905\) −26.1141 13.2885i −0.868064 0.441725i
\(906\) 0 0
\(907\) 5.14802 + 1.37941i 0.170937 + 0.0458025i 0.343272 0.939236i \(-0.388465\pi\)
−0.172335 + 0.985038i \(0.555131\pi\)
\(908\) 4.17374 + 15.5766i 0.138510 + 0.516928i
\(909\) 0 0
\(910\) 2.26029 + 2.00470i 0.0749280 + 0.0664550i
\(911\) 14.3597i 0.475757i 0.971295 + 0.237879i \(0.0764520\pi\)
−0.971295 + 0.237879i \(0.923548\pi\)
\(912\) 0 0
\(913\) −6.41032 + 23.9237i −0.212151 + 0.791757i
\(914\) −2.42787 4.20519i −0.0803067 0.139095i
\(915\) 0 0
\(916\) 26.2351 0.866832
\(917\) 25.1075 + 6.54027i 0.829121 + 0.215979i
\(918\) 0 0
\(919\) −2.41391 1.39367i −0.0796276 0.0459730i 0.459658 0.888096i \(-0.347972\pi\)
−0.539285 + 0.842123i \(0.681305\pi\)
\(920\) 3.14491 + 4.83716i 0.103685 + 0.159476i
\(921\) 0 0
\(922\) 1.44930 + 5.40885i 0.0477300 + 0.178131i
\(923\) −21.0415 + 21.0415i −0.692590 + 0.692590i
\(924\) 0 0
\(925\) 23.9161 29.5976i 0.786358 0.973164i
\(926\) −1.12868 0.651644i −0.0370907 0.0214143i
\(927\) 0 0
\(928\) 1.25115 4.66934i 0.0410709 0.153279i
\(929\) −3.46522 + 6.00194i −0.113690 + 0.196917i −0.917255 0.398299i \(-0.869600\pi\)
0.803565 + 0.595217i \(0.202934\pi\)
\(930\) 0 0
\(931\) 35.9294 0.500974i 1.17754 0.0164187i
\(932\) 11.4043 + 11.4043i 0.373560 + 0.373560i
\(933\) 0 0
\(934\) −1.70392 + 0.983761i −0.0557541 + 0.0321896i
\(935\) −0.724534 + 3.41751i −0.0236948 + 0.111764i
\(936\) 0 0
\(937\) −34.0816 + 34.0816i −1.11340 + 1.11340i −0.120710 + 0.992688i \(0.538517\pi\)
−0.992688 + 0.120710i \(0.961483\pi\)
\(938\) −2.56290 + 0.705912i −0.0836816 + 0.0230488i
\(939\) 0 0
\(940\) 47.3843 15.4237i 1.54551 0.503064i
\(941\) 34.7876 20.0846i 1.13404 0.654741i 0.189095 0.981959i \(-0.439445\pi\)
0.944949 + 0.327218i \(0.106111\pi\)
\(942\) 0 0
\(943\) 39.0325 10.4587i 1.27107 0.340583i
\(944\) 12.6347 0.411224
\(945\) 0 0
\(946\) 6.55430 0.213099
\(947\) −6.91415 + 1.85264i −0.224680 + 0.0602027i −0.369402 0.929270i \(-0.620438\pi\)
0.144723 + 0.989472i \(0.453771\pi\)
\(948\) 0 0
\(949\) 25.8856 14.9451i 0.840284 0.485138i
\(950\) −1.29209 3.35544i −0.0419209 0.108865i
\(951\) 0 0
\(952\) −0.292946 0.288890i −0.00949444 0.00936298i
\(953\) 22.1319 22.1319i 0.716922 0.716922i −0.251052 0.967974i \(-0.580776\pi\)
0.967974 + 0.251052i \(0.0807764\pi\)
\(954\) 0 0
\(955\) −6.54560 10.0677i −0.211811 0.325784i
\(956\) 14.4243 8.32788i 0.466516 0.269343i
\(957\) 0 0
\(958\) 2.69464 + 2.69464i 0.0870600 + 0.0870600i
\(959\) −0.0319926 4.58919i −0.00103310 0.148193i
\(960\) 0 0
\(961\) 13.1099 22.7070i 0.422899 0.732483i
\(962\) −1.00591 + 3.75410i −0.0324318 + 0.121037i
\(963\) 0 0
\(964\) −0.421666 0.243449i −0.0135809 0.00784096i
\(965\) 21.9806 24.4378i 0.707581 0.786680i
\(966\) 0 0
\(967\) 29.9553 29.9553i 0.963297 0.963297i −0.0360528 0.999350i \(-0.511478\pi\)
0.999350 + 0.0360528i \(0.0114785\pi\)
\(968\) −2.94192 10.9794i −0.0945568 0.352891i
\(969\) 0 0
\(970\) −3.06426 + 1.99225i −0.0983876 + 0.0639673i
\(971\) −25.0340 14.4534i −0.803378 0.463830i 0.0412730 0.999148i \(-0.486859\pi\)
−0.844651 + 0.535317i \(0.820192\pi\)
\(972\) 0 0
\(973\) 1.77741 + 6.45312i 0.0569813 + 0.206877i
\(974\) 2.13758 0.0684924
\(975\) 0 0
\(976\) 4.11902 + 7.13436i 0.131847 + 0.228365i
\(977\) 13.9144 51.9291i 0.445160 1.66136i −0.270355 0.962761i \(-0.587141\pi\)
0.715515 0.698598i \(-0.246192\pi\)
\(978\) 0 0
\(979\) 70.4929i 2.25296i
\(980\) 25.7499 17.2570i 0.822551 0.551253i
\(981\) 0 0
\(982\) 0.0459173 + 0.171366i 0.00146528 + 0.00546850i
\(983\) −20.9382 5.61039i −0.667826 0.178944i −0.0910508 0.995846i \(-0.529023\pi\)
−0.576775 + 0.816903i \(0.695689\pi\)
\(984\) 0 0
\(985\) 8.09653 + 24.8740i 0.257977 + 0.792551i
\(986\) 0.113828i 0.00362503i
\(987\) 0 0
\(988\) −26.2038 26.2038i −0.833655 0.833655i
\(989\) −19.3223 + 33.4672i −0.614412 + 1.06419i
\(990\) 0 0
\(991\) −7.37279 12.7700i −0.234204 0.405654i 0.724837 0.688921i \(-0.241915\pi\)
−0.959041 + 0.283267i \(0.908582\pi\)
\(992\) 3.50391 0.938871i 0.111249 0.0298092i
\(993\) 0 0
\(994\) −1.53103 2.60964i −0.0485614 0.0827728i
\(995\) 47.3830 2.50825i 1.50214 0.0795167i
\(996\) 0 0
\(997\) −14.8255 3.97247i −0.469527 0.125809i 0.0162947 0.999867i \(-0.494813\pi\)
−0.485822 + 0.874058i \(0.661480\pi\)
\(998\) −1.96697 0.527047i −0.0622632 0.0166834i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.ce.a.233.8 yes 64
3.2 odd 2 inner 315.2.ce.a.233.9 yes 64
5.2 odd 4 inner 315.2.ce.a.107.8 yes 64
7.4 even 3 inner 315.2.ce.a.53.9 yes 64
15.2 even 4 inner 315.2.ce.a.107.9 yes 64
21.11 odd 6 inner 315.2.ce.a.53.8 64
35.32 odd 12 inner 315.2.ce.a.242.9 yes 64
105.32 even 12 inner 315.2.ce.a.242.8 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.ce.a.53.8 64 21.11 odd 6 inner
315.2.ce.a.53.9 yes 64 7.4 even 3 inner
315.2.ce.a.107.8 yes 64 5.2 odd 4 inner
315.2.ce.a.107.9 yes 64 15.2 even 4 inner
315.2.ce.a.233.8 yes 64 1.1 even 1 trivial
315.2.ce.a.233.9 yes 64 3.2 odd 2 inner
315.2.ce.a.242.8 yes 64 105.32 even 12 inner
315.2.ce.a.242.9 yes 64 35.32 odd 12 inner