Properties

Label 315.2.ce.a.107.9
Level $315$
Weight $2$
Character 315.107
Analytic conductor $2.515$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [315,2,Mod(53,315)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("315.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(315, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.ce (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 107.9
Character \(\chi\) \(=\) 315.107
Dual form 315.2.ce.a.53.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0362581 + 0.135317i) q^{2} +(1.71505 - 0.990187i) q^{4} +(1.87468 + 1.21884i) q^{5} +(0.702570 + 2.55076i) q^{7} +(0.394292 + 0.394292i) q^{8} +(-0.0969571 + 0.297870i) q^{10} +(-4.85164 + 2.80110i) q^{11} +(2.57764 - 2.57764i) q^{13} +(-0.319688 + 0.187556i) q^{14} +(1.94132 - 3.36246i) q^{16} +(-0.269375 - 0.0721789i) q^{17} +(-4.44554 - 2.56664i) q^{19} +(4.42206 + 0.234084i) q^{20} +(-0.554948 - 0.554948i) q^{22} +(4.46964 - 1.19764i) q^{23} +(2.02887 + 4.56987i) q^{25} +(0.442260 + 0.255339i) q^{26} +(3.73068 + 3.67902i) q^{28} -2.91358 q^{29} +(-1.09319 - 1.89346i) q^{31} +(1.60261 + 0.429419i) q^{32} -0.0390682i q^{34} +(-1.79187 + 5.63819i) q^{35} +(7.35120 - 1.96975i) q^{37} +(0.186123 - 0.694620i) q^{38} +(0.258595 + 1.21975i) q^{40} -8.73280i q^{41} +(-5.90533 + 5.90533i) q^{43} +(-5.54722 + 9.60806i) q^{44} +(0.324122 + 0.561396i) q^{46} +(-2.91250 - 10.8696i) q^{47} +(-6.01279 + 3.58418i) q^{49} +(-0.544818 + 0.440237i) q^{50} +(1.86845 - 6.97315i) q^{52} +(0.417606 - 1.55853i) q^{53} +(-12.5094 - 0.662190i) q^{55} +(-0.728729 + 1.28276i) q^{56} +(-0.105641 - 0.394257i) q^{58} +(1.62708 + 2.81818i) q^{59} +(-1.06088 + 1.83751i) q^{61} +(0.216580 - 0.216580i) q^{62} -7.53283i q^{64} +(7.97399 - 1.69054i) q^{65} +(-1.85630 + 6.92780i) q^{67} +(-0.533464 + 0.142941i) q^{68} +(-0.827914 - 0.0380404i) q^{70} -8.16308i q^{71} +(-7.92016 - 2.12220i) q^{73} +(0.533082 + 0.923325i) q^{74} -10.1658 q^{76} +(-10.5535 - 10.4074i) q^{77} +(-0.500892 - 0.289190i) q^{79} +(7.73764 - 3.93740i) q^{80} +(1.18170 - 0.316635i) q^{82} +(-3.12616 - 3.12616i) q^{83} +(-0.417019 - 0.463637i) q^{85} +(-1.01321 - 0.584977i) q^{86} +(-3.01741 - 0.808514i) q^{88} +(-6.29155 + 10.8973i) q^{89} +(8.38594 + 4.76399i) q^{91} +(6.47980 - 6.47980i) q^{92} +(1.36524 - 0.788224i) q^{94} +(-5.20568 - 10.2300i) q^{95} +(-8.25038 - 8.25038i) q^{97} +(-0.703014 - 0.683679i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 8 q^{7} + 8 q^{10} + 32 q^{16} - 48 q^{22} - 16 q^{25} + 88 q^{28} + 32 q^{31} - 16 q^{37} - 40 q^{40} - 16 q^{43} - 80 q^{52} - 32 q^{55} - 88 q^{58} + 48 q^{61} - 32 q^{67} - 112 q^{70} - 88 q^{73}+ \cdots + 208 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0362581 + 0.135317i 0.0256384 + 0.0956837i 0.977559 0.210660i \(-0.0675611\pi\)
−0.951921 + 0.306343i \(0.900894\pi\)
\(3\) 0 0
\(4\) 1.71505 0.990187i 0.857527 0.495094i
\(5\) 1.87468 + 1.21884i 0.838384 + 0.545080i
\(6\) 0 0
\(7\) 0.702570 + 2.55076i 0.265546 + 0.964098i
\(8\) 0.394292 + 0.394292i 0.139403 + 0.139403i
\(9\) 0 0
\(10\) −0.0969571 + 0.297870i −0.0306605 + 0.0941947i
\(11\) −4.85164 + 2.80110i −1.46282 + 0.844562i −0.999141 0.0414391i \(-0.986806\pi\)
−0.463683 + 0.886001i \(0.653472\pi\)
\(12\) 0 0
\(13\) 2.57764 2.57764i 0.714910 0.714910i −0.252648 0.967558i \(-0.581302\pi\)
0.967558 + 0.252648i \(0.0813016\pi\)
\(14\) −0.319688 + 0.187556i −0.0854403 + 0.0501264i
\(15\) 0 0
\(16\) 1.94132 3.36246i 0.485329 0.840615i
\(17\) −0.269375 0.0721789i −0.0653331 0.0175059i 0.226004 0.974126i \(-0.427434\pi\)
−0.291338 + 0.956620i \(0.594100\pi\)
\(18\) 0 0
\(19\) −4.44554 2.56664i −1.01988 0.588827i −0.105809 0.994386i \(-0.533743\pi\)
−0.914069 + 0.405560i \(0.867077\pi\)
\(20\) 4.42206 + 0.234084i 0.988803 + 0.0523428i
\(21\) 0 0
\(22\) −0.554948 0.554948i −0.118315 0.118315i
\(23\) 4.46964 1.19764i 0.931985 0.249725i 0.239284 0.970950i \(-0.423087\pi\)
0.692701 + 0.721225i \(0.256421\pi\)
\(24\) 0 0
\(25\) 2.02887 + 4.56987i 0.405775 + 0.913973i
\(26\) 0.442260 + 0.255339i 0.0867344 + 0.0500761i
\(27\) 0 0
\(28\) 3.73068 + 3.67902i 0.705032 + 0.695270i
\(29\) −2.91358 −0.541038 −0.270519 0.962715i \(-0.587195\pi\)
−0.270519 + 0.962715i \(0.587195\pi\)
\(30\) 0 0
\(31\) −1.09319 1.89346i −0.196342 0.340075i 0.750998 0.660305i \(-0.229573\pi\)
−0.947340 + 0.320230i \(0.896240\pi\)
\(32\) 1.60261 + 0.429419i 0.283305 + 0.0759113i
\(33\) 0 0
\(34\) 0.0390682i 0.00670014i
\(35\) −1.79187 + 5.63819i −0.302881 + 0.953028i
\(36\) 0 0
\(37\) 7.35120 1.96975i 1.20853 0.323825i 0.402345 0.915488i \(-0.368195\pi\)
0.806185 + 0.591664i \(0.201529\pi\)
\(38\) 0.186123 0.694620i 0.0301931 0.112682i
\(39\) 0 0
\(40\) 0.258595 + 1.21975i 0.0408875 + 0.192860i
\(41\) 8.73280i 1.36383i −0.731429 0.681917i \(-0.761146\pi\)
0.731429 0.681917i \(-0.238854\pi\)
\(42\) 0 0
\(43\) −5.90533 + 5.90533i −0.900554 + 0.900554i −0.995484 0.0949298i \(-0.969737\pi\)
0.0949298 + 0.995484i \(0.469737\pi\)
\(44\) −5.54722 + 9.60806i −0.836275 + 1.44847i
\(45\) 0 0
\(46\) 0.324122 + 0.561396i 0.0477892 + 0.0827733i
\(47\) −2.91250 10.8696i −0.424832 1.58549i −0.764289 0.644873i \(-0.776910\pi\)
0.339457 0.940621i \(-0.389757\pi\)
\(48\) 0 0
\(49\) −6.01279 + 3.58418i −0.858970 + 0.512025i
\(50\) −0.544818 + 0.440237i −0.0770490 + 0.0622589i
\(51\) 0 0
\(52\) 1.86845 6.97315i 0.259107 0.967002i
\(53\) 0.417606 1.55853i 0.0573627 0.214080i −0.931295 0.364265i \(-0.881320\pi\)
0.988658 + 0.150185i \(0.0479869\pi\)
\(54\) 0 0
\(55\) −12.5094 0.662190i −1.68676 0.0892896i
\(56\) −0.728729 + 1.28276i −0.0973805 + 0.171417i
\(57\) 0 0
\(58\) −0.105641 0.394257i −0.0138713 0.0517685i
\(59\) 1.62708 + 2.81818i 0.211827 + 0.366896i 0.952286 0.305206i \(-0.0987252\pi\)
−0.740459 + 0.672101i \(0.765392\pi\)
\(60\) 0 0
\(61\) −1.06088 + 1.83751i −0.135832 + 0.235269i −0.925915 0.377732i \(-0.876704\pi\)
0.790083 + 0.613000i \(0.210038\pi\)
\(62\) 0.216580 0.216580i 0.0275057 0.0275057i
\(63\) 0 0
\(64\) 7.53283i 0.941604i
\(65\) 7.97399 1.69054i 0.989052 0.209686i
\(66\) 0 0
\(67\) −1.85630 + 6.92780i −0.226783 + 0.846366i 0.754899 + 0.655841i \(0.227686\pi\)
−0.981682 + 0.190525i \(0.938981\pi\)
\(68\) −0.533464 + 0.142941i −0.0646920 + 0.0173342i
\(69\) 0 0
\(70\) −0.827914 0.0380404i −0.0989547 0.00454670i
\(71\) 8.16308i 0.968779i −0.874852 0.484390i \(-0.839042\pi\)
0.874852 0.484390i \(-0.160958\pi\)
\(72\) 0 0
\(73\) −7.92016 2.12220i −0.926985 0.248385i −0.236416 0.971652i \(-0.575973\pi\)
−0.690569 + 0.723267i \(0.742640\pi\)
\(74\) 0.533082 + 0.923325i 0.0619695 + 0.107334i
\(75\) 0 0
\(76\) −10.1658 −1.16610
\(77\) −10.5535 10.4074i −1.20269 1.18604i
\(78\) 0 0
\(79\) −0.500892 0.289190i −0.0563548 0.0325364i 0.471558 0.881835i \(-0.343692\pi\)
−0.527913 + 0.849299i \(0.677025\pi\)
\(80\) 7.73764 3.93740i 0.865095 0.440214i
\(81\) 0 0
\(82\) 1.18170 0.316635i 0.130497 0.0349665i
\(83\) −3.12616 3.12616i −0.343140 0.343140i 0.514406 0.857547i \(-0.328012\pi\)
−0.857547 + 0.514406i \(0.828012\pi\)
\(84\) 0 0
\(85\) −0.417019 0.463637i −0.0452321 0.0502885i
\(86\) −1.01321 0.584977i −0.109257 0.0630796i
\(87\) 0 0
\(88\) −3.01741 0.808514i −0.321657 0.0861879i
\(89\) −6.29155 + 10.8973i −0.666903 + 1.15511i 0.311863 + 0.950127i \(0.399047\pi\)
−0.978766 + 0.204982i \(0.934286\pi\)
\(90\) 0 0
\(91\) 8.38594 + 4.76399i 0.879085 + 0.499402i
\(92\) 6.47980 6.47980i 0.675566 0.675566i
\(93\) 0 0
\(94\) 1.36524 0.788224i 0.140814 0.0812991i
\(95\) −5.20568 10.2300i −0.534091 1.04958i
\(96\) 0 0
\(97\) −8.25038 8.25038i −0.837699 0.837699i 0.150857 0.988556i \(-0.451797\pi\)
−0.988556 + 0.150857i \(0.951797\pi\)
\(98\) −0.703014 0.683679i −0.0710151 0.0690620i
\(99\) 0 0
\(100\) 8.00465 + 5.82860i 0.800465 + 0.582860i
\(101\) 4.26270 2.46107i 0.424155 0.244886i −0.272698 0.962100i \(-0.587916\pi\)
0.696853 + 0.717214i \(0.254583\pi\)
\(102\) 0 0
\(103\) 4.06023 + 15.1530i 0.400066 + 1.49307i 0.812977 + 0.582295i \(0.197845\pi\)
−0.412911 + 0.910771i \(0.635488\pi\)
\(104\) 2.03269 0.199322
\(105\) 0 0
\(106\) 0.226037 0.0219547
\(107\) 4.92124 + 18.3663i 0.475755 + 1.77554i 0.618504 + 0.785782i \(0.287739\pi\)
−0.142749 + 0.989759i \(0.545594\pi\)
\(108\) 0 0
\(109\) −9.50313 + 5.48663i −0.910234 + 0.525524i −0.880507 0.474034i \(-0.842797\pi\)
−0.0297279 + 0.999558i \(0.509464\pi\)
\(110\) −0.363961 1.71674i −0.0347023 0.163685i
\(111\) 0 0
\(112\) 9.94075 + 2.58948i 0.939312 + 0.244683i
\(113\) 6.16850 + 6.16850i 0.580283 + 0.580283i 0.934981 0.354698i \(-0.115416\pi\)
−0.354698 + 0.934981i \(0.615416\pi\)
\(114\) 0 0
\(115\) 9.83889 + 3.20257i 0.917481 + 0.298642i
\(116\) −4.99695 + 2.88499i −0.463955 + 0.267864i
\(117\) 0 0
\(118\) −0.322353 + 0.322353i −0.0296750 + 0.0296750i
\(119\) −0.00514358 0.737823i −0.000471512 0.0676361i
\(120\) 0 0
\(121\) 10.1923 17.6535i 0.926570 1.60487i
\(122\) −0.287112 0.0769314i −0.0259939 0.00696504i
\(123\) 0 0
\(124\) −3.74975 2.16492i −0.336738 0.194416i
\(125\) −1.76642 + 11.0399i −0.157994 + 0.987440i
\(126\) 0 0
\(127\) 2.05336 + 2.05336i 0.182207 + 0.182207i 0.792317 0.610110i \(-0.208875\pi\)
−0.610110 + 0.792317i \(0.708875\pi\)
\(128\) 4.22455 1.13196i 0.373401 0.100053i
\(129\) 0 0
\(130\) 0.517881 + 1.01772i 0.0454212 + 0.0892602i
\(131\) −8.49260 4.90320i −0.742002 0.428395i 0.0807949 0.996731i \(-0.474254\pi\)
−0.822797 + 0.568336i \(0.807587\pi\)
\(132\) 0 0
\(133\) 3.42358 13.1428i 0.296862 1.13962i
\(134\) −1.00476 −0.0867978
\(135\) 0 0
\(136\) −0.0777530 0.134672i −0.00666727 0.0115480i
\(137\) −1.67549 0.448946i −0.143147 0.0383560i 0.186534 0.982448i \(-0.440274\pi\)
−0.329681 + 0.944092i \(0.606941\pi\)
\(138\) 0 0
\(139\) 2.52988i 0.214581i −0.994228 0.107291i \(-0.965782\pi\)
0.994228 0.107291i \(-0.0342175\pi\)
\(140\) 2.50971 + 11.4441i 0.212109 + 0.967202i
\(141\) 0 0
\(142\) 1.10461 0.295978i 0.0926964 0.0248379i
\(143\) −5.28557 + 19.7260i −0.442002 + 1.64957i
\(144\) 0 0
\(145\) −5.46204 3.55118i −0.453598 0.294909i
\(146\) 1.14868i 0.0950656i
\(147\) 0 0
\(148\) 10.6573 10.6573i 0.876024 0.876024i
\(149\) −0.245378 + 0.425006i −0.0201021 + 0.0348179i −0.875901 0.482490i \(-0.839732\pi\)
0.855799 + 0.517308i \(0.173066\pi\)
\(150\) 0 0
\(151\) 2.23973 + 3.87932i 0.182266 + 0.315695i 0.942652 0.333777i \(-0.108323\pi\)
−0.760386 + 0.649472i \(0.774990\pi\)
\(152\) −0.740839 2.76485i −0.0600900 0.224259i
\(153\) 0 0
\(154\) 1.02565 1.80543i 0.0826494 0.145486i
\(155\) 0.258434 4.88205i 0.0207579 0.392135i
\(156\) 0 0
\(157\) 1.29775 4.84326i 0.103572 0.386534i −0.894608 0.446853i \(-0.852545\pi\)
0.998179 + 0.0603181i \(0.0192115\pi\)
\(158\) 0.0209710 0.0782649i 0.00166836 0.00622642i
\(159\) 0 0
\(160\) 2.48100 + 2.75835i 0.196140 + 0.218067i
\(161\) 6.19512 + 10.5596i 0.488244 + 0.832211i
\(162\) 0 0
\(163\) 0.995538 + 3.71540i 0.0779766 + 0.291013i 0.993892 0.110359i \(-0.0352002\pi\)
−0.915915 + 0.401372i \(0.868534\pi\)
\(164\) −8.64711 14.9772i −0.675226 1.16953i
\(165\) 0 0
\(166\) 0.309674 0.536372i 0.0240354 0.0416305i
\(167\) 6.52767 6.52767i 0.505126 0.505126i −0.407900 0.913026i \(-0.633739\pi\)
0.913026 + 0.407900i \(0.133739\pi\)
\(168\) 0 0
\(169\) 0.288498i 0.0221921i
\(170\) 0.0476177 0.0732405i 0.00365211 0.00561729i
\(171\) 0 0
\(172\) −4.28058 + 15.9753i −0.326391 + 1.21811i
\(173\) 21.3715 5.72648i 1.62485 0.435376i 0.672426 0.740164i \(-0.265252\pi\)
0.952420 + 0.304788i \(0.0985855\pi\)
\(174\) 0 0
\(175\) −10.2312 + 8.38583i −0.773408 + 0.633909i
\(176\) 21.7512i 1.63956i
\(177\) 0 0
\(178\) −1.70271 0.456240i −0.127624 0.0341966i
\(179\) 0.559683 + 0.969400i 0.0418327 + 0.0724564i 0.886184 0.463334i \(-0.153347\pi\)
−0.844351 + 0.535790i \(0.820014\pi\)
\(180\) 0 0
\(181\) 13.1037 0.973990 0.486995 0.873405i \(-0.338093\pi\)
0.486995 + 0.873405i \(0.338093\pi\)
\(182\) −0.340591 + 1.30750i −0.0252463 + 0.0969180i
\(183\) 0 0
\(184\) 2.23457 + 1.29013i 0.164734 + 0.0951094i
\(185\) 16.1820 + 5.26726i 1.18972 + 0.387257i
\(186\) 0 0
\(187\) 1.50909 0.404360i 0.110356 0.0295697i
\(188\) −15.7580 15.7580i −1.14927 1.14927i
\(189\) 0 0
\(190\) 1.19555 1.07534i 0.0867343 0.0780133i
\(191\) −4.65087 2.68518i −0.336525 0.194293i 0.322209 0.946669i \(-0.395575\pi\)
−0.658734 + 0.752375i \(0.728908\pi\)
\(192\) 0 0
\(193\) 14.1985 + 3.80447i 1.02203 + 0.273852i 0.730647 0.682756i \(-0.239219\pi\)
0.291381 + 0.956607i \(0.405885\pi\)
\(194\) 0.817275 1.41556i 0.0586769 0.101631i
\(195\) 0 0
\(196\) −6.76326 + 12.1009i −0.483090 + 0.864347i
\(197\) −8.27206 + 8.27206i −0.589360 + 0.589360i −0.937458 0.348098i \(-0.886828\pi\)
0.348098 + 0.937458i \(0.386828\pi\)
\(198\) 0 0
\(199\) 18.3771 10.6100i 1.30272 0.752123i 0.321847 0.946792i \(-0.395696\pi\)
0.980869 + 0.194669i \(0.0623632\pi\)
\(200\) −1.00189 + 2.60183i −0.0708446 + 0.183977i
\(201\) 0 0
\(202\) 0.487583 + 0.487583i 0.0343063 + 0.0343063i
\(203\) −2.04699 7.43185i −0.143671 0.521614i
\(204\) 0 0
\(205\) 10.6439 16.3712i 0.743399 1.14342i
\(206\) −1.90324 + 1.09884i −0.132605 + 0.0765596i
\(207\) 0 0
\(208\) −3.66320 13.6712i −0.253997 0.947930i
\(209\) 28.7576 1.98920
\(210\) 0 0
\(211\) −6.90207 −0.475158 −0.237579 0.971368i \(-0.576354\pi\)
−0.237579 + 0.971368i \(0.576354\pi\)
\(212\) −0.827017 3.08647i −0.0567998 0.211980i
\(213\) 0 0
\(214\) −2.30685 + 1.33186i −0.157693 + 0.0910440i
\(215\) −18.2683 + 3.87299i −1.24588 + 0.264136i
\(216\) 0 0
\(217\) 4.06172 4.11875i 0.275727 0.279599i
\(218\) −1.08700 1.08700i −0.0736211 0.0736211i
\(219\) 0 0
\(220\) −22.1099 + 11.2509i −1.49065 + 0.758537i
\(221\) −0.880405 + 0.508302i −0.0592224 + 0.0341921i
\(222\) 0 0
\(223\) 1.35446 1.35446i 0.0907015 0.0907015i −0.660300 0.751002i \(-0.729571\pi\)
0.751002 + 0.660300i \(0.229571\pi\)
\(224\) 0.0306011 + 4.38959i 0.00204462 + 0.293292i
\(225\) 0 0
\(226\) −0.611046 + 1.05836i −0.0406462 + 0.0704012i
\(227\) −7.86549 2.10755i −0.522051 0.139883i −0.0118356 0.999930i \(-0.503767\pi\)
−0.510215 + 0.860047i \(0.670434\pi\)
\(228\) 0 0
\(229\) 11.4727 + 6.62377i 0.758138 + 0.437711i 0.828627 0.559802i \(-0.189123\pi\)
−0.0704890 + 0.997513i \(0.522456\pi\)
\(230\) −0.0766237 + 1.44749i −0.00505242 + 0.0954447i
\(231\) 0 0
\(232\) −1.14880 1.14880i −0.0754225 0.0754225i
\(233\) 7.86648 2.10782i 0.515350 0.138088i 0.00823515 0.999966i \(-0.497379\pi\)
0.507115 + 0.861878i \(0.330712\pi\)
\(234\) 0 0
\(235\) 7.78826 23.9269i 0.508050 1.56082i
\(236\) 5.58105 + 3.22222i 0.363295 + 0.209749i
\(237\) 0 0
\(238\) 0.0996537 0.0274481i 0.00645959 0.00177920i
\(239\) −8.41041 −0.544024 −0.272012 0.962294i \(-0.587689\pi\)
−0.272012 + 0.962294i \(0.587689\pi\)
\(240\) 0 0
\(241\) 0.122931 + 0.212922i 0.00791866 + 0.0137155i 0.869958 0.493127i \(-0.164146\pi\)
−0.862039 + 0.506842i \(0.830813\pi\)
\(242\) 2.75838 + 0.739106i 0.177315 + 0.0475115i
\(243\) 0 0
\(244\) 4.20190i 0.268999i
\(245\) −15.6406 0.609413i −0.999242 0.0389339i
\(246\) 0 0
\(247\) −18.0749 + 4.84316i −1.15008 + 0.308163i
\(248\) 0.315540 1.17761i 0.0200368 0.0747783i
\(249\) 0 0
\(250\) −1.55794 + 0.161259i −0.0985327 + 0.0101989i
\(251\) 0.458108i 0.0289155i 0.999895 + 0.0144577i \(0.00460220\pi\)
−0.999895 + 0.0144577i \(0.995398\pi\)
\(252\) 0 0
\(253\) −18.3304 + 18.3304i −1.15242 + 1.15242i
\(254\) −0.203404 + 0.352307i −0.0127627 + 0.0221057i
\(255\) 0 0
\(256\) −7.22649 12.5166i −0.451655 0.782290i
\(257\) 6.46934 + 24.1439i 0.403546 + 1.50605i 0.806721 + 0.590932i \(0.201240\pi\)
−0.403175 + 0.915123i \(0.632093\pi\)
\(258\) 0 0
\(259\) 10.1891 + 17.3673i 0.633119 + 1.07915i
\(260\) 12.0019 10.7951i 0.744325 0.669485i
\(261\) 0 0
\(262\) 0.355562 1.32698i 0.0219667 0.0819809i
\(263\) −4.50748 + 16.8221i −0.277943 + 1.03730i 0.675901 + 0.736993i \(0.263755\pi\)
−0.953843 + 0.300304i \(0.902912\pi\)
\(264\) 0 0
\(265\) 2.68247 2.41275i 0.164783 0.148214i
\(266\) 1.90258 0.0132634i 0.116654 0.000813233i
\(267\) 0 0
\(268\) 3.67617 + 13.7196i 0.224558 + 0.838061i
\(269\) −7.44692 12.8984i −0.454047 0.786432i 0.544586 0.838705i \(-0.316687\pi\)
−0.998633 + 0.0522730i \(0.983353\pi\)
\(270\) 0 0
\(271\) −7.64716 + 13.2453i −0.464532 + 0.804593i −0.999180 0.0404815i \(-0.987111\pi\)
0.534648 + 0.845075i \(0.320444\pi\)
\(272\) −0.765641 + 0.765641i −0.0464238 + 0.0464238i
\(273\) 0 0
\(274\) 0.243001i 0.0146802i
\(275\) −22.6440 16.4883i −1.36548 0.994280i
\(276\) 0 0
\(277\) 2.67393 9.97926i 0.160661 0.599595i −0.837893 0.545835i \(-0.816213\pi\)
0.998554 0.0537606i \(-0.0171208\pi\)
\(278\) 0.342336 0.0917287i 0.0205319 0.00550152i
\(279\) 0 0
\(280\) −2.92962 + 1.51658i −0.175078 + 0.0906327i
\(281\) 23.6675i 1.41189i −0.708268 0.705943i \(-0.750523\pi\)
0.708268 0.705943i \(-0.249477\pi\)
\(282\) 0 0
\(283\) −7.04083 1.88659i −0.418534 0.112146i 0.0434049 0.999058i \(-0.486179\pi\)
−0.461939 + 0.886912i \(0.652846\pi\)
\(284\) −8.08298 14.0001i −0.479636 0.830755i
\(285\) 0 0
\(286\) −2.86092 −0.169170
\(287\) 22.2753 6.13540i 1.31487 0.362161i
\(288\) 0 0
\(289\) −14.6551 8.46111i −0.862063 0.497713i
\(290\) 0.282492 0.867867i 0.0165885 0.0509629i
\(291\) 0 0
\(292\) −15.6849 + 4.20275i −0.917889 + 0.245948i
\(293\) −10.0145 10.0145i −0.585052 0.585052i 0.351235 0.936287i \(-0.385762\pi\)
−0.936287 + 0.351235i \(0.885762\pi\)
\(294\) 0 0
\(295\) −0.384647 + 7.26633i −0.0223950 + 0.423062i
\(296\) 3.67518 + 2.12187i 0.213615 + 0.123331i
\(297\) 0 0
\(298\) −0.0664076 0.0177939i −0.00384689 0.00103077i
\(299\) 8.43407 14.6082i 0.487755 0.844816i
\(300\) 0 0
\(301\) −19.2120 10.9142i −1.10736 0.629084i
\(302\) −0.443731 + 0.443731i −0.0255338 + 0.0255338i
\(303\) 0 0
\(304\) −17.2604 + 9.96531i −0.989953 + 0.571550i
\(305\) −4.22844 + 2.15170i −0.242120 + 0.123206i
\(306\) 0 0
\(307\) −4.93300 4.93300i −0.281541 0.281541i 0.552182 0.833723i \(-0.313795\pi\)
−0.833723 + 0.552182i \(0.813795\pi\)
\(308\) −28.4052 7.39931i −1.61854 0.421615i
\(309\) 0 0
\(310\) 0.669995 0.142043i 0.0380532 0.00806752i
\(311\) 24.2000 13.9719i 1.37226 0.792272i 0.381044 0.924557i \(-0.375565\pi\)
0.991212 + 0.132284i \(0.0422312\pi\)
\(312\) 0 0
\(313\) −3.72690 13.9090i −0.210657 0.786182i −0.987650 0.156674i \(-0.949923\pi\)
0.776994 0.629509i \(-0.216744\pi\)
\(314\) 0.702431 0.0396405
\(315\) 0 0
\(316\) −1.14541 −0.0644343
\(317\) 3.13404 + 11.6964i 0.176025 + 0.656935i 0.996375 + 0.0850728i \(0.0271123\pi\)
−0.820349 + 0.571863i \(0.806221\pi\)
\(318\) 0 0
\(319\) 14.1356 8.16121i 0.791444 0.456940i
\(320\) 9.18129 14.1217i 0.513250 0.789426i
\(321\) 0 0
\(322\) −1.20427 + 1.22118i −0.0671113 + 0.0680536i
\(323\) 1.01226 + 1.01226i 0.0563238 + 0.0563238i
\(324\) 0 0
\(325\) 17.0092 + 6.54977i 0.943501 + 0.363316i
\(326\) −0.466661 + 0.269427i −0.0258460 + 0.0149222i
\(327\) 0 0
\(328\) 3.44328 3.44328i 0.190123 0.190123i
\(329\) 25.6796 15.0658i 1.41576 0.830602i
\(330\) 0 0
\(331\) −10.7503 + 18.6201i −0.590892 + 1.02345i 0.403221 + 0.915103i \(0.367891\pi\)
−0.994113 + 0.108352i \(0.965443\pi\)
\(332\) −8.45701 2.26605i −0.464139 0.124366i
\(333\) 0 0
\(334\) 1.11999 + 0.646625i 0.0612830 + 0.0353817i
\(335\) −11.9238 + 10.7249i −0.651469 + 0.585964i
\(336\) 0 0
\(337\) −8.10178 8.10178i −0.441332 0.441332i 0.451127 0.892460i \(-0.351022\pi\)
−0.892460 + 0.451127i \(0.851022\pi\)
\(338\) 0.0390387 0.0104604i 0.00212343 0.000568970i
\(339\) 0 0
\(340\) −1.17430 0.382236i −0.0636852 0.0207296i
\(341\) 10.6075 + 6.12424i 0.574428 + 0.331646i
\(342\) 0 0
\(343\) −13.3668 12.8191i −0.721739 0.692165i
\(344\) −4.65685 −0.251081
\(345\) 0 0
\(346\) 1.54978 + 2.68430i 0.0833169 + 0.144309i
\(347\) 19.9545 + 5.34680i 1.07121 + 0.287031i 0.750992 0.660311i \(-0.229576\pi\)
0.320222 + 0.947342i \(0.396242\pi\)
\(348\) 0 0
\(349\) 22.3959i 1.19882i 0.800441 + 0.599411i \(0.204599\pi\)
−0.800441 + 0.599411i \(0.795401\pi\)
\(350\) −1.50571 1.08041i −0.0804837 0.0577501i
\(351\) 0 0
\(352\) −8.97815 + 2.40569i −0.478537 + 0.128224i
\(353\) −8.75267 + 32.6654i −0.465857 + 1.73860i 0.188173 + 0.982136i \(0.439743\pi\)
−0.654031 + 0.756468i \(0.726923\pi\)
\(354\) 0 0
\(355\) 9.94946 15.3032i 0.528063 0.812209i
\(356\) 24.9192i 1.32072i
\(357\) 0 0
\(358\) −0.110883 + 0.110883i −0.00586037 + 0.00586037i
\(359\) 5.51983 9.56063i 0.291326 0.504591i −0.682798 0.730607i \(-0.739237\pi\)
0.974123 + 0.226017i \(0.0725703\pi\)
\(360\) 0 0
\(361\) 3.67525 + 6.36571i 0.193434 + 0.335038i
\(362\) 0.475116 + 1.77316i 0.0249715 + 0.0931950i
\(363\) 0 0
\(364\) 19.0996 0.133149i 1.00109 0.00697889i
\(365\) −12.2612 13.6318i −0.641780 0.713523i
\(366\) 0 0
\(367\) −0.998319 + 3.72578i −0.0521118 + 0.194484i −0.987074 0.160262i \(-0.948766\pi\)
0.934963 + 0.354746i \(0.115433\pi\)
\(368\) 4.64999 17.3540i 0.242397 0.904639i
\(369\) 0 0
\(370\) −0.126023 + 2.38068i −0.00655160 + 0.123766i
\(371\) 4.26884 0.0297593i 0.221627 0.00154503i
\(372\) 0 0
\(373\) 2.69962 + 10.0751i 0.139781 + 0.521669i 0.999932 + 0.0116307i \(0.00370227\pi\)
−0.860151 + 0.510039i \(0.829631\pi\)
\(374\) 0.109434 + 0.189545i 0.00565868 + 0.00980112i
\(375\) 0 0
\(376\) 3.13743 5.43418i 0.161800 0.280246i
\(377\) −7.51017 + 7.51017i −0.386793 + 0.386793i
\(378\) 0 0
\(379\) 19.1988i 0.986177i 0.869979 + 0.493089i \(0.164132\pi\)
−0.869979 + 0.493089i \(0.835868\pi\)
\(380\) −19.0577 12.3905i −0.977637 0.635617i
\(381\) 0 0
\(382\) 0.194720 0.726703i 0.00996272 0.0371814i
\(383\) −34.0476 + 9.12303i −1.73975 + 0.466165i −0.982392 0.186834i \(-0.940177\pi\)
−0.757359 + 0.652998i \(0.773511\pi\)
\(384\) 0 0
\(385\) −7.09961 32.3737i −0.361830 1.64991i
\(386\) 2.05924i 0.104813i
\(387\) 0 0
\(388\) −22.3193 5.98043i −1.13309 0.303610i
\(389\) 17.2123 + 29.8126i 0.872700 + 1.51156i 0.859192 + 0.511652i \(0.170966\pi\)
0.0135078 + 0.999909i \(0.495700\pi\)
\(390\) 0 0
\(391\) −1.29046 −0.0652611
\(392\) −3.78401 0.957584i −0.191121 0.0483653i
\(393\) 0 0
\(394\) −1.41928 0.819423i −0.0715024 0.0412819i
\(395\) −0.586539 1.15265i −0.0295120 0.0579959i
\(396\) 0 0
\(397\) 13.3522 3.57770i 0.670127 0.179560i 0.0923147 0.995730i \(-0.470573\pi\)
0.577812 + 0.816170i \(0.303907\pi\)
\(398\) 2.10203 + 2.10203i 0.105365 + 0.105365i
\(399\) 0 0
\(400\) 19.3047 + 2.04955i 0.965233 + 0.102477i
\(401\) −10.4832 6.05249i −0.523507 0.302247i 0.214862 0.976645i \(-0.431070\pi\)
−0.738368 + 0.674398i \(0.764403\pi\)
\(402\) 0 0
\(403\) −7.69850 2.06281i −0.383490 0.102756i
\(404\) 4.87385 8.44175i 0.242483 0.419993i
\(405\) 0 0
\(406\) 0.931438 0.546459i 0.0462265 0.0271203i
\(407\) −30.1479 + 30.1479i −1.49438 + 1.49438i
\(408\) 0 0
\(409\) 25.3797 14.6530i 1.25495 0.724544i 0.282860 0.959161i \(-0.408717\pi\)
0.972088 + 0.234617i \(0.0753836\pi\)
\(410\) 2.60124 + 0.846707i 0.128466 + 0.0418159i
\(411\) 0 0
\(412\) 21.9678 + 21.9678i 1.08228 + 1.08228i
\(413\) −6.04537 + 6.13025i −0.297473 + 0.301650i
\(414\) 0 0
\(415\) −2.05028 9.67083i −0.100644 0.474722i
\(416\) 5.23786 3.02408i 0.256807 0.148268i
\(417\) 0 0
\(418\) 1.04270 + 3.89140i 0.0509999 + 0.190334i
\(419\) −4.45393 −0.217589 −0.108794 0.994064i \(-0.534699\pi\)
−0.108794 + 0.994064i \(0.534699\pi\)
\(420\) 0 0
\(421\) 27.1950 1.32540 0.662701 0.748884i \(-0.269410\pi\)
0.662701 + 0.748884i \(0.269410\pi\)
\(422\) −0.250256 0.933969i −0.0121823 0.0454649i
\(423\) 0 0
\(424\) 0.779175 0.449857i 0.0378401 0.0218470i
\(425\) −0.216681 1.37745i −0.0105106 0.0668161i
\(426\) 0 0
\(427\) −5.43239 1.41509i −0.262892 0.0684810i
\(428\) 26.6263 + 26.6263i 1.28703 + 1.28703i
\(429\) 0 0
\(430\) −1.18646 2.33158i −0.0572160 0.112439i
\(431\) 22.2647 12.8545i 1.07245 0.619180i 0.143601 0.989636i \(-0.454132\pi\)
0.928850 + 0.370456i \(0.120799\pi\)
\(432\) 0 0
\(433\) 23.5411 23.5411i 1.13131 1.13131i 0.141353 0.989959i \(-0.454855\pi\)
0.989959 0.141353i \(-0.0451452\pi\)
\(434\) 0.704608 + 0.400282i 0.0338223 + 0.0192142i
\(435\) 0 0
\(436\) −10.8656 + 18.8198i −0.520367 + 0.901303i
\(437\) −22.9439 6.14780i −1.09756 0.294089i
\(438\) 0 0
\(439\) 8.62144 + 4.97759i 0.411479 + 0.237567i 0.691425 0.722448i \(-0.256983\pi\)
−0.279946 + 0.960016i \(0.590317\pi\)
\(440\) −4.67125 5.19344i −0.222693 0.247588i
\(441\) 0 0
\(442\) −0.100704 0.100704i −0.00478999 0.00478999i
\(443\) 28.6645 7.68062i 1.36189 0.364918i 0.497380 0.867533i \(-0.334295\pi\)
0.864510 + 0.502615i \(0.167629\pi\)
\(444\) 0 0
\(445\) −25.0767 + 12.7606i −1.18875 + 0.604909i
\(446\) 0.232393 + 0.134172i 0.0110041 + 0.00635322i
\(447\) 0 0
\(448\) 19.2145 5.29234i 0.907799 0.250040i
\(449\) 26.4145 1.24658 0.623290 0.781991i \(-0.285796\pi\)
0.623290 + 0.781991i \(0.285796\pi\)
\(450\) 0 0
\(451\) 24.4614 + 42.3684i 1.15184 + 1.99505i
\(452\) 16.6873 + 4.47134i 0.784903 + 0.210314i
\(453\) 0 0
\(454\) 1.14075i 0.0535381i
\(455\) 9.91445 + 19.1521i 0.464797 + 0.897862i
\(456\) 0 0
\(457\) −33.4803 + 8.97102i −1.56614 + 0.419646i −0.934602 0.355696i \(-0.884244\pi\)
−0.631540 + 0.775343i \(0.717577\pi\)
\(458\) −0.480331 + 1.79262i −0.0224444 + 0.0837637i
\(459\) 0 0
\(460\) 20.0454 4.24975i 0.934621 0.198146i
\(461\) 39.9716i 1.86166i 0.365449 + 0.930831i \(0.380915\pi\)
−0.365449 + 0.930831i \(0.619085\pi\)
\(462\) 0 0
\(463\) 6.57833 6.57833i 0.305721 0.305721i −0.537526 0.843247i \(-0.680641\pi\)
0.843247 + 0.537526i \(0.180641\pi\)
\(464\) −5.65618 + 9.79679i −0.262581 + 0.454804i
\(465\) 0 0
\(466\) 0.570448 + 0.988045i 0.0264255 + 0.0457703i
\(467\) −3.63502 13.5661i −0.168208 0.627763i −0.997609 0.0691084i \(-0.977985\pi\)
0.829401 0.558654i \(-0.188682\pi\)
\(468\) 0 0
\(469\) −18.9754 + 0.132283i −0.876201 + 0.00610826i
\(470\) 3.52011 + 0.186339i 0.162371 + 0.00859518i
\(471\) 0 0
\(472\) −0.469643 + 1.75273i −0.0216171 + 0.0806759i
\(473\) 12.1091 45.1919i 0.556779 2.07793i
\(474\) 0 0
\(475\) 2.70973 25.5229i 0.124331 1.17107i
\(476\) −0.739405 1.26031i −0.0338906 0.0577664i
\(477\) 0 0
\(478\) −0.304946 1.13807i −0.0139479 0.0520543i
\(479\) −13.6012 23.5580i −0.621454 1.07639i −0.989215 0.146470i \(-0.953209\pi\)
0.367761 0.929920i \(-0.380124\pi\)
\(480\) 0 0
\(481\) 13.8715 24.0261i 0.632484 1.09550i
\(482\) −0.0243548 + 0.0243548i −0.00110933 + 0.00110933i
\(483\) 0 0
\(484\) 40.3690i 1.83496i
\(485\) −5.41098 25.5227i −0.245700 1.15893i
\(486\) 0 0
\(487\) 3.94920 14.7386i 0.178955 0.667870i −0.816889 0.576795i \(-0.804303\pi\)
0.995844 0.0910748i \(-0.0290302\pi\)
\(488\) −1.14281 + 0.306216i −0.0517327 + 0.0138617i
\(489\) 0 0
\(490\) −0.484635 2.13854i −0.0218936 0.0966094i
\(491\) 1.26640i 0.0571518i 0.999592 + 0.0285759i \(0.00909723\pi\)
−0.999592 + 0.0285759i \(0.990903\pi\)
\(492\) 0 0
\(493\) 0.784846 + 0.210299i 0.0353477 + 0.00947138i
\(494\) −1.31073 2.27024i −0.0589723 0.102143i
\(495\) 0 0
\(496\) −8.48889 −0.381162
\(497\) 20.8221 5.73513i 0.933998 0.257256i
\(498\) 0 0
\(499\) −12.5885 7.26798i −0.563539 0.325359i 0.191026 0.981585i \(-0.438819\pi\)
−0.754565 + 0.656226i \(0.772152\pi\)
\(500\) 7.90207 + 20.6831i 0.353391 + 0.924979i
\(501\) 0 0
\(502\) −0.0619899 + 0.0166101i −0.00276674 + 0.000741347i
\(503\) 16.6937 + 16.6937i 0.744336 + 0.744336i 0.973409 0.229073i \(-0.0735694\pi\)
−0.229073 + 0.973409i \(0.573569\pi\)
\(504\) 0 0
\(505\) 10.9909 + 0.581807i 0.489087 + 0.0258901i
\(506\) −3.14505 1.81579i −0.139814 0.0807218i
\(507\) 0 0
\(508\) 5.55485 + 1.48842i 0.246456 + 0.0660378i
\(509\) −12.4710 + 21.6005i −0.552769 + 0.957424i 0.445304 + 0.895379i \(0.353096\pi\)
−0.998073 + 0.0620449i \(0.980238\pi\)
\(510\) 0 0
\(511\) −0.151232 21.6935i −0.00669009 0.959662i
\(512\) 7.61687 7.61687i 0.336621 0.336621i
\(513\) 0 0
\(514\) −3.03252 + 1.75083i −0.133759 + 0.0772256i
\(515\) −10.8574 + 33.3558i −0.478432 + 1.46983i
\(516\) 0 0
\(517\) 44.5772 + 44.5772i 1.96050 + 1.96050i
\(518\) −1.98066 + 2.00847i −0.0870250 + 0.0882469i
\(519\) 0 0
\(520\) 3.81065 + 2.47752i 0.167108 + 0.108646i
\(521\) −20.1930 + 11.6584i −0.884670 + 0.510765i −0.872195 0.489158i \(-0.837304\pi\)
−0.0124748 + 0.999922i \(0.503971\pi\)
\(522\) 0 0
\(523\) 7.50283 + 28.0009i 0.328076 + 1.22440i 0.911184 + 0.412001i \(0.135170\pi\)
−0.583108 + 0.812395i \(0.698164\pi\)
\(524\) −19.4204 −0.848382
\(525\) 0 0
\(526\) −2.43976 −0.106378
\(527\) 0.157810 + 0.588955i 0.00687431 + 0.0256553i
\(528\) 0 0
\(529\) −1.37521 + 0.793979i −0.0597918 + 0.0345208i
\(530\) 0.423749 + 0.275503i 0.0184065 + 0.0119671i
\(531\) 0 0
\(532\) −7.14218 25.9306i −0.309653 1.12423i
\(533\) −22.5101 22.5101i −0.975019 0.975019i
\(534\) 0 0
\(535\) −13.1598 + 40.4292i −0.568947 + 1.74791i
\(536\) −3.46350 + 1.99965i −0.149601 + 0.0863719i
\(537\) 0 0
\(538\) 1.47537 1.47537i 0.0636077 0.0636077i
\(539\) 19.1323 34.2315i 0.824085 1.47446i
\(540\) 0 0
\(541\) −1.50038 + 2.59873i −0.0645063 + 0.111728i −0.896475 0.443095i \(-0.853881\pi\)
0.831969 + 0.554823i \(0.187214\pi\)
\(542\) −2.06959 0.554544i −0.0888964 0.0238197i
\(543\) 0 0
\(544\) −0.400709 0.231350i −0.0171803 0.00991904i
\(545\) −24.5027 1.29706i −1.04958 0.0555600i
\(546\) 0 0
\(547\) −2.21247 2.21247i −0.0945983 0.0945983i 0.658224 0.752822i \(-0.271308\pi\)
−0.752822 + 0.658224i \(0.771308\pi\)
\(548\) −3.31810 + 0.889081i −0.141742 + 0.0379797i
\(549\) 0 0
\(550\) 1.41012 3.66196i 0.0601276 0.156146i
\(551\) 12.9524 + 7.47810i 0.551793 + 0.318578i
\(552\) 0 0
\(553\) 0.385744 1.48083i 0.0164035 0.0629715i
\(554\) 1.44732 0.0614906
\(555\) 0 0
\(556\) −2.50505 4.33888i −0.106238 0.184009i
\(557\) −30.0424 8.04984i −1.27294 0.341083i −0.441782 0.897122i \(-0.645654\pi\)
−0.831156 + 0.556039i \(0.812320\pi\)
\(558\) 0 0
\(559\) 30.4437i 1.28763i
\(560\) 15.4796 + 16.9706i 0.654133 + 0.717139i
\(561\) 0 0
\(562\) 3.20263 0.858141i 0.135095 0.0361985i
\(563\) −9.64932 + 36.0117i −0.406670 + 1.51771i 0.394284 + 0.918989i \(0.370993\pi\)
−0.800954 + 0.598726i \(0.795674\pi\)
\(564\) 0 0
\(565\) 4.04559 + 19.0824i 0.170199 + 0.802801i
\(566\) 1.02115i 0.0429222i
\(567\) 0 0
\(568\) 3.21864 3.21864i 0.135051 0.135051i
\(569\) −8.69925 + 15.0675i −0.364692 + 0.631664i −0.988727 0.149732i \(-0.952159\pi\)
0.624035 + 0.781396i \(0.285492\pi\)
\(570\) 0 0
\(571\) −17.3894 30.1193i −0.727723 1.26045i −0.957843 0.287292i \(-0.907245\pi\)
0.230120 0.973162i \(-0.426088\pi\)
\(572\) 10.4674 + 39.0649i 0.437665 + 1.63339i
\(573\) 0 0
\(574\) 1.63789 + 2.79178i 0.0683641 + 0.116527i
\(575\) 14.5414 + 17.9958i 0.606418 + 0.750477i
\(576\) 0 0
\(577\) 6.20825 23.1695i 0.258453 0.964560i −0.707684 0.706529i \(-0.750260\pi\)
0.966137 0.258030i \(-0.0830735\pi\)
\(578\) 0.613569 2.28987i 0.0255211 0.0952460i
\(579\) 0 0
\(580\) −12.8840 0.682022i −0.534980 0.0283194i
\(581\) 5.77775 10.1704i 0.239701 0.421941i
\(582\) 0 0
\(583\) 2.33951 + 8.73117i 0.0968926 + 0.361608i
\(584\) −2.28609 3.95963i −0.0945992 0.163851i
\(585\) 0 0
\(586\) 0.992026 1.71824i 0.0409802 0.0709798i
\(587\) 15.2114 15.2114i 0.627840 0.627840i −0.319684 0.947524i \(-0.603577\pi\)
0.947524 + 0.319684i \(0.103577\pi\)
\(588\) 0 0
\(589\) 11.2233i 0.462446i
\(590\) −0.997207 + 0.211414i −0.0410544 + 0.00870379i
\(591\) 0 0
\(592\) 7.64781 28.5420i 0.314323 1.17307i
\(593\) 19.7756 5.29885i 0.812085 0.217598i 0.171202 0.985236i \(-0.445235\pi\)
0.640883 + 0.767638i \(0.278568\pi\)
\(594\) 0 0
\(595\) 0.889643 1.38945i 0.0364718 0.0569621i
\(596\) 0.971879i 0.0398097i
\(597\) 0 0
\(598\) 2.28255 + 0.611607i 0.0933404 + 0.0250105i
\(599\) −2.45403 4.25050i −0.100269 0.173671i 0.811527 0.584315i \(-0.198637\pi\)
−0.911795 + 0.410645i \(0.865304\pi\)
\(600\) 0 0
\(601\) −10.2782 −0.419258 −0.209629 0.977781i \(-0.567226\pi\)
−0.209629 + 0.977781i \(0.567226\pi\)
\(602\) 0.780287 2.99544i 0.0318021 0.122085i
\(603\) 0 0
\(604\) 7.68251 + 4.43550i 0.312597 + 0.180478i
\(605\) 40.6240 20.6721i 1.65160 0.840439i
\(606\) 0 0
\(607\) −26.0408 + 6.97762i −1.05696 + 0.283213i −0.745127 0.666922i \(-0.767611\pi\)
−0.311838 + 0.950135i \(0.600945\pi\)
\(608\) −6.02233 6.02233i −0.244238 0.244238i
\(609\) 0 0
\(610\) −0.444477 0.494165i −0.0179964 0.0200081i
\(611\) −35.5254 20.5106i −1.43720 0.829769i
\(612\) 0 0
\(613\) −9.58910 2.56939i −0.387300 0.103777i 0.0599142 0.998204i \(-0.480917\pi\)
−0.447215 + 0.894427i \(0.647584\pi\)
\(614\) 0.488658 0.846381i 0.0197206 0.0341572i
\(615\) 0 0
\(616\) −0.0576160 8.26475i −0.00232142 0.332996i
\(617\) 13.2957 13.2957i 0.535264 0.535264i −0.386870 0.922134i \(-0.626444\pi\)
0.922134 + 0.386870i \(0.126444\pi\)
\(618\) 0 0
\(619\) 1.14004 0.658202i 0.0458220 0.0264554i −0.476914 0.878950i \(-0.658245\pi\)
0.522736 + 0.852495i \(0.324911\pi\)
\(620\) −4.39091 8.62887i −0.176343 0.346544i
\(621\) 0 0
\(622\) 2.76808 + 2.76808i 0.110990 + 0.110990i
\(623\) −32.2166 8.39215i −1.29073 0.336225i
\(624\) 0 0
\(625\) −16.7673 + 18.5434i −0.670694 + 0.741735i
\(626\) 1.74699 1.00863i 0.0698240 0.0403129i
\(627\) 0 0
\(628\) −2.57003 9.59147i −0.102555 0.382741i
\(629\) −2.12241 −0.0846258
\(630\) 0 0
\(631\) 6.81277 0.271212 0.135606 0.990763i \(-0.456702\pi\)
0.135606 + 0.990763i \(0.456702\pi\)
\(632\) −0.0834725 0.311523i −0.00332036 0.0123917i
\(633\) 0 0
\(634\) −1.46909 + 0.848180i −0.0583450 + 0.0336855i
\(635\) 1.34669 + 6.35212i 0.0534418 + 0.252076i
\(636\) 0 0
\(637\) −6.26010 + 24.7376i −0.248034 + 0.980138i
\(638\) 1.61688 + 1.61688i 0.0640131 + 0.0640131i
\(639\) 0 0
\(640\) 9.29937 + 3.02696i 0.367590 + 0.119651i
\(641\) −10.6830 + 6.16781i −0.421951 + 0.243614i −0.695912 0.718127i \(-0.745000\pi\)
0.273960 + 0.961741i \(0.411666\pi\)
\(642\) 0 0
\(643\) 0.219128 0.219128i 0.00864157 0.00864157i −0.702773 0.711414i \(-0.748055\pi\)
0.711414 + 0.702773i \(0.248055\pi\)
\(644\) 21.0809 + 11.9759i 0.830705 + 0.471917i
\(645\) 0 0
\(646\) −0.100274 + 0.173679i −0.00394522 + 0.00683332i
\(647\) −2.66988 0.715393i −0.104964 0.0281250i 0.205955 0.978562i \(-0.433970\pi\)
−0.310919 + 0.950437i \(0.600637\pi\)
\(648\) 0 0
\(649\) −15.7880 9.11519i −0.619732 0.357803i
\(650\) −0.269575 + 2.53912i −0.0105736 + 0.0995925i
\(651\) 0 0
\(652\) 5.38634 + 5.38634i 0.210946 + 0.210946i
\(653\) 23.7403 6.36119i 0.929030 0.248933i 0.237589 0.971366i \(-0.423643\pi\)
0.691441 + 0.722433i \(0.256976\pi\)
\(654\) 0 0
\(655\) −9.94473 19.5430i −0.388573 0.763610i
\(656\) −29.3637 16.9531i −1.14646 0.661909i
\(657\) 0 0
\(658\) 2.96975 + 2.92863i 0.115773 + 0.114170i
\(659\) −47.4163 −1.84708 −0.923538 0.383506i \(-0.874716\pi\)
−0.923538 + 0.383506i \(0.874716\pi\)
\(660\) 0 0
\(661\) −9.31689 16.1373i −0.362385 0.627669i 0.625968 0.779849i \(-0.284704\pi\)
−0.988353 + 0.152180i \(0.951371\pi\)
\(662\) −2.90941 0.779575i −0.113078 0.0302990i
\(663\) 0 0
\(664\) 2.46524i 0.0956699i
\(665\) 22.4370 20.4658i 0.870070 0.793628i
\(666\) 0 0
\(667\) −13.0227 + 3.48941i −0.504239 + 0.135111i
\(668\) 4.73169 17.6589i 0.183075 0.683244i
\(669\) 0 0
\(670\) −1.88360 1.22463i −0.0727699 0.0473118i
\(671\) 11.8866i 0.458875i
\(672\) 0 0
\(673\) −23.8659 + 23.8659i −0.919962 + 0.919962i −0.997026 0.0770643i \(-0.975445\pi\)
0.0770643 + 0.997026i \(0.475445\pi\)
\(674\) 0.802555 1.39007i 0.0309133 0.0535434i
\(675\) 0 0
\(676\) −0.285667 0.494789i −0.0109872 0.0190303i
\(677\) 0.589674 + 2.20069i 0.0226630 + 0.0845796i 0.976331 0.216281i \(-0.0693928\pi\)
−0.953668 + 0.300861i \(0.902726\pi\)
\(678\) 0 0
\(679\) 15.2483 26.8412i 0.585176 1.03007i
\(680\) 0.0183811 0.347236i 0.000704883 0.0133159i
\(681\) 0 0
\(682\) −0.444107 + 1.65743i −0.0170057 + 0.0634663i
\(683\) 7.57756 28.2798i 0.289947 1.08210i −0.655201 0.755455i \(-0.727416\pi\)
0.945148 0.326643i \(-0.105917\pi\)
\(684\) 0 0
\(685\) −2.59382 2.88378i −0.0991048 0.110184i
\(686\) 1.24999 2.27355i 0.0477247 0.0868047i
\(687\) 0 0
\(688\) 8.39231 + 31.3205i 0.319954 + 1.19408i
\(689\) −2.94089 5.09377i −0.112039 0.194057i
\(690\) 0 0
\(691\) −7.90637 + 13.6942i −0.300773 + 0.520953i −0.976311 0.216371i \(-0.930578\pi\)
0.675539 + 0.737325i \(0.263911\pi\)
\(692\) 30.9830 30.9830i 1.17780 1.17780i
\(693\) 0 0
\(694\) 2.89405i 0.109857i
\(695\) 3.08351 4.74272i 0.116964 0.179902i
\(696\) 0 0
\(697\) −0.630324 + 2.35240i −0.0238752 + 0.0891035i
\(698\) −3.03055 + 0.812032i −0.114708 + 0.0307359i
\(699\) 0 0
\(700\) −9.24356 + 24.5130i −0.349374 + 0.926504i
\(701\) 12.7450i 0.481372i −0.970603 0.240686i \(-0.922628\pi\)
0.970603 0.240686i \(-0.0773723\pi\)
\(702\) 0 0
\(703\) −37.7357 10.1113i −1.42323 0.381353i
\(704\) 21.1002 + 36.5466i 0.795243 + 1.37740i
\(705\) 0 0
\(706\) −4.73755 −0.178300
\(707\) 9.27246 + 9.14408i 0.348727 + 0.343898i
\(708\) 0 0
\(709\) −33.8769 19.5589i −1.27228 0.734549i −0.296860 0.954921i \(-0.595939\pi\)
−0.975416 + 0.220373i \(0.929273\pi\)
\(710\) 2.43153 + 0.791468i 0.0912539 + 0.0297033i
\(711\) 0 0
\(712\) −6.77742 + 1.81601i −0.253995 + 0.0680577i
\(713\) −7.15383 7.15383i −0.267913 0.267913i
\(714\) 0 0
\(715\) −33.9516 + 30.5378i −1.26972 + 1.14205i
\(716\) 1.91978 + 1.10838i 0.0717454 + 0.0414222i
\(717\) 0 0
\(718\) 1.49386 + 0.400278i 0.0557503 + 0.0149382i
\(719\) −3.29942 + 5.71477i −0.123048 + 0.213125i −0.920968 0.389638i \(-0.872600\pi\)
0.797920 + 0.602763i \(0.205933\pi\)
\(720\) 0 0
\(721\) −35.7991 + 21.0027i −1.33323 + 0.782181i
\(722\) −0.728133 + 0.728133i −0.0270983 + 0.0270983i
\(723\) 0 0
\(724\) 22.4735 12.9751i 0.835223 0.482216i
\(725\) −5.91129 13.3147i −0.219540 0.494494i
\(726\) 0 0
\(727\) 6.51144 + 6.51144i 0.241496 + 0.241496i 0.817469 0.575973i \(-0.195377\pi\)
−0.575973 + 0.817469i \(0.695377\pi\)
\(728\) 1.42811 + 5.18491i 0.0529292 + 0.192166i
\(729\) 0 0
\(730\) 1.40006 2.15341i 0.0518184 0.0797015i
\(731\) 2.01699 1.16451i 0.0746010 0.0430709i
\(732\) 0 0
\(733\) 2.60963 + 9.73928i 0.0963890 + 0.359728i 0.997226 0.0744281i \(-0.0237131\pi\)
−0.900837 + 0.434157i \(0.857046\pi\)
\(734\) −0.540359 −0.0199450
\(735\) 0 0
\(736\) 7.67740 0.282993
\(737\) −10.3993 38.8109i −0.383065 1.42962i
\(738\) 0 0
\(739\) −11.1510 + 6.43804i −0.410196 + 0.236827i −0.690874 0.722975i \(-0.742774\pi\)
0.280678 + 0.959802i \(0.409441\pi\)
\(740\) 32.9685 6.98955i 1.21195 0.256941i
\(741\) 0 0
\(742\) 0.158807 + 0.576568i 0.00582999 + 0.0211665i
\(743\) 8.34588 + 8.34588i 0.306181 + 0.306181i 0.843426 0.537245i \(-0.180535\pi\)
−0.537245 + 0.843426i \(0.680535\pi\)
\(744\) 0 0
\(745\) −0.978018 + 0.497677i −0.0358318 + 0.0182335i
\(746\) −1.26545 + 0.730610i −0.0463315 + 0.0267495i
\(747\) 0 0
\(748\) 2.18778 2.18778i 0.0799932 0.0799932i
\(749\) −43.3907 + 25.4566i −1.58546 + 0.930162i
\(750\) 0 0
\(751\) 21.5986 37.4098i 0.788143 1.36510i −0.138961 0.990298i \(-0.544376\pi\)
0.927104 0.374805i \(-0.122290\pi\)
\(752\) −42.2027 11.3082i −1.53897 0.412367i
\(753\) 0 0
\(754\) −1.28856 0.743951i −0.0469266 0.0270931i
\(755\) −0.529480 + 10.0024i −0.0192698 + 0.364023i
\(756\) 0 0
\(757\) −19.7726 19.7726i −0.718648 0.718648i 0.249680 0.968328i \(-0.419674\pi\)
−0.968328 + 0.249680i \(0.919674\pi\)
\(758\) −2.59793 + 0.696114i −0.0943611 + 0.0252840i
\(759\) 0 0
\(760\) 1.98106 6.08618i 0.0718606 0.220769i
\(761\) −39.3328 22.7088i −1.42581 0.823193i −0.429025 0.903293i \(-0.641143\pi\)
−0.996787 + 0.0801000i \(0.974476\pi\)
\(762\) 0 0
\(763\) −20.6717 20.3855i −0.748366 0.738004i
\(764\) −10.6353 −0.384773
\(765\) 0 0
\(766\) −2.46901 4.27644i −0.0892088 0.154514i
\(767\) 11.4583 + 3.07024i 0.413735 + 0.110860i
\(768\) 0 0
\(769\) 23.0900i 0.832646i −0.909217 0.416323i \(-0.863319\pi\)
0.909217 0.416323i \(-0.136681\pi\)
\(770\) 4.12330 2.13451i 0.148593 0.0769224i
\(771\) 0 0
\(772\) 28.1183 7.53427i 1.01200 0.271164i
\(773\) −5.43421 + 20.2807i −0.195455 + 0.729448i 0.796694 + 0.604383i \(0.206580\pi\)
−0.992149 + 0.125064i \(0.960086\pi\)
\(774\) 0 0
\(775\) 6.43490 8.83730i 0.231148 0.317445i
\(776\) 6.50612i 0.233556i
\(777\) 0 0
\(778\) −3.41008 + 3.41008i −0.122257 + 0.122257i
\(779\) −22.4139 + 38.8221i −0.803062 + 1.39094i
\(780\) 0 0
\(781\) 22.8656 + 39.6043i 0.818194 + 1.41715i
\(782\) −0.0467895 0.174621i −0.00167319 0.00624443i
\(783\) 0 0
\(784\) 0.378919 + 27.1758i 0.0135328 + 0.970564i
\(785\) 8.33601 7.49784i 0.297525 0.267609i
\(786\) 0 0
\(787\) 2.39502 8.93832i 0.0853731 0.318617i −0.910011 0.414583i \(-0.863927\pi\)
0.995385 + 0.0959663i \(0.0305941\pi\)
\(788\) −5.99614 + 22.3779i −0.213604 + 0.797180i
\(789\) 0 0
\(790\) 0.134706 0.121162i 0.00479263 0.00431074i
\(791\) −11.4006 + 20.0682i −0.405358 + 0.713542i
\(792\) 0 0
\(793\) 2.00185 + 7.47102i 0.0710879 + 0.265304i
\(794\) 0.968250 + 1.67706i 0.0343619 + 0.0595166i
\(795\) 0 0
\(796\) 21.0118 36.3935i 0.744743 1.28993i
\(797\) 5.16770 5.16770i 0.183049 0.183049i −0.609634 0.792683i \(-0.708684\pi\)
0.792683 + 0.609634i \(0.208684\pi\)
\(798\) 0 0
\(799\) 3.13822i 0.111022i
\(800\) 1.28911 + 8.19497i 0.0455771 + 0.289736i
\(801\) 0 0
\(802\) 0.438904 1.63801i 0.0154982 0.0578402i
\(803\) 44.3703 11.8890i 1.56579 0.419553i
\(804\) 0 0
\(805\) −1.25651 + 27.3467i −0.0442860 + 0.963845i
\(806\) 1.11653i 0.0393282i
\(807\) 0 0
\(808\) 2.65113 + 0.710369i 0.0932666 + 0.0249907i
\(809\) 6.23501 + 10.7994i 0.219211 + 0.379685i 0.954567 0.297996i \(-0.0963183\pi\)
−0.735356 + 0.677681i \(0.762985\pi\)
\(810\) 0 0
\(811\) 21.2698 0.746883 0.373442 0.927654i \(-0.378178\pi\)
0.373442 + 0.927654i \(0.378178\pi\)
\(812\) −10.8696 10.7191i −0.381449 0.376168i
\(813\) 0 0
\(814\) −5.17264 2.98643i −0.181301 0.104674i
\(815\) −2.66215 + 8.17860i −0.0932509 + 0.286484i
\(816\) 0 0
\(817\) 41.4092 11.0956i 1.44873 0.388185i
\(818\) 2.90303 + 2.90303i 0.101502 + 0.101502i
\(819\) 0 0
\(820\) 2.04421 38.6170i 0.0713869 1.34856i
\(821\) 17.0359 + 9.83568i 0.594557 + 0.343268i 0.766897 0.641770i \(-0.221800\pi\)
−0.172340 + 0.985037i \(0.555133\pi\)
\(822\) 0 0
\(823\) 51.7281 + 13.8605i 1.80313 + 0.483146i 0.994460 0.105120i \(-0.0335226\pi\)
0.808667 + 0.588266i \(0.200189\pi\)
\(824\) −4.37378 + 7.57562i −0.152368 + 0.263909i
\(825\) 0 0
\(826\) −1.04872 0.595772i −0.0364898 0.0207296i
\(827\) −19.0500 + 19.0500i −0.662432 + 0.662432i −0.955953 0.293521i \(-0.905173\pi\)
0.293521 + 0.955953i \(0.405173\pi\)
\(828\) 0 0
\(829\) −35.0623 + 20.2433i −1.21777 + 0.703077i −0.964440 0.264304i \(-0.914858\pi\)
−0.253326 + 0.967381i \(0.581525\pi\)
\(830\) 1.23429 0.628085i 0.0428429 0.0218011i
\(831\) 0 0
\(832\) −19.4170 19.4170i −0.673162 0.673162i
\(833\) 1.87840 0.531492i 0.0650827 0.0184151i
\(834\) 0 0
\(835\) 20.1935 4.28115i 0.698824 0.148155i
\(836\) 49.3208 28.4754i 1.70580 0.984842i
\(837\) 0 0
\(838\) −0.161491 0.602694i −0.00557862 0.0208197i
\(839\) 27.5643 0.951626 0.475813 0.879546i \(-0.342154\pi\)
0.475813 + 0.879546i \(0.342154\pi\)
\(840\) 0 0
\(841\) −20.5111 −0.707278
\(842\) 0.986040 + 3.67995i 0.0339812 + 0.126819i
\(843\) 0 0
\(844\) −11.8374 + 6.83434i −0.407461 + 0.235248i
\(845\) 0.351631 0.540842i 0.0120965 0.0186055i
\(846\) 0 0
\(847\) 52.1908 + 13.5952i 1.79330 + 0.467138i
\(848\) −4.42978 4.42978i −0.152119 0.152119i
\(849\) 0 0
\(850\) 0.178536 0.0792644i 0.00612375 0.00271875i
\(851\) 30.4982 17.6081i 1.04546 0.603599i
\(852\) 0 0
\(853\) −20.4305 + 20.4305i −0.699527 + 0.699527i −0.964308 0.264781i \(-0.914700\pi\)
0.264781 + 0.964308i \(0.414700\pi\)
\(854\) −0.00548226 0.786404i −0.000187599 0.0269102i
\(855\) 0 0
\(856\) −5.30130 + 9.18211i −0.181195 + 0.313838i
\(857\) −3.23941 0.867998i −0.110656 0.0296503i 0.203066 0.979165i \(-0.434909\pi\)
−0.313722 + 0.949515i \(0.601576\pi\)
\(858\) 0 0
\(859\) −32.2014 18.5915i −1.09870 0.634332i −0.162818 0.986656i \(-0.552058\pi\)
−0.935878 + 0.352324i \(0.885392\pi\)
\(860\) −27.4961 + 24.7314i −0.937608 + 0.843333i
\(861\) 0 0
\(862\) 2.54671 + 2.54671i 0.0867413 + 0.0867413i
\(863\) 37.1527 9.95503i 1.26469 0.338873i 0.436697 0.899609i \(-0.356148\pi\)
0.827995 + 0.560735i \(0.189482\pi\)
\(864\) 0 0
\(865\) 47.0445 + 15.3131i 1.59956 + 0.520659i
\(866\) 4.03907 + 2.33196i 0.137253 + 0.0792432i
\(867\) 0 0
\(868\) 2.88774 11.0857i 0.0980162 0.376274i
\(869\) 3.24020 0.109916
\(870\) 0 0
\(871\) 13.0725 + 22.6423i 0.442946 + 0.767205i
\(872\) −5.91035 1.58367i −0.200150 0.0536299i
\(873\) 0 0
\(874\) 3.32761i 0.112558i
\(875\) −29.4013 + 3.25058i −0.993944 + 0.109890i
\(876\) 0 0
\(877\) 23.5987 6.32325i 0.796871 0.213521i 0.162661 0.986682i \(-0.447992\pi\)
0.634210 + 0.773161i \(0.281326\pi\)
\(878\) −0.360956 + 1.34711i −0.0121817 + 0.0454627i
\(879\) 0 0
\(880\) −26.5112 + 40.7767i −0.893693 + 1.37458i
\(881\) 13.5509i 0.456542i 0.973598 + 0.228271i \(0.0733073\pi\)
−0.973598 + 0.228271i \(0.926693\pi\)
\(882\) 0 0
\(883\) 32.5237 32.5237i 1.09451 1.09451i 0.0994691 0.995041i \(-0.468286\pi\)
0.995041 0.0994691i \(-0.0317144\pi\)
\(884\) −1.00663 + 1.74353i −0.0338566 + 0.0586413i
\(885\) 0 0
\(886\) 2.07864 + 3.60031i 0.0698334 + 0.120955i
\(887\) −9.75876 36.4202i −0.327667 1.22287i −0.911604 0.411070i \(-0.865155\pi\)
0.583937 0.811799i \(-0.301512\pi\)
\(888\) 0 0
\(889\) −3.79502 + 6.68028i −0.127281 + 0.224049i
\(890\) −2.63596 2.93063i −0.0883576 0.0982350i
\(891\) 0 0
\(892\) 0.981806 3.66415i 0.0328733 0.122685i
\(893\) −14.9507 + 55.7967i −0.500305 + 1.86716i
\(894\) 0 0
\(895\) −0.132311 + 2.49948i −0.00442268 + 0.0835484i
\(896\) 5.85542 + 9.98055i 0.195616 + 0.333427i
\(897\) 0 0
\(898\) 0.957742 + 3.57434i 0.0319603 + 0.119277i
\(899\) 3.18509 + 5.51673i 0.106229 + 0.183993i
\(900\) 0 0
\(901\) −0.224986 + 0.389687i −0.00749536 + 0.0129823i
\(902\) −4.84625 + 4.84625i −0.161363 + 0.161363i
\(903\) 0 0
\(904\) 4.86438i 0.161787i
\(905\) 24.5653 + 15.9713i 0.816577 + 0.530903i
\(906\) 0 0
\(907\) −1.37941 + 5.14802i −0.0458025 + 0.170937i −0.985038 0.172335i \(-0.944869\pi\)
0.939236 + 0.343272i \(0.111535\pi\)
\(908\) −15.5766 + 4.17374i −0.516928 + 0.138510i
\(909\) 0 0
\(910\) −2.23212 + 2.03601i −0.0739942 + 0.0674932i
\(911\) 14.3597i 0.475757i −0.971295 0.237879i \(-0.923548\pi\)
0.971295 0.237879i \(-0.0764520\pi\)
\(912\) 0 0
\(913\) 23.9237 + 6.41032i 0.791757 + 0.212151i
\(914\) −2.42787 4.20519i −0.0803067 0.139095i
\(915\) 0 0
\(916\) 26.2351 0.866832
\(917\) 6.54027 25.1075i 0.215979 0.829121i
\(918\) 0 0
\(919\) 2.41391 + 1.39367i 0.0796276 + 0.0459730i 0.539285 0.842123i \(-0.318695\pi\)
−0.459658 + 0.888096i \(0.652028\pi\)
\(920\) 2.61665 + 5.14215i 0.0862683 + 0.169532i
\(921\) 0 0
\(922\) −5.40885 + 1.44930i −0.178131 + 0.0477300i
\(923\) −21.0415 21.0415i −0.692590 0.692590i
\(924\) 0 0
\(925\) 23.9161 + 29.5976i 0.786358 + 0.973164i
\(926\) 1.12868 + 0.651644i 0.0370907 + 0.0214143i
\(927\) 0 0
\(928\) −4.66934 1.25115i −0.153279 0.0410709i
\(929\) −3.46522 + 6.00194i −0.113690 + 0.196917i −0.917255 0.398299i \(-0.869600\pi\)
0.803565 + 0.595217i \(0.202934\pi\)
\(930\) 0 0
\(931\) 35.9294 0.500974i 1.17754 0.0164187i
\(932\) 11.4043 11.4043i 0.373560 0.373560i
\(933\) 0 0
\(934\) 1.70392 0.983761i 0.0557541 0.0321896i
\(935\) 3.32192 + 1.08129i 0.108638 + 0.0353619i
\(936\) 0 0
\(937\) −34.0816 34.0816i −1.11340 1.11340i −0.992688 0.120710i \(-0.961483\pi\)
−0.120710 0.992688i \(-0.538517\pi\)
\(938\) −0.705912 2.56290i −0.0230488 0.0836816i
\(939\) 0 0
\(940\) −10.3349 48.7478i −0.337086 1.58998i
\(941\) −34.7876 + 20.0846i −1.13404 + 0.654741i −0.944949 0.327218i \(-0.893889\pi\)
−0.189095 + 0.981959i \(0.560555\pi\)
\(942\) 0 0
\(943\) −10.4587 39.0325i −0.340583 1.27107i
\(944\) 12.6347 0.411224
\(945\) 0 0
\(946\) 6.55430 0.213099
\(947\) 1.85264 + 6.91415i 0.0602027 + 0.224680i 0.989472 0.144723i \(-0.0462291\pi\)
−0.929270 + 0.369402i \(0.879562\pi\)
\(948\) 0 0
\(949\) −25.8856 + 14.9451i −0.840284 + 0.485138i
\(950\) 3.55194 0.558741i 0.115240 0.0181279i
\(951\) 0 0
\(952\) 0.288890 0.292946i 0.00936298 0.00949444i
\(953\) 22.1319 + 22.1319i 0.716922 + 0.716922i 0.967974 0.251052i \(-0.0807764\pi\)
−0.251052 + 0.967974i \(0.580776\pi\)
\(954\) 0 0
\(955\) −5.44612 10.7025i −0.176232 0.346326i
\(956\) −14.4243 + 8.32788i −0.466516 + 0.269343i
\(957\) 0 0
\(958\) 2.69464 2.69464i 0.0870600 0.0870600i
\(959\) −0.0319926 4.58919i −0.00103310 0.148193i
\(960\) 0 0
\(961\) 13.1099 22.7070i 0.422899 0.732483i
\(962\) 3.75410 + 1.00591i 0.121037 + 0.0324318i
\(963\) 0 0
\(964\) 0.421666 + 0.243449i 0.0135809 + 0.00784096i
\(965\) 21.9806 + 24.4378i 0.707581 + 0.786680i
\(966\) 0 0
\(967\) 29.9553 + 29.9553i 0.963297 + 0.963297i 0.999350 0.0360528i \(-0.0114785\pi\)
−0.0360528 + 0.999350i \(0.511478\pi\)
\(968\) 10.9794 2.94192i 0.352891 0.0945568i
\(969\) 0 0
\(970\) 3.25747 1.65761i 0.104591 0.0532225i
\(971\) 25.0340 + 14.4534i 0.803378 + 0.463830i 0.844651 0.535317i \(-0.179808\pi\)
−0.0412730 + 0.999148i \(0.513141\pi\)
\(972\) 0 0
\(973\) 6.45312 1.77741i 0.206877 0.0569813i
\(974\) 2.13758 0.0684924
\(975\) 0 0
\(976\) 4.11902 + 7.13436i 0.131847 + 0.228365i
\(977\) −51.9291 13.9144i −1.66136 0.445160i −0.698598 0.715515i \(-0.746192\pi\)
−0.962761 + 0.270355i \(0.912859\pi\)
\(978\) 0 0
\(979\) 70.4929i 2.25296i
\(980\) −27.4279 + 14.4420i −0.876153 + 0.461331i
\(981\) 0 0
\(982\) −0.171366 + 0.0459173i −0.00546850 + 0.00146528i
\(983\) 5.61039 20.9382i 0.178944 0.667826i −0.816903 0.576775i \(-0.804311\pi\)
0.995846 0.0910508i \(-0.0290226\pi\)
\(984\) 0 0
\(985\) −25.5898 + 5.42520i −0.815358 + 0.172861i
\(986\) 0.113828i 0.00362503i
\(987\) 0 0
\(988\) −26.2038 + 26.2038i −0.833655 + 0.833655i
\(989\) −19.3223 + 33.4672i −0.614412 + 1.06419i
\(990\) 0 0
\(991\) −7.37279 12.7700i −0.234204 0.405654i 0.724837 0.688921i \(-0.241915\pi\)
−0.959041 + 0.283267i \(0.908582\pi\)
\(992\) −0.938871 3.50391i −0.0298092 0.111249i
\(993\) 0 0
\(994\) 1.53103 + 2.60964i 0.0485614 + 0.0827728i
\(995\) 47.3830 + 2.50825i 1.50214 + 0.0795167i
\(996\) 0 0
\(997\) 3.97247 14.8255i 0.125809 0.469527i −0.874058 0.485822i \(-0.838520\pi\)
0.999867 + 0.0162947i \(0.00518699\pi\)
\(998\) 0.527047 1.96697i 0.0166834 0.0622632i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.ce.a.107.9 yes 64
3.2 odd 2 inner 315.2.ce.a.107.8 yes 64
5.3 odd 4 inner 315.2.ce.a.233.9 yes 64
7.4 even 3 inner 315.2.ce.a.242.8 yes 64
15.8 even 4 inner 315.2.ce.a.233.8 yes 64
21.11 odd 6 inner 315.2.ce.a.242.9 yes 64
35.18 odd 12 inner 315.2.ce.a.53.8 64
105.53 even 12 inner 315.2.ce.a.53.9 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.ce.a.53.8 64 35.18 odd 12 inner
315.2.ce.a.53.9 yes 64 105.53 even 12 inner
315.2.ce.a.107.8 yes 64 3.2 odd 2 inner
315.2.ce.a.107.9 yes 64 1.1 even 1 trivial
315.2.ce.a.233.8 yes 64 15.8 even 4 inner
315.2.ce.a.233.9 yes 64 5.3 odd 4 inner
315.2.ce.a.242.8 yes 64 7.4 even 3 inner
315.2.ce.a.242.9 yes 64 21.11 odd 6 inner