Properties

Label 315.10.a.q.1.7
Level $315$
Weight $10$
Character 315.1
Self dual yes
Analytic conductor $162.236$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [315,10,Mod(1,315)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("315.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(315, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 3 x^{9} - 3667 x^{8} + 7323 x^{7} + 4338847 x^{6} - 6510663 x^{5} - 1903644413 x^{4} + \cdots - 2925217654100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{12}\cdot 5^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-19.3422\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+20.3422 q^{2} -98.1948 q^{4} +625.000 q^{5} -2401.00 q^{7} -12412.7 q^{8} +12713.9 q^{10} +94596.5 q^{11} -5461.83 q^{13} -48841.6 q^{14} -202226. q^{16} -138708. q^{17} +134259. q^{19} -61371.8 q^{20} +1.92430e6 q^{22} -1.31904e6 q^{23} +390625. q^{25} -111106. q^{26} +235766. q^{28} +3.88336e6 q^{29} -2.86754e6 q^{31} +2.24158e6 q^{32} -2.82164e6 q^{34} -1.50062e6 q^{35} -5.69905e6 q^{37} +2.73113e6 q^{38} -7.75794e6 q^{40} -1.01484e7 q^{41} +1.64962e7 q^{43} -9.28889e6 q^{44} -2.68322e7 q^{46} -5.05341e7 q^{47} +5.76480e6 q^{49} +7.94617e6 q^{50} +536323. q^{52} -1.67715e7 q^{53} +5.91228e7 q^{55} +2.98029e7 q^{56} +7.89961e7 q^{58} +9.62623e7 q^{59} -4.76406e7 q^{61} -5.83321e7 q^{62} +1.49138e8 q^{64} -3.41364e6 q^{65} +1.75074e8 q^{67} +1.36204e7 q^{68} -3.05260e7 q^{70} +3.56669e8 q^{71} +4.49220e8 q^{73} -1.15931e8 q^{74} -1.31836e7 q^{76} -2.27126e8 q^{77} +2.53417e8 q^{79} -1.26391e8 q^{80} -2.06441e8 q^{82} +5.49724e7 q^{83} -8.66928e7 q^{85} +3.35569e8 q^{86} -1.17420e9 q^{88} -7.53460e8 q^{89} +1.31139e7 q^{91} +1.29523e8 q^{92} -1.02797e9 q^{94} +8.39121e7 q^{95} +8.46560e8 q^{97} +1.17269e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 7 q^{2} + 2227 q^{4} + 6250 q^{5} - 24010 q^{7} + 3801 q^{8} + 4375 q^{10} + 66164 q^{11} + 11494 q^{13} - 16807 q^{14} + 918867 q^{16} + 193034 q^{17} + 673344 q^{19} + 1391875 q^{20} - 1386368 q^{22}+ \cdots + 40353607 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 20.3422 0.899007 0.449503 0.893279i \(-0.351601\pi\)
0.449503 + 0.893279i \(0.351601\pi\)
\(3\) 0 0
\(4\) −98.1948 −0.191787
\(5\) 625.000 0.447214
\(6\) 0 0
\(7\) −2401.00 −0.377964
\(8\) −12412.7 −1.07142
\(9\) 0 0
\(10\) 12713.9 0.402048
\(11\) 94596.5 1.94809 0.974043 0.226363i \(-0.0726834\pi\)
0.974043 + 0.226363i \(0.0726834\pi\)
\(12\) 0 0
\(13\) −5461.83 −0.0530387 −0.0265194 0.999648i \(-0.508442\pi\)
−0.0265194 + 0.999648i \(0.508442\pi\)
\(14\) −48841.6 −0.339793
\(15\) 0 0
\(16\) −202226. −0.771431
\(17\) −138708. −0.402794 −0.201397 0.979510i \(-0.564548\pi\)
−0.201397 + 0.979510i \(0.564548\pi\)
\(18\) 0 0
\(19\) 134259. 0.236349 0.118174 0.992993i \(-0.462296\pi\)
0.118174 + 0.992993i \(0.462296\pi\)
\(20\) −61371.8 −0.0857696
\(21\) 0 0
\(22\) 1.92430e6 1.75134
\(23\) −1.31904e6 −0.982840 −0.491420 0.870923i \(-0.663522\pi\)
−0.491420 + 0.870923i \(0.663522\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) −111106. −0.0476822
\(27\) 0 0
\(28\) 235766. 0.0724886
\(29\) 3.88336e6 1.01957 0.509784 0.860302i \(-0.329725\pi\)
0.509784 + 0.860302i \(0.329725\pi\)
\(30\) 0 0
\(31\) −2.86754e6 −0.557676 −0.278838 0.960338i \(-0.589949\pi\)
−0.278838 + 0.960338i \(0.589949\pi\)
\(32\) 2.24158e6 0.377903
\(33\) 0 0
\(34\) −2.82164e6 −0.362114
\(35\) −1.50062e6 −0.169031
\(36\) 0 0
\(37\) −5.69905e6 −0.499914 −0.249957 0.968257i \(-0.580416\pi\)
−0.249957 + 0.968257i \(0.580416\pi\)
\(38\) 2.73113e6 0.212479
\(39\) 0 0
\(40\) −7.75794e6 −0.479156
\(41\) −1.01484e7 −0.560882 −0.280441 0.959871i \(-0.590481\pi\)
−0.280441 + 0.959871i \(0.590481\pi\)
\(42\) 0 0
\(43\) 1.64962e7 0.735828 0.367914 0.929860i \(-0.380072\pi\)
0.367914 + 0.929860i \(0.380072\pi\)
\(44\) −9.28889e6 −0.373617
\(45\) 0 0
\(46\) −2.68322e7 −0.883580
\(47\) −5.05341e7 −1.51058 −0.755290 0.655390i \(-0.772504\pi\)
−0.755290 + 0.655390i \(0.772504\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) 7.94617e6 0.179801
\(51\) 0 0
\(52\) 536323. 0.0101721
\(53\) −1.67715e7 −0.291965 −0.145983 0.989287i \(-0.546634\pi\)
−0.145983 + 0.989287i \(0.546634\pi\)
\(54\) 0 0
\(55\) 5.91228e7 0.871211
\(56\) 2.98029e7 0.404960
\(57\) 0 0
\(58\) 7.89961e7 0.916599
\(59\) 9.62623e7 1.03424 0.517121 0.855912i \(-0.327004\pi\)
0.517121 + 0.855912i \(0.327004\pi\)
\(60\) 0 0
\(61\) −4.76406e7 −0.440547 −0.220274 0.975438i \(-0.570695\pi\)
−0.220274 + 0.975438i \(0.570695\pi\)
\(62\) −5.83321e7 −0.501354
\(63\) 0 0
\(64\) 1.49138e8 1.11117
\(65\) −3.41364e6 −0.0237196
\(66\) 0 0
\(67\) 1.75074e8 1.06142 0.530708 0.847555i \(-0.321926\pi\)
0.530708 + 0.847555i \(0.321926\pi\)
\(68\) 1.36204e7 0.0772505
\(69\) 0 0
\(70\) −3.05260e7 −0.151960
\(71\) 3.56669e8 1.66572 0.832862 0.553481i \(-0.186701\pi\)
0.832862 + 0.553481i \(0.186701\pi\)
\(72\) 0 0
\(73\) 4.49220e8 1.85142 0.925712 0.378229i \(-0.123467\pi\)
0.925712 + 0.378229i \(0.123467\pi\)
\(74\) −1.15931e8 −0.449426
\(75\) 0 0
\(76\) −1.31836e7 −0.0453286
\(77\) −2.27126e8 −0.736307
\(78\) 0 0
\(79\) 2.53417e8 0.732005 0.366003 0.930614i \(-0.380726\pi\)
0.366003 + 0.930614i \(0.380726\pi\)
\(80\) −1.26391e8 −0.344994
\(81\) 0 0
\(82\) −2.06441e8 −0.504237
\(83\) 5.49724e7 0.127143 0.0635717 0.997977i \(-0.479751\pi\)
0.0635717 + 0.997977i \(0.479751\pi\)
\(84\) 0 0
\(85\) −8.66928e7 −0.180135
\(86\) 3.35569e8 0.661514
\(87\) 0 0
\(88\) −1.17420e9 −2.08723
\(89\) −7.53460e8 −1.27293 −0.636466 0.771304i \(-0.719605\pi\)
−0.636466 + 0.771304i \(0.719605\pi\)
\(90\) 0 0
\(91\) 1.31139e7 0.0200468
\(92\) 1.29523e8 0.188496
\(93\) 0 0
\(94\) −1.02797e9 −1.35802
\(95\) 8.39121e7 0.105698
\(96\) 0 0
\(97\) 8.46560e8 0.970923 0.485462 0.874258i \(-0.338652\pi\)
0.485462 + 0.874258i \(0.338652\pi\)
\(98\) 1.17269e8 0.128430
\(99\) 0 0
\(100\) −3.83573e7 −0.0383573
\(101\) 1.74311e9 1.66678 0.833391 0.552684i \(-0.186396\pi\)
0.833391 + 0.552684i \(0.186396\pi\)
\(102\) 0 0
\(103\) −1.43939e8 −0.126011 −0.0630057 0.998013i \(-0.520069\pi\)
−0.0630057 + 0.998013i \(0.520069\pi\)
\(104\) 6.77961e7 0.0568270
\(105\) 0 0
\(106\) −3.41170e8 −0.262479
\(107\) −2.40851e9 −1.77632 −0.888160 0.459535i \(-0.848016\pi\)
−0.888160 + 0.459535i \(0.848016\pi\)
\(108\) 0 0
\(109\) 2.18680e9 1.48385 0.741926 0.670482i \(-0.233912\pi\)
0.741926 + 0.670482i \(0.233912\pi\)
\(110\) 1.20269e9 0.783224
\(111\) 0 0
\(112\) 4.85545e8 0.291574
\(113\) 1.86324e8 0.107502 0.0537510 0.998554i \(-0.482882\pi\)
0.0537510 + 0.998554i \(0.482882\pi\)
\(114\) 0 0
\(115\) −8.24400e8 −0.439539
\(116\) −3.81326e8 −0.195540
\(117\) 0 0
\(118\) 1.95819e9 0.929791
\(119\) 3.33039e8 0.152242
\(120\) 0 0
\(121\) 6.59056e9 2.79504
\(122\) −9.69114e8 −0.396055
\(123\) 0 0
\(124\) 2.81577e8 0.106955
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) 1.15165e9 0.392829 0.196414 0.980521i \(-0.437070\pi\)
0.196414 + 0.980521i \(0.437070\pi\)
\(128\) 1.88611e9 0.621045
\(129\) 0 0
\(130\) −6.94410e7 −0.0213241
\(131\) 3.26859e9 0.969706 0.484853 0.874596i \(-0.338873\pi\)
0.484853 + 0.874596i \(0.338873\pi\)
\(132\) 0 0
\(133\) −3.22357e8 −0.0893314
\(134\) 3.56139e9 0.954219
\(135\) 0 0
\(136\) 1.72175e9 0.431563
\(137\) −5.55375e9 −1.34693 −0.673463 0.739221i \(-0.735194\pi\)
−0.673463 + 0.739221i \(0.735194\pi\)
\(138\) 0 0
\(139\) 4.54790e9 1.03334 0.516671 0.856184i \(-0.327171\pi\)
0.516671 + 0.856184i \(0.327171\pi\)
\(140\) 1.47354e8 0.0324179
\(141\) 0 0
\(142\) 7.25543e9 1.49750
\(143\) −5.16670e8 −0.103324
\(144\) 0 0
\(145\) 2.42710e9 0.455965
\(146\) 9.13812e9 1.66444
\(147\) 0 0
\(148\) 5.59617e8 0.0958768
\(149\) 5.93288e9 0.986115 0.493058 0.869997i \(-0.335879\pi\)
0.493058 + 0.869997i \(0.335879\pi\)
\(150\) 0 0
\(151\) −4.50028e9 −0.704439 −0.352219 0.935917i \(-0.614573\pi\)
−0.352219 + 0.935917i \(0.614573\pi\)
\(152\) −1.66652e9 −0.253230
\(153\) 0 0
\(154\) −4.62025e9 −0.661945
\(155\) −1.79221e9 −0.249400
\(156\) 0 0
\(157\) −1.07661e10 −1.41419 −0.707096 0.707118i \(-0.749995\pi\)
−0.707096 + 0.707118i \(0.749995\pi\)
\(158\) 5.15507e9 0.658078
\(159\) 0 0
\(160\) 1.40099e9 0.169003
\(161\) 3.16702e9 0.371479
\(162\) 0 0
\(163\) 1.09421e10 1.21411 0.607054 0.794661i \(-0.292351\pi\)
0.607054 + 0.794661i \(0.292351\pi\)
\(164\) 9.96523e8 0.107570
\(165\) 0 0
\(166\) 1.11826e9 0.114303
\(167\) −3.53222e9 −0.351417 −0.175709 0.984442i \(-0.556222\pi\)
−0.175709 + 0.984442i \(0.556222\pi\)
\(168\) 0 0
\(169\) −1.05747e10 −0.997187
\(170\) −1.76352e9 −0.161942
\(171\) 0 0
\(172\) −1.61984e9 −0.141122
\(173\) 1.39082e10 1.18049 0.590245 0.807224i \(-0.299031\pi\)
0.590245 + 0.807224i \(0.299031\pi\)
\(174\) 0 0
\(175\) −9.37891e8 −0.0755929
\(176\) −1.91299e10 −1.50281
\(177\) 0 0
\(178\) −1.53270e10 −1.14438
\(179\) 1.51920e10 1.10605 0.553026 0.833164i \(-0.313473\pi\)
0.553026 + 0.833164i \(0.313473\pi\)
\(180\) 0 0
\(181\) 7.57219e9 0.524407 0.262203 0.965013i \(-0.415551\pi\)
0.262203 + 0.965013i \(0.415551\pi\)
\(182\) 2.66765e8 0.0180222
\(183\) 0 0
\(184\) 1.63729e10 1.05304
\(185\) −3.56191e9 −0.223568
\(186\) 0 0
\(187\) −1.31213e10 −0.784677
\(188\) 4.96218e9 0.289709
\(189\) 0 0
\(190\) 1.70696e9 0.0950236
\(191\) 7.70084e9 0.418685 0.209343 0.977842i \(-0.432868\pi\)
0.209343 + 0.977842i \(0.432868\pi\)
\(192\) 0 0
\(193\) 2.80464e9 0.145502 0.0727512 0.997350i \(-0.476822\pi\)
0.0727512 + 0.997350i \(0.476822\pi\)
\(194\) 1.72209e10 0.872867
\(195\) 0 0
\(196\) −5.66074e8 −0.0273981
\(197\) 2.20023e10 1.04081 0.520403 0.853921i \(-0.325782\pi\)
0.520403 + 0.853921i \(0.325782\pi\)
\(198\) 0 0
\(199\) 7.10947e9 0.321365 0.160682 0.987006i \(-0.448631\pi\)
0.160682 + 0.987006i \(0.448631\pi\)
\(200\) −4.84871e9 −0.214285
\(201\) 0 0
\(202\) 3.54587e10 1.49845
\(203\) −9.32395e9 −0.385361
\(204\) 0 0
\(205\) −6.34277e9 −0.250834
\(206\) −2.92803e9 −0.113285
\(207\) 0 0
\(208\) 1.10452e9 0.0409157
\(209\) 1.27005e10 0.460428
\(210\) 0 0
\(211\) 7.61592e8 0.0264516 0.0132258 0.999913i \(-0.495790\pi\)
0.0132258 + 0.999913i \(0.495790\pi\)
\(212\) 1.64688e9 0.0559950
\(213\) 0 0
\(214\) −4.89944e10 −1.59692
\(215\) 1.03101e10 0.329072
\(216\) 0 0
\(217\) 6.88496e9 0.210782
\(218\) 4.44844e10 1.33399
\(219\) 0 0
\(220\) −5.80556e9 −0.167087
\(221\) 7.57602e8 0.0213637
\(222\) 0 0
\(223\) −3.07068e10 −0.831500 −0.415750 0.909479i \(-0.636481\pi\)
−0.415750 + 0.909479i \(0.636481\pi\)
\(224\) −5.38204e9 −0.142834
\(225\) 0 0
\(226\) 3.79025e9 0.0966450
\(227\) 5.14276e10 1.28552 0.642762 0.766066i \(-0.277788\pi\)
0.642762 + 0.766066i \(0.277788\pi\)
\(228\) 0 0
\(229\) 1.93108e10 0.464024 0.232012 0.972713i \(-0.425469\pi\)
0.232012 + 0.972713i \(0.425469\pi\)
\(230\) −1.67701e10 −0.395149
\(231\) 0 0
\(232\) −4.82030e10 −1.09239
\(233\) −6.20033e9 −0.137820 −0.0689101 0.997623i \(-0.521952\pi\)
−0.0689101 + 0.997623i \(0.521952\pi\)
\(234\) 0 0
\(235\) −3.15838e10 −0.675552
\(236\) −9.45246e9 −0.198354
\(237\) 0 0
\(238\) 6.77475e9 0.136866
\(239\) 7.10156e10 1.40787 0.703936 0.710263i \(-0.251424\pi\)
0.703936 + 0.710263i \(0.251424\pi\)
\(240\) 0 0
\(241\) −7.98625e10 −1.52499 −0.762494 0.646995i \(-0.776025\pi\)
−0.762494 + 0.646995i \(0.776025\pi\)
\(242\) 1.34066e11 2.51276
\(243\) 0 0
\(244\) 4.67806e9 0.0844911
\(245\) 3.60300e9 0.0638877
\(246\) 0 0
\(247\) −7.33302e8 −0.0125356
\(248\) 3.55939e10 0.597507
\(249\) 0 0
\(250\) 4.96636e9 0.0804096
\(251\) −5.56254e8 −0.00884589 −0.00442294 0.999990i \(-0.501408\pi\)
−0.00442294 + 0.999990i \(0.501408\pi\)
\(252\) 0 0
\(253\) −1.24777e11 −1.91466
\(254\) 2.34271e10 0.353156
\(255\) 0 0
\(256\) −3.79912e10 −0.552844
\(257\) 7.50599e9 0.107327 0.0536635 0.998559i \(-0.482910\pi\)
0.0536635 + 0.998559i \(0.482910\pi\)
\(258\) 0 0
\(259\) 1.36834e10 0.188950
\(260\) 3.35202e8 0.00454911
\(261\) 0 0
\(262\) 6.64904e10 0.871772
\(263\) −3.84009e10 −0.494927 −0.247463 0.968897i \(-0.579597\pi\)
−0.247463 + 0.968897i \(0.579597\pi\)
\(264\) 0 0
\(265\) −1.04822e10 −0.130571
\(266\) −6.55745e9 −0.0803096
\(267\) 0 0
\(268\) −1.71914e10 −0.203565
\(269\) −1.47581e10 −0.171848 −0.0859238 0.996302i \(-0.527384\pi\)
−0.0859238 + 0.996302i \(0.527384\pi\)
\(270\) 0 0
\(271\) 1.66552e11 1.87580 0.937901 0.346903i \(-0.112767\pi\)
0.937901 + 0.346903i \(0.112767\pi\)
\(272\) 2.80505e10 0.310728
\(273\) 0 0
\(274\) −1.12976e11 −1.21090
\(275\) 3.69518e10 0.389617
\(276\) 0 0
\(277\) −8.01981e9 −0.0818475 −0.0409237 0.999162i \(-0.513030\pi\)
−0.0409237 + 0.999162i \(0.513030\pi\)
\(278\) 9.25143e10 0.928982
\(279\) 0 0
\(280\) 1.86268e10 0.181104
\(281\) 1.05528e10 0.100969 0.0504847 0.998725i \(-0.483923\pi\)
0.0504847 + 0.998725i \(0.483923\pi\)
\(282\) 0 0
\(283\) 1.77172e11 1.64194 0.820969 0.570973i \(-0.193434\pi\)
0.820969 + 0.570973i \(0.193434\pi\)
\(284\) −3.50231e10 −0.319464
\(285\) 0 0
\(286\) −1.05102e10 −0.0928890
\(287\) 2.43664e10 0.211993
\(288\) 0 0
\(289\) −9.93478e10 −0.837757
\(290\) 4.93726e10 0.409916
\(291\) 0 0
\(292\) −4.41110e10 −0.355079
\(293\) 2.35923e11 1.87010 0.935052 0.354510i \(-0.115352\pi\)
0.935052 + 0.354510i \(0.115352\pi\)
\(294\) 0 0
\(295\) 6.01639e10 0.462527
\(296\) 7.07407e10 0.535620
\(297\) 0 0
\(298\) 1.20688e11 0.886524
\(299\) 7.20437e9 0.0521286
\(300\) 0 0
\(301\) −3.96074e10 −0.278117
\(302\) −9.15456e10 −0.633295
\(303\) 0 0
\(304\) −2.71507e10 −0.182327
\(305\) −2.97754e10 −0.197019
\(306\) 0 0
\(307\) −2.60119e11 −1.67128 −0.835639 0.549279i \(-0.814902\pi\)
−0.835639 + 0.549279i \(0.814902\pi\)
\(308\) 2.23026e10 0.141214
\(309\) 0 0
\(310\) −3.64575e10 −0.224212
\(311\) 2.08486e11 1.26373 0.631867 0.775077i \(-0.282289\pi\)
0.631867 + 0.775077i \(0.282289\pi\)
\(312\) 0 0
\(313\) 1.02185e10 0.0601782 0.0300891 0.999547i \(-0.490421\pi\)
0.0300891 + 0.999547i \(0.490421\pi\)
\(314\) −2.19005e11 −1.27137
\(315\) 0 0
\(316\) −2.48843e10 −0.140389
\(317\) 9.48999e10 0.527836 0.263918 0.964545i \(-0.414985\pi\)
0.263918 + 0.964545i \(0.414985\pi\)
\(318\) 0 0
\(319\) 3.67352e11 1.98621
\(320\) 9.32115e10 0.496929
\(321\) 0 0
\(322\) 6.44241e10 0.333962
\(323\) −1.86229e10 −0.0951998
\(324\) 0 0
\(325\) −2.13353e9 −0.0106077
\(326\) 2.22587e11 1.09149
\(327\) 0 0
\(328\) 1.25969e11 0.600942
\(329\) 1.21332e11 0.570946
\(330\) 0 0
\(331\) −2.17983e11 −0.998151 −0.499076 0.866559i \(-0.666327\pi\)
−0.499076 + 0.866559i \(0.666327\pi\)
\(332\) −5.39801e9 −0.0243844
\(333\) 0 0
\(334\) −7.18531e10 −0.315927
\(335\) 1.09421e11 0.474679
\(336\) 0 0
\(337\) −9.16330e10 −0.387006 −0.193503 0.981100i \(-0.561985\pi\)
−0.193503 + 0.981100i \(0.561985\pi\)
\(338\) −2.15112e11 −0.896478
\(339\) 0 0
\(340\) 8.51278e9 0.0345475
\(341\) −2.71259e11 −1.08640
\(342\) 0 0
\(343\) −1.38413e10 −0.0539949
\(344\) −2.04763e11 −0.788384
\(345\) 0 0
\(346\) 2.82923e11 1.06127
\(347\) −3.32280e11 −1.23033 −0.615165 0.788398i \(-0.710911\pi\)
−0.615165 + 0.788398i \(0.710911\pi\)
\(348\) 0 0
\(349\) −3.21762e11 −1.16097 −0.580484 0.814271i \(-0.697137\pi\)
−0.580484 + 0.814271i \(0.697137\pi\)
\(350\) −1.90788e10 −0.0679585
\(351\) 0 0
\(352\) 2.12046e11 0.736187
\(353\) −8.38477e10 −0.287412 −0.143706 0.989620i \(-0.545902\pi\)
−0.143706 + 0.989620i \(0.545902\pi\)
\(354\) 0 0
\(355\) 2.22918e11 0.744934
\(356\) 7.39859e10 0.244132
\(357\) 0 0
\(358\) 3.09038e11 0.994349
\(359\) 1.75368e11 0.557219 0.278610 0.960404i \(-0.410126\pi\)
0.278610 + 0.960404i \(0.410126\pi\)
\(360\) 0 0
\(361\) −3.04662e11 −0.944139
\(362\) 1.54035e11 0.471445
\(363\) 0 0
\(364\) −1.28771e9 −0.00384470
\(365\) 2.80762e11 0.827982
\(366\) 0 0
\(367\) 4.73587e11 1.36271 0.681354 0.731954i \(-0.261392\pi\)
0.681354 + 0.731954i \(0.261392\pi\)
\(368\) 2.66744e11 0.758193
\(369\) 0 0
\(370\) −7.24571e10 −0.200989
\(371\) 4.02684e10 0.110352
\(372\) 0 0
\(373\) −2.66752e11 −0.713540 −0.356770 0.934192i \(-0.616122\pi\)
−0.356770 + 0.934192i \(0.616122\pi\)
\(374\) −2.66917e11 −0.705430
\(375\) 0 0
\(376\) 6.27265e11 1.61847
\(377\) −2.12102e10 −0.0540766
\(378\) 0 0
\(379\) −4.45189e10 −0.110833 −0.0554163 0.998463i \(-0.517649\pi\)
−0.0554163 + 0.998463i \(0.517649\pi\)
\(380\) −8.23973e9 −0.0202715
\(381\) 0 0
\(382\) 1.56652e11 0.376401
\(383\) 4.63051e10 0.109960 0.0549799 0.998487i \(-0.482491\pi\)
0.0549799 + 0.998487i \(0.482491\pi\)
\(384\) 0 0
\(385\) −1.41954e11 −0.329287
\(386\) 5.70527e10 0.130808
\(387\) 0 0
\(388\) −8.31278e10 −0.186210
\(389\) 2.27563e11 0.503881 0.251940 0.967743i \(-0.418931\pi\)
0.251940 + 0.967743i \(0.418931\pi\)
\(390\) 0 0
\(391\) 1.82962e11 0.395882
\(392\) −7.15568e10 −0.153061
\(393\) 0 0
\(394\) 4.47575e11 0.935691
\(395\) 1.58386e11 0.327363
\(396\) 0 0
\(397\) −6.33956e11 −1.28086 −0.640431 0.768016i \(-0.721244\pi\)
−0.640431 + 0.768016i \(0.721244\pi\)
\(398\) 1.44622e11 0.288909
\(399\) 0 0
\(400\) −7.89945e10 −0.154286
\(401\) −5.00873e11 −0.967337 −0.483669 0.875251i \(-0.660696\pi\)
−0.483669 + 0.875251i \(0.660696\pi\)
\(402\) 0 0
\(403\) 1.56620e10 0.0295784
\(404\) −1.71164e11 −0.319667
\(405\) 0 0
\(406\) −1.89670e11 −0.346442
\(407\) −5.39111e11 −0.973875
\(408\) 0 0
\(409\) 4.11851e11 0.727754 0.363877 0.931447i \(-0.381453\pi\)
0.363877 + 0.931447i \(0.381453\pi\)
\(410\) −1.29026e11 −0.225501
\(411\) 0 0
\(412\) 1.41340e10 0.0241673
\(413\) −2.31126e11 −0.390907
\(414\) 0 0
\(415\) 3.43578e10 0.0568602
\(416\) −1.22431e10 −0.0200435
\(417\) 0 0
\(418\) 2.58356e11 0.413928
\(419\) −2.98490e11 −0.473115 −0.236557 0.971618i \(-0.576019\pi\)
−0.236557 + 0.971618i \(0.576019\pi\)
\(420\) 0 0
\(421\) 7.84245e11 1.21670 0.608349 0.793670i \(-0.291832\pi\)
0.608349 + 0.793670i \(0.291832\pi\)
\(422\) 1.54925e10 0.0237801
\(423\) 0 0
\(424\) 2.08180e11 0.312819
\(425\) −5.41830e10 −0.0805587
\(426\) 0 0
\(427\) 1.14385e11 0.166511
\(428\) 2.36503e11 0.340675
\(429\) 0 0
\(430\) 2.09731e11 0.295838
\(431\) −9.38806e11 −1.31047 −0.655237 0.755423i \(-0.727431\pi\)
−0.655237 + 0.755423i \(0.727431\pi\)
\(432\) 0 0
\(433\) −4.26650e11 −0.583279 −0.291640 0.956528i \(-0.594201\pi\)
−0.291640 + 0.956528i \(0.594201\pi\)
\(434\) 1.40055e11 0.189494
\(435\) 0 0
\(436\) −2.14733e11 −0.284583
\(437\) −1.77093e11 −0.232293
\(438\) 0 0
\(439\) −1.24959e12 −1.60574 −0.802871 0.596153i \(-0.796695\pi\)
−0.802871 + 0.596153i \(0.796695\pi\)
\(440\) −7.33874e11 −0.933436
\(441\) 0 0
\(442\) 1.54113e10 0.0192061
\(443\) −2.49206e11 −0.307426 −0.153713 0.988116i \(-0.549123\pi\)
−0.153713 + 0.988116i \(0.549123\pi\)
\(444\) 0 0
\(445\) −4.70913e11 −0.569273
\(446\) −6.24644e11 −0.747524
\(447\) 0 0
\(448\) −3.58081e11 −0.419982
\(449\) 1.15882e12 1.34557 0.672787 0.739836i \(-0.265097\pi\)
0.672787 + 0.739836i \(0.265097\pi\)
\(450\) 0 0
\(451\) −9.60006e11 −1.09265
\(452\) −1.82961e10 −0.0206175
\(453\) 0 0
\(454\) 1.04615e12 1.15570
\(455\) 8.19616e9 0.00896518
\(456\) 0 0
\(457\) 1.55301e12 1.66552 0.832762 0.553631i \(-0.186758\pi\)
0.832762 + 0.553631i \(0.186758\pi\)
\(458\) 3.92824e11 0.417161
\(459\) 0 0
\(460\) 8.09518e10 0.0842978
\(461\) −1.16000e12 −1.19619 −0.598097 0.801423i \(-0.704076\pi\)
−0.598097 + 0.801423i \(0.704076\pi\)
\(462\) 0 0
\(463\) 7.80681e11 0.789513 0.394757 0.918786i \(-0.370829\pi\)
0.394757 + 0.918786i \(0.370829\pi\)
\(464\) −7.85316e11 −0.786527
\(465\) 0 0
\(466\) −1.26128e11 −0.123901
\(467\) −4.85747e11 −0.472590 −0.236295 0.971681i \(-0.575933\pi\)
−0.236295 + 0.971681i \(0.575933\pi\)
\(468\) 0 0
\(469\) −4.20353e11 −0.401177
\(470\) −6.42484e11 −0.607326
\(471\) 0 0
\(472\) −1.19488e12 −1.10811
\(473\) 1.56049e12 1.43346
\(474\) 0 0
\(475\) 5.24451e10 0.0472698
\(476\) −3.27027e10 −0.0291979
\(477\) 0 0
\(478\) 1.44461e12 1.26569
\(479\) −4.22167e11 −0.366416 −0.183208 0.983074i \(-0.558648\pi\)
−0.183208 + 0.983074i \(0.558648\pi\)
\(480\) 0 0
\(481\) 3.11273e10 0.0265148
\(482\) −1.62458e12 −1.37097
\(483\) 0 0
\(484\) −6.47159e11 −0.536052
\(485\) 5.29100e11 0.434210
\(486\) 0 0
\(487\) 4.04896e11 0.326184 0.163092 0.986611i \(-0.447853\pi\)
0.163092 + 0.986611i \(0.447853\pi\)
\(488\) 5.91348e11 0.472013
\(489\) 0 0
\(490\) 7.32930e10 0.0574354
\(491\) −1.02346e12 −0.794698 −0.397349 0.917668i \(-0.630070\pi\)
−0.397349 + 0.917668i \(0.630070\pi\)
\(492\) 0 0
\(493\) −5.38655e11 −0.410676
\(494\) −1.49170e10 −0.0112696
\(495\) 0 0
\(496\) 5.79891e11 0.430208
\(497\) −8.56362e11 −0.629584
\(498\) 0 0
\(499\) −1.00743e12 −0.727383 −0.363691 0.931520i \(-0.618484\pi\)
−0.363691 + 0.931520i \(0.618484\pi\)
\(500\) −2.39733e10 −0.0171539
\(501\) 0 0
\(502\) −1.13154e10 −0.00795251
\(503\) 9.72840e11 0.677619 0.338810 0.940855i \(-0.389976\pi\)
0.338810 + 0.940855i \(0.389976\pi\)
\(504\) 0 0
\(505\) 1.08944e12 0.745408
\(506\) −2.53823e12 −1.72129
\(507\) 0 0
\(508\) −1.13086e11 −0.0753394
\(509\) 3.61105e11 0.238453 0.119227 0.992867i \(-0.461959\pi\)
0.119227 + 0.992867i \(0.461959\pi\)
\(510\) 0 0
\(511\) −1.07858e12 −0.699772
\(512\) −1.73851e12 −1.11806
\(513\) 0 0
\(514\) 1.52688e11 0.0964877
\(515\) −8.99616e10 −0.0563540
\(516\) 0 0
\(517\) −4.78035e12 −2.94274
\(518\) 2.78351e11 0.169867
\(519\) 0 0
\(520\) 4.23726e10 0.0254138
\(521\) −3.12045e12 −1.85544 −0.927722 0.373273i \(-0.878236\pi\)
−0.927722 + 0.373273i \(0.878236\pi\)
\(522\) 0 0
\(523\) −2.52016e12 −1.47289 −0.736446 0.676496i \(-0.763497\pi\)
−0.736446 + 0.676496i \(0.763497\pi\)
\(524\) −3.20959e11 −0.185977
\(525\) 0 0
\(526\) −7.81160e11 −0.444943
\(527\) 3.97752e11 0.224628
\(528\) 0 0
\(529\) −6.12859e10 −0.0340259
\(530\) −2.13231e11 −0.117384
\(531\) 0 0
\(532\) 3.16538e10 0.0171326
\(533\) 5.54290e10 0.0297485
\(534\) 0 0
\(535\) −1.50532e12 −0.794394
\(536\) −2.17314e12 −1.13723
\(537\) 0 0
\(538\) −3.00211e11 −0.154492
\(539\) 5.45330e11 0.278298
\(540\) 0 0
\(541\) 5.30604e11 0.266307 0.133154 0.991095i \(-0.457490\pi\)
0.133154 + 0.991095i \(0.457490\pi\)
\(542\) 3.38803e12 1.68636
\(543\) 0 0
\(544\) −3.10926e11 −0.152217
\(545\) 1.36675e12 0.663599
\(546\) 0 0
\(547\) −2.33227e11 −0.111388 −0.0556938 0.998448i \(-0.517737\pi\)
−0.0556938 + 0.998448i \(0.517737\pi\)
\(548\) 5.45349e11 0.258323
\(549\) 0 0
\(550\) 7.51680e11 0.350269
\(551\) 5.21377e11 0.240974
\(552\) 0 0
\(553\) −6.08455e11 −0.276672
\(554\) −1.63141e11 −0.0735814
\(555\) 0 0
\(556\) −4.46580e11 −0.198181
\(557\) −2.38965e12 −1.05193 −0.525965 0.850506i \(-0.676296\pi\)
−0.525965 + 0.850506i \(0.676296\pi\)
\(558\) 0 0
\(559\) −9.00995e10 −0.0390274
\(560\) 3.03465e11 0.130396
\(561\) 0 0
\(562\) 2.14668e11 0.0907723
\(563\) −8.19534e11 −0.343779 −0.171889 0.985116i \(-0.554987\pi\)
−0.171889 + 0.985116i \(0.554987\pi\)
\(564\) 0 0
\(565\) 1.16453e11 0.0480764
\(566\) 3.60407e12 1.47611
\(567\) 0 0
\(568\) −4.42723e12 −1.78470
\(569\) −1.22742e12 −0.490896 −0.245448 0.969410i \(-0.578935\pi\)
−0.245448 + 0.969410i \(0.578935\pi\)
\(570\) 0 0
\(571\) 2.77719e12 1.09331 0.546654 0.837359i \(-0.315901\pi\)
0.546654 + 0.837359i \(0.315901\pi\)
\(572\) 5.07343e10 0.0198162
\(573\) 0 0
\(574\) 4.95666e11 0.190584
\(575\) −5.15250e11 −0.196568
\(576\) 0 0
\(577\) −1.44846e12 −0.544020 −0.272010 0.962294i \(-0.587688\pi\)
−0.272010 + 0.962294i \(0.587688\pi\)
\(578\) −2.02095e12 −0.753149
\(579\) 0 0
\(580\) −2.38329e11 −0.0874481
\(581\) −1.31989e11 −0.0480557
\(582\) 0 0
\(583\) −1.58653e12 −0.568773
\(584\) −5.57603e12 −1.98366
\(585\) 0 0
\(586\) 4.79919e12 1.68124
\(587\) −3.31169e12 −1.15127 −0.575636 0.817706i \(-0.695246\pi\)
−0.575636 + 0.817706i \(0.695246\pi\)
\(588\) 0 0
\(589\) −3.84994e11 −0.131806
\(590\) 1.22387e12 0.415815
\(591\) 0 0
\(592\) 1.15250e12 0.385649
\(593\) 1.32686e12 0.440634 0.220317 0.975428i \(-0.429291\pi\)
0.220317 + 0.975428i \(0.429291\pi\)
\(594\) 0 0
\(595\) 2.08149e11 0.0680846
\(596\) −5.82578e11 −0.189124
\(597\) 0 0
\(598\) 1.46553e11 0.0468639
\(599\) 2.19919e12 0.697979 0.348989 0.937127i \(-0.386525\pi\)
0.348989 + 0.937127i \(0.386525\pi\)
\(600\) 0 0
\(601\) −1.34347e11 −0.0420042 −0.0210021 0.999779i \(-0.506686\pi\)
−0.0210021 + 0.999779i \(0.506686\pi\)
\(602\) −8.05702e11 −0.250029
\(603\) 0 0
\(604\) 4.41904e11 0.135102
\(605\) 4.11910e12 1.24998
\(606\) 0 0
\(607\) 1.85820e12 0.555576 0.277788 0.960642i \(-0.410399\pi\)
0.277788 + 0.960642i \(0.410399\pi\)
\(608\) 3.00953e11 0.0893168
\(609\) 0 0
\(610\) −6.05696e11 −0.177121
\(611\) 2.76008e11 0.0801193
\(612\) 0 0
\(613\) 3.99243e12 1.14200 0.570999 0.820951i \(-0.306556\pi\)
0.570999 + 0.820951i \(0.306556\pi\)
\(614\) −5.29138e12 −1.50249
\(615\) 0 0
\(616\) 2.81925e12 0.788898
\(617\) −1.10517e12 −0.307005 −0.153503 0.988148i \(-0.549055\pi\)
−0.153503 + 0.988148i \(0.549055\pi\)
\(618\) 0 0
\(619\) −2.34847e12 −0.642950 −0.321475 0.946918i \(-0.604179\pi\)
−0.321475 + 0.946918i \(0.604179\pi\)
\(620\) 1.75986e11 0.0478316
\(621\) 0 0
\(622\) 4.24107e12 1.13610
\(623\) 1.80906e12 0.481123
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) 2.07867e11 0.0541006
\(627\) 0 0
\(628\) 1.05717e12 0.271223
\(629\) 7.90507e11 0.201362
\(630\) 0 0
\(631\) −1.22889e12 −0.308590 −0.154295 0.988025i \(-0.549311\pi\)
−0.154295 + 0.988025i \(0.549311\pi\)
\(632\) −3.14559e12 −0.784288
\(633\) 0 0
\(634\) 1.93047e12 0.474528
\(635\) 7.19781e11 0.175678
\(636\) 0 0
\(637\) −3.14864e10 −0.00757696
\(638\) 7.47276e12 1.78561
\(639\) 0 0
\(640\) 1.17882e12 0.277740
\(641\) 4.53912e9 0.00106197 0.000530983 1.00000i \(-0.499831\pi\)
0.000530983 1.00000i \(0.499831\pi\)
\(642\) 0 0
\(643\) 1.46686e12 0.338406 0.169203 0.985581i \(-0.445881\pi\)
0.169203 + 0.985581i \(0.445881\pi\)
\(644\) −3.10984e11 −0.0712447
\(645\) 0 0
\(646\) −3.78831e11 −0.0855853
\(647\) 5.98026e12 1.34169 0.670843 0.741600i \(-0.265933\pi\)
0.670843 + 0.741600i \(0.265933\pi\)
\(648\) 0 0
\(649\) 9.10608e12 2.01479
\(650\) −4.34006e10 −0.00953643
\(651\) 0 0
\(652\) −1.07446e12 −0.232850
\(653\) 2.38614e12 0.513554 0.256777 0.966471i \(-0.417339\pi\)
0.256777 + 0.966471i \(0.417339\pi\)
\(654\) 0 0
\(655\) 2.04287e12 0.433666
\(656\) 2.05228e12 0.432682
\(657\) 0 0
\(658\) 2.46817e12 0.513284
\(659\) 2.22402e12 0.459362 0.229681 0.973266i \(-0.426232\pi\)
0.229681 + 0.973266i \(0.426232\pi\)
\(660\) 0 0
\(661\) 2.19776e12 0.447790 0.223895 0.974613i \(-0.428123\pi\)
0.223895 + 0.974613i \(0.428123\pi\)
\(662\) −4.43425e12 −0.897345
\(663\) 0 0
\(664\) −6.82357e11 −0.136224
\(665\) −2.01473e11 −0.0399502
\(666\) 0 0
\(667\) −5.12231e12 −1.00207
\(668\) 3.46845e11 0.0673972
\(669\) 0 0
\(670\) 2.22587e12 0.426740
\(671\) −4.50663e12 −0.858224
\(672\) 0 0
\(673\) 4.38627e11 0.0824191 0.0412095 0.999151i \(-0.486879\pi\)
0.0412095 + 0.999151i \(0.486879\pi\)
\(674\) −1.86402e12 −0.347921
\(675\) 0 0
\(676\) 1.03838e12 0.191247
\(677\) 8.30205e12 1.51893 0.759463 0.650551i \(-0.225462\pi\)
0.759463 + 0.650551i \(0.225462\pi\)
\(678\) 0 0
\(679\) −2.03259e12 −0.366975
\(680\) 1.07609e12 0.193001
\(681\) 0 0
\(682\) −5.51801e12 −0.976681
\(683\) 9.55861e12 1.68074 0.840372 0.542010i \(-0.182337\pi\)
0.840372 + 0.542010i \(0.182337\pi\)
\(684\) 0 0
\(685\) −3.47109e12 −0.602364
\(686\) −2.81562e11 −0.0485418
\(687\) 0 0
\(688\) −3.33596e12 −0.567641
\(689\) 9.16032e10 0.0154855
\(690\) 0 0
\(691\) −7.94645e12 −1.32593 −0.662967 0.748649i \(-0.730703\pi\)
−0.662967 + 0.748649i \(0.730703\pi\)
\(692\) −1.36571e12 −0.226402
\(693\) 0 0
\(694\) −6.75931e12 −1.10608
\(695\) 2.84244e12 0.462125
\(696\) 0 0
\(697\) 1.40767e12 0.225920
\(698\) −6.54535e12 −1.04372
\(699\) 0 0
\(700\) 9.20960e10 0.0144977
\(701\) 7.30842e12 1.14312 0.571561 0.820559i \(-0.306338\pi\)
0.571561 + 0.820559i \(0.306338\pi\)
\(702\) 0 0
\(703\) −7.65151e11 −0.118154
\(704\) 1.41080e13 2.16465
\(705\) 0 0
\(706\) −1.70565e12 −0.258385
\(707\) −4.18521e12 −0.629984
\(708\) 0 0
\(709\) −4.32977e12 −0.643512 −0.321756 0.946823i \(-0.604273\pi\)
−0.321756 + 0.946823i \(0.604273\pi\)
\(710\) 4.53465e12 0.669701
\(711\) 0 0
\(712\) 9.35248e12 1.36385
\(713\) 3.78240e12 0.548106
\(714\) 0 0
\(715\) −3.22919e11 −0.0462079
\(716\) −1.49177e12 −0.212126
\(717\) 0 0
\(718\) 3.56738e12 0.500944
\(719\) −1.24222e13 −1.73348 −0.866738 0.498763i \(-0.833788\pi\)
−0.866738 + 0.498763i \(0.833788\pi\)
\(720\) 0 0
\(721\) 3.45596e11 0.0476278
\(722\) −6.19750e12 −0.848788
\(723\) 0 0
\(724\) −7.43550e11 −0.100574
\(725\) 1.51694e12 0.203914
\(726\) 0 0
\(727\) −1.09384e13 −1.45227 −0.726136 0.687551i \(-0.758686\pi\)
−0.726136 + 0.687551i \(0.758686\pi\)
\(728\) −1.62778e11 −0.0214786
\(729\) 0 0
\(730\) 5.71132e12 0.744361
\(731\) −2.28816e12 −0.296387
\(732\) 0 0
\(733\) 1.28000e13 1.63773 0.818865 0.573986i \(-0.194604\pi\)
0.818865 + 0.573986i \(0.194604\pi\)
\(734\) 9.63381e12 1.22508
\(735\) 0 0
\(736\) −2.95674e12 −0.371418
\(737\) 1.65614e13 2.06773
\(738\) 0 0
\(739\) 1.02293e13 1.26167 0.630834 0.775917i \(-0.282713\pi\)
0.630834 + 0.775917i \(0.282713\pi\)
\(740\) 3.49761e11 0.0428774
\(741\) 0 0
\(742\) 8.19148e11 0.0992076
\(743\) 1.41180e13 1.69951 0.849757 0.527175i \(-0.176749\pi\)
0.849757 + 0.527175i \(0.176749\pi\)
\(744\) 0 0
\(745\) 3.70805e12 0.441004
\(746\) −5.42633e12 −0.641478
\(747\) 0 0
\(748\) 1.28845e12 0.150491
\(749\) 5.78283e12 0.671386
\(750\) 0 0
\(751\) 1.24714e13 1.43065 0.715327 0.698790i \(-0.246278\pi\)
0.715327 + 0.698790i \(0.246278\pi\)
\(752\) 1.02193e13 1.16531
\(753\) 0 0
\(754\) −4.31463e11 −0.0486153
\(755\) −2.81268e12 −0.315035
\(756\) 0 0
\(757\) 2.04130e12 0.225931 0.112965 0.993599i \(-0.463965\pi\)
0.112965 + 0.993599i \(0.463965\pi\)
\(758\) −9.05612e11 −0.0996393
\(759\) 0 0
\(760\) −1.04158e12 −0.113248
\(761\) −7.40974e12 −0.800888 −0.400444 0.916321i \(-0.631144\pi\)
−0.400444 + 0.916321i \(0.631144\pi\)
\(762\) 0 0
\(763\) −5.25052e12 −0.560843
\(764\) −7.56182e11 −0.0802983
\(765\) 0 0
\(766\) 9.41947e11 0.0988546
\(767\) −5.25768e11 −0.0548549
\(768\) 0 0
\(769\) −6.08626e11 −0.0627598 −0.0313799 0.999508i \(-0.509990\pi\)
−0.0313799 + 0.999508i \(0.509990\pi\)
\(770\) −2.88766e12 −0.296031
\(771\) 0 0
\(772\) −2.75402e11 −0.0279054
\(773\) −3.34982e12 −0.337453 −0.168727 0.985663i \(-0.553966\pi\)
−0.168727 + 0.985663i \(0.553966\pi\)
\(774\) 0 0
\(775\) −1.12013e12 −0.111535
\(776\) −1.05081e13 −1.04027
\(777\) 0 0
\(778\) 4.62913e12 0.452992
\(779\) −1.36252e12 −0.132564
\(780\) 0 0
\(781\) 3.37397e13 3.24497
\(782\) 3.72185e12 0.355900
\(783\) 0 0
\(784\) −1.16579e12 −0.110204
\(785\) −6.72879e12 −0.632446
\(786\) 0 0
\(787\) −1.11762e13 −1.03850 −0.519251 0.854622i \(-0.673789\pi\)
−0.519251 + 0.854622i \(0.673789\pi\)
\(788\) −2.16051e12 −0.199613
\(789\) 0 0
\(790\) 3.22192e12 0.294301
\(791\) −4.47365e11 −0.0406319
\(792\) 0 0
\(793\) 2.60205e11 0.0233661
\(794\) −1.28961e13 −1.15150
\(795\) 0 0
\(796\) −6.98113e11 −0.0616335
\(797\) −2.81409e12 −0.247045 −0.123522 0.992342i \(-0.539419\pi\)
−0.123522 + 0.992342i \(0.539419\pi\)
\(798\) 0 0
\(799\) 7.00950e12 0.608452
\(800\) 8.75618e11 0.0755805
\(801\) 0 0
\(802\) −1.01889e13 −0.869643
\(803\) 4.24946e13 3.60673
\(804\) 0 0
\(805\) 1.97938e12 0.166130
\(806\) 3.18600e11 0.0265912
\(807\) 0 0
\(808\) −2.16367e13 −1.78583
\(809\) 1.02388e13 0.840391 0.420196 0.907434i \(-0.361961\pi\)
0.420196 + 0.907434i \(0.361961\pi\)
\(810\) 0 0
\(811\) −7.13828e12 −0.579428 −0.289714 0.957113i \(-0.593560\pi\)
−0.289714 + 0.957113i \(0.593560\pi\)
\(812\) 9.15563e11 0.0739071
\(813\) 0 0
\(814\) −1.09667e13 −0.875520
\(815\) 6.83883e12 0.542966
\(816\) 0 0
\(817\) 2.21477e12 0.173912
\(818\) 8.37795e12 0.654256
\(819\) 0 0
\(820\) 6.22827e11 0.0481066
\(821\) −1.17624e13 −0.903546 −0.451773 0.892133i \(-0.649208\pi\)
−0.451773 + 0.892133i \(0.649208\pi\)
\(822\) 0 0
\(823\) 4.93950e12 0.375305 0.187652 0.982236i \(-0.439912\pi\)
0.187652 + 0.982236i \(0.439912\pi\)
\(824\) 1.78667e12 0.135012
\(825\) 0 0
\(826\) −4.70161e12 −0.351428
\(827\) −1.42644e13 −1.06043 −0.530213 0.847865i \(-0.677888\pi\)
−0.530213 + 0.847865i \(0.677888\pi\)
\(828\) 0 0
\(829\) −2.12066e13 −1.55947 −0.779734 0.626111i \(-0.784646\pi\)
−0.779734 + 0.626111i \(0.784646\pi\)
\(830\) 6.98913e11 0.0511177
\(831\) 0 0
\(832\) −8.14569e11 −0.0589349
\(833\) −7.99627e11 −0.0575420
\(834\) 0 0
\(835\) −2.20764e12 −0.157159
\(836\) −1.24712e12 −0.0883039
\(837\) 0 0
\(838\) −6.07194e12 −0.425333
\(839\) 1.51532e13 1.05579 0.527894 0.849310i \(-0.322982\pi\)
0.527894 + 0.849310i \(0.322982\pi\)
\(840\) 0 0
\(841\) 5.73335e11 0.0395208
\(842\) 1.59533e13 1.09382
\(843\) 0 0
\(844\) −7.47844e10 −0.00507306
\(845\) −6.60917e12 −0.445956
\(846\) 0 0
\(847\) −1.58239e13 −1.05643
\(848\) 3.39164e12 0.225231
\(849\) 0 0
\(850\) −1.10220e12 −0.0724229
\(851\) 7.51728e12 0.491335
\(852\) 0 0
\(853\) −2.33173e13 −1.50802 −0.754009 0.656864i \(-0.771883\pi\)
−0.754009 + 0.656864i \(0.771883\pi\)
\(854\) 2.32684e12 0.149695
\(855\) 0 0
\(856\) 2.98961e13 1.90319
\(857\) 3.02364e13 1.91477 0.957385 0.288814i \(-0.0932610\pi\)
0.957385 + 0.288814i \(0.0932610\pi\)
\(858\) 0 0
\(859\) −1.83562e13 −1.15030 −0.575152 0.818047i \(-0.695057\pi\)
−0.575152 + 0.818047i \(0.695057\pi\)
\(860\) −1.01240e12 −0.0631117
\(861\) 0 0
\(862\) −1.90974e13 −1.17812
\(863\) 6.03162e12 0.370156 0.185078 0.982724i \(-0.440746\pi\)
0.185078 + 0.982724i \(0.440746\pi\)
\(864\) 0 0
\(865\) 8.69260e12 0.527931
\(866\) −8.67900e12 −0.524372
\(867\) 0 0
\(868\) −6.76067e11 −0.0404251
\(869\) 2.39724e13 1.42601
\(870\) 0 0
\(871\) −9.56225e11 −0.0562961
\(872\) −2.71442e13 −1.58984
\(873\) 0 0
\(874\) −3.60247e12 −0.208833
\(875\) −5.86182e11 −0.0338062
\(876\) 0 0
\(877\) −3.73174e12 −0.213016 −0.106508 0.994312i \(-0.533967\pi\)
−0.106508 + 0.994312i \(0.533967\pi\)
\(878\) −2.54193e13 −1.44357
\(879\) 0 0
\(880\) −1.19562e13 −0.672079
\(881\) 8.92664e12 0.499225 0.249613 0.968346i \(-0.419697\pi\)
0.249613 + 0.968346i \(0.419697\pi\)
\(882\) 0 0
\(883\) −1.02445e13 −0.567108 −0.283554 0.958956i \(-0.591513\pi\)
−0.283554 + 0.958956i \(0.591513\pi\)
\(884\) −7.43926e10 −0.00409727
\(885\) 0 0
\(886\) −5.06939e12 −0.276378
\(887\) −2.35306e13 −1.27637 −0.638186 0.769882i \(-0.720315\pi\)
−0.638186 + 0.769882i \(0.720315\pi\)
\(888\) 0 0
\(889\) −2.76511e12 −0.148475
\(890\) −9.57940e12 −0.511780
\(891\) 0 0
\(892\) 3.01525e12 0.159471
\(893\) −6.78467e12 −0.357024
\(894\) 0 0
\(895\) 9.49499e12 0.494642
\(896\) −4.52856e12 −0.234733
\(897\) 0 0
\(898\) 2.35730e13 1.20968
\(899\) −1.11357e13 −0.568589
\(900\) 0 0
\(901\) 2.32635e12 0.117602
\(902\) −1.95286e13 −0.982296
\(903\) 0 0
\(904\) −2.31279e12 −0.115180
\(905\) 4.73262e12 0.234522
\(906\) 0 0
\(907\) −3.14256e12 −0.154188 −0.0770941 0.997024i \(-0.524564\pi\)
−0.0770941 + 0.997024i \(0.524564\pi\)
\(908\) −5.04993e12 −0.246546
\(909\) 0 0
\(910\) 1.66728e11 0.00805976
\(911\) 1.66876e13 0.802715 0.401358 0.915921i \(-0.368538\pi\)
0.401358 + 0.915921i \(0.368538\pi\)
\(912\) 0 0
\(913\) 5.20020e12 0.247686
\(914\) 3.15916e13 1.49732
\(915\) 0 0
\(916\) −1.89622e12 −0.0889937
\(917\) −7.84789e12 −0.366514
\(918\) 0 0
\(919\) 3.51280e13 1.62455 0.812275 0.583274i \(-0.198229\pi\)
0.812275 + 0.583274i \(0.198229\pi\)
\(920\) 1.02330e13 0.470933
\(921\) 0 0
\(922\) −2.35969e13 −1.07539
\(923\) −1.94807e12 −0.0883478
\(924\) 0 0
\(925\) −2.22619e12 −0.0999827
\(926\) 1.58808e13 0.709778
\(927\) 0 0
\(928\) 8.70487e12 0.385298
\(929\) −3.50454e13 −1.54369 −0.771846 0.635809i \(-0.780667\pi\)
−0.771846 + 0.635809i \(0.780667\pi\)
\(930\) 0 0
\(931\) 7.73978e11 0.0337641
\(932\) 6.08840e11 0.0264321
\(933\) 0 0
\(934\) −9.88117e12 −0.424861
\(935\) −8.20084e12 −0.350918
\(936\) 0 0
\(937\) 1.09225e12 0.0462909 0.0231455 0.999732i \(-0.492632\pi\)
0.0231455 + 0.999732i \(0.492632\pi\)
\(938\) −8.55090e12 −0.360661
\(939\) 0 0
\(940\) 3.10136e12 0.129562
\(941\) 1.16562e13 0.484624 0.242312 0.970198i \(-0.422094\pi\)
0.242312 + 0.970198i \(0.422094\pi\)
\(942\) 0 0
\(943\) 1.33862e13 0.551257
\(944\) −1.94667e13 −0.797847
\(945\) 0 0
\(946\) 3.17437e13 1.28869
\(947\) −2.24899e13 −0.908682 −0.454341 0.890828i \(-0.650125\pi\)
−0.454341 + 0.890828i \(0.650125\pi\)
\(948\) 0 0
\(949\) −2.45356e12 −0.0981971
\(950\) 1.06685e12 0.0424958
\(951\) 0 0
\(952\) −4.13391e12 −0.163116
\(953\) 4.73683e13 1.86024 0.930121 0.367253i \(-0.119702\pi\)
0.930121 + 0.367253i \(0.119702\pi\)
\(954\) 0 0
\(955\) 4.81302e12 0.187242
\(956\) −6.97336e12 −0.270011
\(957\) 0 0
\(958\) −8.58781e12 −0.329411
\(959\) 1.33346e13 0.509090
\(960\) 0 0
\(961\) −1.82168e13 −0.688998
\(962\) 6.33197e11 0.0238370
\(963\) 0 0
\(964\) 7.84209e12 0.292472
\(965\) 1.75290e12 0.0650706
\(966\) 0 0
\(967\) 2.08057e13 0.765178 0.382589 0.923919i \(-0.375033\pi\)
0.382589 + 0.923919i \(0.375033\pi\)
\(968\) −8.18067e13 −2.99467
\(969\) 0 0
\(970\) 1.07631e13 0.390358
\(971\) 3.04448e13 1.09907 0.549536 0.835470i \(-0.314804\pi\)
0.549536 + 0.835470i \(0.314804\pi\)
\(972\) 0 0
\(973\) −1.09195e13 −0.390567
\(974\) 8.23647e12 0.293242
\(975\) 0 0
\(976\) 9.63416e12 0.339852
\(977\) −2.50664e13 −0.880169 −0.440084 0.897956i \(-0.645051\pi\)
−0.440084 + 0.897956i \(0.645051\pi\)
\(978\) 0 0
\(979\) −7.12748e13 −2.47978
\(980\) −3.53796e11 −0.0122528
\(981\) 0 0
\(982\) −2.08193e13 −0.714439
\(983\) −3.24268e12 −0.110768 −0.0553838 0.998465i \(-0.517638\pi\)
−0.0553838 + 0.998465i \(0.517638\pi\)
\(984\) 0 0
\(985\) 1.37514e13 0.465462
\(986\) −1.09574e13 −0.369201
\(987\) 0 0
\(988\) 7.20064e10 0.00240417
\(989\) −2.17592e13 −0.723201
\(990\) 0 0
\(991\) 3.41624e13 1.12517 0.562583 0.826741i \(-0.309808\pi\)
0.562583 + 0.826741i \(0.309808\pi\)
\(992\) −6.42783e12 −0.210747
\(993\) 0 0
\(994\) −1.74203e13 −0.566001
\(995\) 4.44342e12 0.143719
\(996\) 0 0
\(997\) −2.85092e13 −0.913811 −0.456905 0.889515i \(-0.651042\pi\)
−0.456905 + 0.889515i \(0.651042\pi\)
\(998\) −2.04934e13 −0.653922
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.10.a.q.1.7 yes 10
3.2 odd 2 315.10.a.p.1.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.10.a.p.1.4 10 3.2 odd 2
315.10.a.q.1.7 yes 10 1.1 even 1 trivial