Defining parameters
| Level: | \( N \) | \(=\) | \( 315 = 3^{2} \cdot 5 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 10 \) |
| Character orbit: | \([\chi]\) | \(=\) | 315.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 17 \) | ||
| Sturm bound: | \(480\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(315))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 440 | 90 | 350 |
| Cusp forms | 424 | 90 | 334 |
| Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(52\) | \(10\) | \(42\) | \(50\) | \(10\) | \(40\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(56\) | \(8\) | \(48\) | \(54\) | \(8\) | \(46\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(58\) | \(10\) | \(48\) | \(56\) | \(10\) | \(46\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(54\) | \(8\) | \(46\) | \(52\) | \(8\) | \(44\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(55\) | \(14\) | \(41\) | \(53\) | \(14\) | \(39\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(55\) | \(13\) | \(42\) | \(53\) | \(13\) | \(40\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(55\) | \(12\) | \(43\) | \(53\) | \(12\) | \(41\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(55\) | \(15\) | \(40\) | \(53\) | \(15\) | \(38\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(216\) | \(43\) | \(173\) | \(208\) | \(43\) | \(165\) | \(8\) | \(0\) | \(8\) | |||||
| Minus space | \(-\) | \(224\) | \(47\) | \(177\) | \(216\) | \(47\) | \(169\) | \(8\) | \(0\) | \(8\) | |||||
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(315))\) into newform subspaces
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(315))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(315)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 2}\)