Properties

Label 315.10.a
Level $315$
Weight $10$
Character orbit 315.a
Rep. character $\chi_{315}(1,\cdot)$
Character field $\Q$
Dimension $90$
Newform subspaces $17$
Sturm bound $480$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 17 \)
Sturm bound: \(480\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(315))\).

Total New Old
Modular forms 440 90 350
Cusp forms 424 90 334
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(52\)\(10\)\(42\)\(50\)\(10\)\(40\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(56\)\(8\)\(48\)\(54\)\(8\)\(46\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(58\)\(10\)\(48\)\(56\)\(10\)\(46\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(54\)\(8\)\(46\)\(52\)\(8\)\(44\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(55\)\(14\)\(41\)\(53\)\(14\)\(39\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(55\)\(13\)\(42\)\(53\)\(13\)\(40\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(55\)\(12\)\(43\)\(53\)\(12\)\(41\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(55\)\(15\)\(40\)\(53\)\(15\)\(38\)\(2\)\(0\)\(2\)
Plus space\(+\)\(216\)\(43\)\(173\)\(208\)\(43\)\(165\)\(8\)\(0\)\(8\)
Minus space\(-\)\(224\)\(47\)\(177\)\(216\)\(47\)\(169\)\(8\)\(0\)\(8\)

Trace form

\( 90 q + 66 q^{2} + 22186 q^{4} - 4802 q^{7} + 76698 q^{8} - 22500 q^{10} - 194252 q^{11} + 94448 q^{13} + 24010 q^{14} + 4870178 q^{16} + 188620 q^{17} + 862052 q^{19} + 93972 q^{22} + 4747600 q^{23} + 35156250 q^{25}+ \cdots + 380476866 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(315))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5 7
315.10.a.a 315.a 1.a $1$ $162.236$ \(\Q\) None 35.10.a.a \(-28\) \(0\) \(-625\) \(2401\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-28q^{2}+272q^{4}-5^{4}q^{5}+7^{4}q^{7}+\cdots\)
315.10.a.b 315.a 1.a $2$ $162.236$ \(\Q(\sqrt{2}) \) None 35.10.a.b \(24\) \(0\) \(-1250\) \(4802\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(12+\beta )q^{2}+(-360+24\beta )q^{4}-5^{4}q^{5}+\cdots\)
315.10.a.c 315.a 1.a $4$ $162.236$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.f \(-8\) \(0\) \(2500\) \(-9604\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{2}+(106-\beta _{1}+\beta _{3})q^{4}+\cdots\)
315.10.a.d 315.a 1.a $4$ $162.236$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.e \(-5\) \(0\) \(2500\) \(-9604\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{2}+(237+3\beta _{1}+\beta _{3})q^{4}+\cdots\)
315.10.a.e 315.a 1.a $4$ $162.236$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.d \(13\) \(0\) \(2500\) \(9604\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(3+\beta _{1})q^{2}+(123+8\beta _{1}+\beta _{2})q^{4}+\cdots\)
315.10.a.f 315.a 1.a $4$ $162.236$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.c \(17\) \(0\) \(-2500\) \(-9604\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(4+\beta _{1})q^{2}+(235+9\beta _{1}+\beta _{3})q^{4}+\cdots\)
315.10.a.g 315.a 1.a $4$ $162.236$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 35.10.a.c \(19\) \(0\) \(2500\) \(-9604\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(5+\beta _{1})q^{2}+(435+9\beta _{1}+\beta _{2}+\beta _{3})q^{4}+\cdots\)
315.10.a.h 315.a 1.a $4$ $162.236$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.b \(20\) \(0\) \(-2500\) \(-9604\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(5-\beta _{1})q^{2}+(106-8\beta _{1}+2\beta _{2})q^{4}+\cdots\)
315.10.a.i 315.a 1.a $4$ $162.236$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.a \(41\) \(0\) \(-2500\) \(9604\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(10-\beta _{1})q^{2}+(120-21\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots\)
315.10.a.j 315.a 1.a $5$ $162.236$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 35.10.a.d \(-2\) \(0\) \(3125\) \(12005\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(168-4\beta _{1}+\beta _{3})q^{4}+5^{4}q^{5}+\cdots\)
315.10.a.k 315.a 1.a $6$ $162.236$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 105.10.a.h \(-26\) \(0\) \(-3750\) \(14406\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-4-\beta _{1})q^{2}+(426+3\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
315.10.a.l 315.a 1.a $6$ $162.236$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 35.10.a.e \(-15\) \(0\) \(-3750\) \(-14406\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-3+\beta _{1})q^{2}+(503-3\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots\)
315.10.a.m 315.a 1.a $6$ $162.236$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 105.10.a.g \(16\) \(0\) \(3750\) \(14406\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(3-\beta _{1})q^{2}+(428-2\beta _{1}+\beta _{2})q^{4}+\cdots\)
315.10.a.n 315.a 1.a $8$ $162.236$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 315.10.a.n \(-25\) \(0\) \(5000\) \(19208\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-3-\beta _{1})q^{2}+(233+5\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
315.10.a.o 315.a 1.a $8$ $162.236$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 315.10.a.n \(25\) \(0\) \(-5000\) \(19208\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(3+\beta _{1})q^{2}+(233+5\beta _{1}+\beta _{2})q^{4}+\cdots\)
315.10.a.p 315.a 1.a $10$ $162.236$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 315.10.a.p \(-7\) \(0\) \(-6250\) \(-24010\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(223-\beta _{1}+\beta _{2})q^{4}+\cdots\)
315.10.a.q 315.a 1.a $10$ $162.236$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 315.10.a.p \(7\) \(0\) \(6250\) \(-24010\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(223-\beta _{1}+\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(315))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(315)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 2}\)