Properties

Label 312.6.q.b.289.5
Level $312$
Weight $6$
Character 312.289
Analytic conductor $50.040$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [312,6,Mod(217,312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("312.217"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(312, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 312.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,-81] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.0397517816\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 9 x^{17} - 31561 x^{16} + 110968 x^{15} + 409124362 x^{14} + 1115716662 x^{13} + \cdots + 20\!\cdots\!67 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{40}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.5
Root \(-8.14732 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 312.289
Dual form 312.6.q.b.217.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.50000 - 7.79423i) q^{3} +13.6473 q^{5} +(22.5118 - 38.9916i) q^{7} +(-40.5000 + 70.1481i) q^{9} +(300.003 + 519.621i) q^{11} +(-82.3237 - 603.751i) q^{13} +(-61.4129 - 106.370i) q^{15} +(-162.967 + 282.268i) q^{17} +(-466.609 + 808.191i) q^{19} -405.212 q^{21} +(-314.146 - 544.118i) q^{23} -2938.75 q^{25} +729.000 q^{27} +(3301.05 + 5717.59i) q^{29} -6012.14 q^{31} +(2700.03 - 4676.59i) q^{33} +(307.226 - 532.130i) q^{35} +(2146.74 + 3718.27i) q^{37} +(-4335.32 + 3358.53i) q^{39} +(3061.27 + 5302.28i) q^{41} +(9608.35 - 16642.1i) q^{43} +(-552.716 + 957.333i) q^{45} -3711.32 q^{47} +(7389.94 + 12799.7i) q^{49} +2933.41 q^{51} -9403.31 q^{53} +(4094.24 + 7091.43i) q^{55} +8398.96 q^{57} +(4159.52 - 7204.51i) q^{59} +(-27787.1 + 48128.6i) q^{61} +(1823.46 + 3158.32i) q^{63} +(-1123.50 - 8239.59i) q^{65} +(12435.0 + 21538.1i) q^{67} +(-2827.32 + 4897.06i) q^{69} +(-20857.0 + 36125.4i) q^{71} +80038.2 q^{73} +(13224.4 + 22905.3i) q^{75} +27014.4 q^{77} +60393.3 q^{79} +(-3280.50 - 5681.99i) q^{81} +118846. q^{83} +(-2224.07 + 3852.20i) q^{85} +(29709.5 - 51458.3i) q^{87} +(31102.3 + 53870.7i) q^{89} +(-25394.5 - 10381.6i) q^{91} +(27054.6 + 46860.0i) q^{93} +(-6367.96 + 11029.6i) q^{95} +(-37116.1 + 64287.0i) q^{97} -48600.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 81 q^{3} + 90 q^{5} - 48 q^{7} - 729 q^{9} - 602 q^{11} + 429 q^{13} - 405 q^{15} + 877 q^{17} - 594 q^{19} + 864 q^{21} - 3346 q^{23} + 7412 q^{25} + 13122 q^{27} + 6955 q^{29} - 2804 q^{31} - 5418 q^{33}+ \cdots + 97524 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.50000 7.79423i −0.288675 0.500000i
\(4\) 0 0
\(5\) 13.6473 0.244131 0.122065 0.992522i \(-0.461048\pi\)
0.122065 + 0.992522i \(0.461048\pi\)
\(6\) 0 0
\(7\) 22.5118 38.9916i 0.173646 0.300764i −0.766046 0.642786i \(-0.777778\pi\)
0.939692 + 0.342022i \(0.111112\pi\)
\(8\) 0 0
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 300.003 + 519.621i 0.747557 + 1.29481i 0.948991 + 0.315304i \(0.102106\pi\)
−0.201434 + 0.979502i \(0.564560\pi\)
\(12\) 0 0
\(13\) −82.3237 603.751i −0.135103 0.990831i
\(14\) 0 0
\(15\) −61.4129 106.370i −0.0704745 0.122065i
\(16\) 0 0
\(17\) −162.967 + 282.268i −0.136766 + 0.236886i −0.926271 0.376859i \(-0.877004\pi\)
0.789505 + 0.613745i \(0.210338\pi\)
\(18\) 0 0
\(19\) −466.609 + 808.191i −0.296530 + 0.513606i −0.975340 0.220709i \(-0.929163\pi\)
0.678809 + 0.734315i \(0.262496\pi\)
\(20\) 0 0
\(21\) −405.212 −0.200509
\(22\) 0 0
\(23\) −314.146 544.118i −0.123826 0.214473i 0.797447 0.603389i \(-0.206183\pi\)
−0.921274 + 0.388915i \(0.872850\pi\)
\(24\) 0 0
\(25\) −2938.75 −0.940400
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) 3301.05 + 5717.59i 0.728882 + 1.26246i 0.957356 + 0.288911i \(0.0932931\pi\)
−0.228474 + 0.973550i \(0.573374\pi\)
\(30\) 0 0
\(31\) −6012.14 −1.12363 −0.561817 0.827262i \(-0.689897\pi\)
−0.561817 + 0.827262i \(0.689897\pi\)
\(32\) 0 0
\(33\) 2700.03 4676.59i 0.431602 0.747557i
\(34\) 0 0
\(35\) 307.226 532.130i 0.0423923 0.0734257i
\(36\) 0 0
\(37\) 2146.74 + 3718.27i 0.257796 + 0.446515i 0.965651 0.259842i \(-0.0836705\pi\)
−0.707855 + 0.706357i \(0.750337\pi\)
\(38\) 0 0
\(39\) −4335.32 + 3358.53i −0.456415 + 0.353580i
\(40\) 0 0
\(41\) 3061.27 + 5302.28i 0.284408 + 0.492610i 0.972466 0.233047i \(-0.0748695\pi\)
−0.688057 + 0.725656i \(0.741536\pi\)
\(42\) 0 0
\(43\) 9608.35 16642.1i 0.792460 1.37258i −0.131979 0.991253i \(-0.542133\pi\)
0.924439 0.381329i \(-0.124534\pi\)
\(44\) 0 0
\(45\) −552.716 + 957.333i −0.0406884 + 0.0704745i
\(46\) 0 0
\(47\) −3711.32 −0.245067 −0.122533 0.992464i \(-0.539102\pi\)
−0.122533 + 0.992464i \(0.539102\pi\)
\(48\) 0 0
\(49\) 7389.94 + 12799.7i 0.439694 + 0.761572i
\(50\) 0 0
\(51\) 2933.41 0.157924
\(52\) 0 0
\(53\) −9403.31 −0.459823 −0.229912 0.973211i \(-0.573844\pi\)
−0.229912 + 0.973211i \(0.573844\pi\)
\(54\) 0 0
\(55\) 4094.24 + 7091.43i 0.182502 + 0.316102i
\(56\) 0 0
\(57\) 8398.96 0.342404
\(58\) 0 0
\(59\) 4159.52 7204.51i 0.155566 0.269448i −0.777699 0.628637i \(-0.783613\pi\)
0.933265 + 0.359189i \(0.116947\pi\)
\(60\) 0 0
\(61\) −27787.1 + 48128.6i −0.956132 + 1.65607i −0.224377 + 0.974502i \(0.572035\pi\)
−0.731755 + 0.681568i \(0.761298\pi\)
\(62\) 0 0
\(63\) 1823.46 + 3158.32i 0.0578820 + 0.100255i
\(64\) 0 0
\(65\) −1123.50 8239.59i −0.0329829 0.241892i
\(66\) 0 0
\(67\) 12435.0 + 21538.1i 0.338423 + 0.586166i 0.984136 0.177414i \(-0.0567731\pi\)
−0.645713 + 0.763580i \(0.723440\pi\)
\(68\) 0 0
\(69\) −2827.32 + 4897.06i −0.0714911 + 0.123826i
\(70\) 0 0
\(71\) −20857.0 + 36125.4i −0.491028 + 0.850486i −0.999947 0.0103287i \(-0.996712\pi\)
0.508918 + 0.860815i \(0.330046\pi\)
\(72\) 0 0
\(73\) 80038.2 1.75788 0.878942 0.476929i \(-0.158250\pi\)
0.878942 + 0.476929i \(0.158250\pi\)
\(74\) 0 0
\(75\) 13224.4 + 22905.3i 0.271470 + 0.470200i
\(76\) 0 0
\(77\) 27014.4 0.519241
\(78\) 0 0
\(79\) 60393.3 1.08873 0.544366 0.838848i \(-0.316770\pi\)
0.544366 + 0.838848i \(0.316770\pi\)
\(80\) 0 0
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 118846. 1.89360 0.946801 0.321820i \(-0.104295\pi\)
0.946801 + 0.321820i \(0.104295\pi\)
\(84\) 0 0
\(85\) −2224.07 + 3852.20i −0.0333888 + 0.0578310i
\(86\) 0 0
\(87\) 29709.5 51458.3i 0.420820 0.728882i
\(88\) 0 0
\(89\) 31102.3 + 53870.7i 0.416214 + 0.720904i 0.995555 0.0941812i \(-0.0300233\pi\)
−0.579341 + 0.815085i \(0.696690\pi\)
\(90\) 0 0
\(91\) −25394.5 10381.6i −0.321467 0.131420i
\(92\) 0 0
\(93\) 27054.6 + 46860.0i 0.324365 + 0.561817i
\(94\) 0 0
\(95\) −6367.96 + 11029.6i −0.0723922 + 0.125387i
\(96\) 0 0
\(97\) −37116.1 + 64287.0i −0.400528 + 0.693735i −0.993790 0.111275i \(-0.964507\pi\)
0.593261 + 0.805010i \(0.297840\pi\)
\(98\) 0 0
\(99\) −48600.5 −0.498371
\(100\) 0 0
\(101\) 48374.5 + 83787.1i 0.471860 + 0.817286i 0.999482 0.0321939i \(-0.0102494\pi\)
−0.527622 + 0.849480i \(0.676916\pi\)
\(102\) 0 0
\(103\) −121468. −1.12815 −0.564076 0.825723i \(-0.690768\pi\)
−0.564076 + 0.825723i \(0.690768\pi\)
\(104\) 0 0
\(105\) −5530.06 −0.0489505
\(106\) 0 0
\(107\) 16644.9 + 28829.9i 0.140547 + 0.243435i 0.927703 0.373319i \(-0.121780\pi\)
−0.787155 + 0.616755i \(0.788447\pi\)
\(108\) 0 0
\(109\) 145820. 1.17557 0.587787 0.809016i \(-0.299999\pi\)
0.587787 + 0.809016i \(0.299999\pi\)
\(110\) 0 0
\(111\) 19320.7 33464.4i 0.148838 0.257796i
\(112\) 0 0
\(113\) −36099.6 + 62526.4i −0.265954 + 0.460646i −0.967813 0.251670i \(-0.919020\pi\)
0.701859 + 0.712316i \(0.252354\pi\)
\(114\) 0 0
\(115\) −4287.26 7425.75i −0.0302298 0.0523595i
\(116\) 0 0
\(117\) 45686.1 + 18677.1i 0.308546 + 0.126138i
\(118\) 0 0
\(119\) 7337.37 + 12708.7i 0.0474978 + 0.0822685i
\(120\) 0 0
\(121\) −99478.3 + 172301.i −0.617682 + 1.06986i
\(122\) 0 0
\(123\) 27551.4 47720.5i 0.164203 0.284408i
\(124\) 0 0
\(125\) −82753.9 −0.473711
\(126\) 0 0
\(127\) 128247. + 222130.i 0.705566 + 1.22208i 0.966487 + 0.256716i \(0.0826404\pi\)
−0.260921 + 0.965360i \(0.584026\pi\)
\(128\) 0 0
\(129\) −172950. −0.915054
\(130\) 0 0
\(131\) −4949.20 −0.0251975 −0.0125987 0.999921i \(-0.504010\pi\)
−0.0125987 + 0.999921i \(0.504010\pi\)
\(132\) 0 0
\(133\) 21008.4 + 36387.6i 0.102983 + 0.178371i
\(134\) 0 0
\(135\) 9948.90 0.0469830
\(136\) 0 0
\(137\) 110143. 190773.i 0.501365 0.868389i −0.498634 0.866813i \(-0.666165\pi\)
0.999999 0.00157651i \(-0.000501820\pi\)
\(138\) 0 0
\(139\) 6838.36 11844.4i 0.0300203 0.0519967i −0.850625 0.525773i \(-0.823776\pi\)
0.880645 + 0.473776i \(0.157109\pi\)
\(140\) 0 0
\(141\) 16700.9 + 28926.9i 0.0707446 + 0.122533i
\(142\) 0 0
\(143\) 289024. 223904.i 1.18194 0.915635i
\(144\) 0 0
\(145\) 45050.5 + 78029.8i 0.177942 + 0.308205i
\(146\) 0 0
\(147\) 66509.4 115198.i 0.253857 0.439694i
\(148\) 0 0
\(149\) −203698. + 352815.i −0.751659 + 1.30191i 0.195359 + 0.980732i \(0.437413\pi\)
−0.947018 + 0.321180i \(0.895921\pi\)
\(150\) 0 0
\(151\) 253796. 0.905822 0.452911 0.891556i \(-0.350385\pi\)
0.452911 + 0.891556i \(0.350385\pi\)
\(152\) 0 0
\(153\) −13200.3 22863.7i −0.0455887 0.0789619i
\(154\) 0 0
\(155\) −82049.6 −0.274313
\(156\) 0 0
\(157\) −378401. −1.22519 −0.612595 0.790397i \(-0.709874\pi\)
−0.612595 + 0.790397i \(0.709874\pi\)
\(158\) 0 0
\(159\) 42314.9 + 73291.5i 0.132740 + 0.229912i
\(160\) 0 0
\(161\) −28288.0 −0.0860078
\(162\) 0 0
\(163\) −102604. + 177715.i −0.302479 + 0.523909i −0.976697 0.214623i \(-0.931148\pi\)
0.674218 + 0.738533i \(0.264481\pi\)
\(164\) 0 0
\(165\) 36848.1 63822.9i 0.105367 0.182502i
\(166\) 0 0
\(167\) −139499. 241620.i −0.387062 0.670411i 0.604991 0.796232i \(-0.293177\pi\)
−0.992053 + 0.125821i \(0.959843\pi\)
\(168\) 0 0
\(169\) −357739. + 99406.1i −0.963494 + 0.267729i
\(170\) 0 0
\(171\) −37795.3 65463.4i −0.0988435 0.171202i
\(172\) 0 0
\(173\) 184310. 319235.i 0.468203 0.810952i −0.531136 0.847286i \(-0.678235\pi\)
0.999340 + 0.0363345i \(0.0115682\pi\)
\(174\) 0 0
\(175\) −66156.6 + 114587.i −0.163297 + 0.282838i
\(176\) 0 0
\(177\) −74871.4 −0.179632
\(178\) 0 0
\(179\) −298985. 517857.i −0.697456 1.20803i −0.969346 0.245700i \(-0.920982\pi\)
0.271890 0.962328i \(-0.412351\pi\)
\(180\) 0 0
\(181\) −154591. −0.350742 −0.175371 0.984502i \(-0.556112\pi\)
−0.175371 + 0.984502i \(0.556112\pi\)
\(182\) 0 0
\(183\) 500167. 1.10405
\(184\) 0 0
\(185\) 29297.3 + 50744.4i 0.0629358 + 0.109008i
\(186\) 0 0
\(187\) −195563. −0.408961
\(188\) 0 0
\(189\) 16411.1 28424.9i 0.0334182 0.0578820i
\(190\) 0 0
\(191\) 209118. 362203.i 0.414771 0.718404i −0.580634 0.814165i \(-0.697195\pi\)
0.995404 + 0.0957611i \(0.0305285\pi\)
\(192\) 0 0
\(193\) 405258. + 701928.i 0.783138 + 1.35644i 0.930105 + 0.367294i \(0.119716\pi\)
−0.146967 + 0.989141i \(0.546951\pi\)
\(194\) 0 0
\(195\) −59165.5 + 45834.9i −0.111425 + 0.0863198i
\(196\) 0 0
\(197\) 59938.4 + 103816.i 0.110037 + 0.190590i 0.915785 0.401669i \(-0.131570\pi\)
−0.805748 + 0.592259i \(0.798236\pi\)
\(198\) 0 0
\(199\) 194477. 336844.i 0.348125 0.602970i −0.637791 0.770209i \(-0.720152\pi\)
0.985916 + 0.167239i \(0.0534851\pi\)
\(200\) 0 0
\(201\) 111915. 193843.i 0.195389 0.338423i
\(202\) 0 0
\(203\) 297250. 0.506270
\(204\) 0 0
\(205\) 41778.2 + 72361.9i 0.0694328 + 0.120261i
\(206\) 0 0
\(207\) 50891.7 0.0825508
\(208\) 0 0
\(209\) −559937. −0.886693
\(210\) 0 0
\(211\) −242831. 420595.i −0.375489 0.650366i 0.614911 0.788597i \(-0.289192\pi\)
−0.990400 + 0.138230i \(0.955859\pi\)
\(212\) 0 0
\(213\) 375427. 0.566991
\(214\) 0 0
\(215\) 131128. 227121.i 0.193464 0.335089i
\(216\) 0 0
\(217\) −135344. + 234423.i −0.195115 + 0.337948i
\(218\) 0 0
\(219\) −360172. 623836.i −0.507457 0.878942i
\(220\) 0 0
\(221\) 183836. + 75154.4i 0.253191 + 0.103508i
\(222\) 0 0
\(223\) −442680. 766745.i −0.596112 1.03250i −0.993389 0.114798i \(-0.963378\pi\)
0.397277 0.917699i \(-0.369955\pi\)
\(224\) 0 0
\(225\) 119019. 206148.i 0.156733 0.271470i
\(226\) 0 0
\(227\) 346046. 599369.i 0.445727 0.772022i −0.552376 0.833595i \(-0.686279\pi\)
0.998103 + 0.0615735i \(0.0196119\pi\)
\(228\) 0 0
\(229\) −1.50110e6 −1.89156 −0.945779 0.324809i \(-0.894700\pi\)
−0.945779 + 0.324809i \(0.894700\pi\)
\(230\) 0 0
\(231\) −121565. 210557.i −0.149892 0.259621i
\(232\) 0 0
\(233\) 622467. 0.751149 0.375575 0.926792i \(-0.377445\pi\)
0.375575 + 0.926792i \(0.377445\pi\)
\(234\) 0 0
\(235\) −50649.6 −0.0598283
\(236\) 0 0
\(237\) −271770. 470719.i −0.314290 0.544366i
\(238\) 0 0
\(239\) −249504. −0.282542 −0.141271 0.989971i \(-0.545119\pi\)
−0.141271 + 0.989971i \(0.545119\pi\)
\(240\) 0 0
\(241\) −516792. + 895110.i −0.573156 + 0.992736i 0.423083 + 0.906091i \(0.360948\pi\)
−0.996239 + 0.0866448i \(0.972385\pi\)
\(242\) 0 0
\(243\) −29524.5 + 51137.9i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 100853. + 174682.i 0.107343 + 0.185923i
\(246\) 0 0
\(247\) 526359. + 215183.i 0.548959 + 0.224422i
\(248\) 0 0
\(249\) −534806. 926311.i −0.546636 0.946801i
\(250\) 0 0
\(251\) −888477. + 1.53889e6i −0.890147 + 1.54178i −0.0504493 + 0.998727i \(0.516065\pi\)
−0.839698 + 0.543054i \(0.817268\pi\)
\(252\) 0 0
\(253\) 188490. 326474.i 0.185134 0.320662i
\(254\) 0 0
\(255\) 40033.2 0.0385540
\(256\) 0 0
\(257\) −747404. 1.29454e6i −0.705867 1.22260i −0.966378 0.257126i \(-0.917224\pi\)
0.260511 0.965471i \(-0.416109\pi\)
\(258\) 0 0
\(259\) 193308. 0.179061
\(260\) 0 0
\(261\) −534770. −0.485921
\(262\) 0 0
\(263\) −1.02688e6 1.77860e6i −0.915438 1.58558i −0.806259 0.591562i \(-0.798511\pi\)
−0.109178 0.994022i \(-0.534822\pi\)
\(264\) 0 0
\(265\) −128330. −0.112257
\(266\) 0 0
\(267\) 279920. 484836.i 0.240301 0.416214i
\(268\) 0 0
\(269\) 6435.48 11146.6i 0.00542251 0.00939207i −0.863301 0.504689i \(-0.831607\pi\)
0.868724 + 0.495297i \(0.164941\pi\)
\(270\) 0 0
\(271\) 25304.7 + 43829.0i 0.0209304 + 0.0362525i 0.876301 0.481764i \(-0.160004\pi\)
−0.855370 + 0.518017i \(0.826670\pi\)
\(272\) 0 0
\(273\) 33358.6 + 244648.i 0.0270895 + 0.198671i
\(274\) 0 0
\(275\) −881634. 1.52704e6i −0.703002 1.21764i
\(276\) 0 0
\(277\) −787453. + 1.36391e6i −0.616631 + 1.06804i 0.373465 + 0.927644i \(0.378170\pi\)
−0.990096 + 0.140392i \(0.955164\pi\)
\(278\) 0 0
\(279\) 243492. 421740.i 0.187272 0.324365i
\(280\) 0 0
\(281\) 1.78516e6 1.34869 0.674344 0.738417i \(-0.264426\pi\)
0.674344 + 0.738417i \(0.264426\pi\)
\(282\) 0 0
\(283\) 141327. + 244785.i 0.104896 + 0.181685i 0.913696 0.406399i \(-0.133216\pi\)
−0.808800 + 0.588084i \(0.799882\pi\)
\(284\) 0 0
\(285\) 114623. 0.0835913
\(286\) 0 0
\(287\) 275659. 0.197546
\(288\) 0 0
\(289\) 656812. + 1.13763e6i 0.462590 + 0.801230i
\(290\) 0 0
\(291\) 668090. 0.462490
\(292\) 0 0
\(293\) 609936. 1.05644e6i 0.415064 0.718912i −0.580371 0.814352i \(-0.697092\pi\)
0.995435 + 0.0954401i \(0.0304258\pi\)
\(294\) 0 0
\(295\) 56766.4 98322.2i 0.0379783 0.0657804i
\(296\) 0 0
\(297\) 218702. + 378803.i 0.143867 + 0.249186i
\(298\) 0 0
\(299\) −302650. + 234460.i −0.195778 + 0.151667i
\(300\) 0 0
\(301\) −432602. 749289.i −0.275215 0.476687i
\(302\) 0 0
\(303\) 435371. 754084.i 0.272429 0.471860i
\(304\) 0 0
\(305\) −379219. + 656826.i −0.233421 + 0.404298i
\(306\) 0 0
\(307\) −501934. −0.303949 −0.151975 0.988384i \(-0.548563\pi\)
−0.151975 + 0.988384i \(0.548563\pi\)
\(308\) 0 0
\(309\) 546605. + 946747.i 0.325670 + 0.564076i
\(310\) 0 0
\(311\) −227712. −0.133501 −0.0667505 0.997770i \(-0.521263\pi\)
−0.0667505 + 0.997770i \(0.521263\pi\)
\(312\) 0 0
\(313\) −1.16967e6 −0.674840 −0.337420 0.941354i \(-0.609554\pi\)
−0.337420 + 0.941354i \(0.609554\pi\)
\(314\) 0 0
\(315\) 24885.3 + 43102.6i 0.0141308 + 0.0244752i
\(316\) 0 0
\(317\) −621813. −0.347546 −0.173773 0.984786i \(-0.555596\pi\)
−0.173773 + 0.984786i \(0.555596\pi\)
\(318\) 0 0
\(319\) −1.98065e6 + 3.43059e6i −1.08976 + 1.88752i
\(320\) 0 0
\(321\) 149805. 259469.i 0.0811451 0.140547i
\(322\) 0 0
\(323\) −152084. 263417.i −0.0811105 0.140488i
\(324\) 0 0
\(325\) 241929. + 1.77427e6i 0.127051 + 0.931778i
\(326\) 0 0
\(327\) −656189. 1.13655e6i −0.339359 0.587787i
\(328\) 0 0
\(329\) −83548.5 + 144710.i −0.0425548 + 0.0737072i
\(330\) 0 0
\(331\) −495102. + 857541.i −0.248384 + 0.430215i −0.963078 0.269223i \(-0.913233\pi\)
0.714693 + 0.699438i \(0.246566\pi\)
\(332\) 0 0
\(333\) −347772. −0.171864
\(334\) 0 0
\(335\) 169705. + 293938.i 0.0826195 + 0.143101i
\(336\) 0 0
\(337\) 322683. 0.154775 0.0773875 0.997001i \(-0.475342\pi\)
0.0773875 + 0.997001i \(0.475342\pi\)
\(338\) 0 0
\(339\) 649794. 0.307097
\(340\) 0 0
\(341\) −1.80366e6 3.12403e6i −0.839980 1.45489i
\(342\) 0 0
\(343\) 1.42215e6 0.652697
\(344\) 0 0
\(345\) −38585.3 + 66831.7i −0.0174532 + 0.0302298i
\(346\) 0 0
\(347\) 576417. 998384.i 0.256988 0.445117i −0.708445 0.705766i \(-0.750603\pi\)
0.965434 + 0.260649i \(0.0839365\pi\)
\(348\) 0 0
\(349\) −775854. 1.34382e6i −0.340970 0.590578i 0.643643 0.765326i \(-0.277422\pi\)
−0.984613 + 0.174748i \(0.944089\pi\)
\(350\) 0 0
\(351\) −60014.0 440135.i −0.0260007 0.190686i
\(352\) 0 0
\(353\) 2.04013e6 + 3.53362e6i 0.871409 + 1.50932i 0.860540 + 0.509384i \(0.170127\pi\)
0.0108693 + 0.999941i \(0.496540\pi\)
\(354\) 0 0
\(355\) −284643. + 493015.i −0.119875 + 0.207630i
\(356\) 0 0
\(357\) 66036.3 114378.i 0.0274228 0.0474978i
\(358\) 0 0
\(359\) 1.80155e6 0.737751 0.368875 0.929479i \(-0.379743\pi\)
0.368875 + 0.929479i \(0.379743\pi\)
\(360\) 0 0
\(361\) 802601. + 1.39015e6i 0.324140 + 0.561426i
\(362\) 0 0
\(363\) 1.79061e6 0.713238
\(364\) 0 0
\(365\) 1.09231e6 0.429153
\(366\) 0 0
\(367\) 1.29159e6 + 2.23710e6i 0.500564 + 0.867003i 1.00000 0.000651930i \(0.000207516\pi\)
−0.499435 + 0.866351i \(0.666459\pi\)
\(368\) 0 0
\(369\) −495926. −0.189606
\(370\) 0 0
\(371\) −211685. + 366650.i −0.0798465 + 0.138298i
\(372\) 0 0
\(373\) −1.13590e6 + 1.96744e6i −0.422735 + 0.732198i −0.996206 0.0870275i \(-0.972263\pi\)
0.573471 + 0.819226i \(0.305597\pi\)
\(374\) 0 0
\(375\) 372393. + 645003.i 0.136749 + 0.236856i
\(376\) 0 0
\(377\) 3.18025e6 2.46371e6i 1.15241 0.892762i
\(378\) 0 0
\(379\) −259442. 449366.i −0.0927773 0.160695i 0.815901 0.578191i \(-0.196241\pi\)
−0.908679 + 0.417496i \(0.862908\pi\)
\(380\) 0 0
\(381\) 1.15422e6 1.99917e6i 0.407359 0.705566i
\(382\) 0 0
\(383\) −597621. + 1.03511e6i −0.208175 + 0.360570i −0.951140 0.308761i \(-0.900086\pi\)
0.742964 + 0.669331i \(0.233419\pi\)
\(384\) 0 0
\(385\) 368675. 0.126763
\(386\) 0 0
\(387\) 778276. + 1.34801e6i 0.264153 + 0.457527i
\(388\) 0 0
\(389\) 4.47762e6 1.50028 0.750141 0.661277i \(-0.229985\pi\)
0.750141 + 0.661277i \(0.229985\pi\)
\(390\) 0 0
\(391\) 204782. 0.0677409
\(392\) 0 0
\(393\) 22271.4 + 38575.2i 0.00727388 + 0.0125987i
\(394\) 0 0
\(395\) 824206. 0.265793
\(396\) 0 0
\(397\) 2.06631e6 3.57895e6i 0.657989 1.13967i −0.323146 0.946349i \(-0.604740\pi\)
0.981135 0.193322i \(-0.0619262\pi\)
\(398\) 0 0
\(399\) 189076. 327489.i 0.0594571 0.102983i
\(400\) 0 0
\(401\) 155894. + 270016.i 0.0484137 + 0.0838549i 0.889217 0.457486i \(-0.151250\pi\)
−0.840803 + 0.541341i \(0.817917\pi\)
\(402\) 0 0
\(403\) 494941. + 3.62984e6i 0.151807 + 1.11333i
\(404\) 0 0
\(405\) −44770.0 77544.0i −0.0135628 0.0234915i
\(406\) 0 0
\(407\) −1.28806e6 + 2.23098e6i −0.385434 + 0.667591i
\(408\) 0 0
\(409\) −434561. + 752681.i −0.128452 + 0.222486i −0.923077 0.384615i \(-0.874334\pi\)
0.794625 + 0.607101i \(0.207668\pi\)
\(410\) 0 0
\(411\) −1.98257e6 −0.578926
\(412\) 0 0
\(413\) −187277. 324373.i −0.0540267 0.0935770i
\(414\) 0 0
\(415\) 1.62193e6 0.462286
\(416\) 0 0
\(417\) −123090. −0.0346644
\(418\) 0 0
\(419\) 2.90752e6 + 5.03598e6i 0.809074 + 1.40136i 0.913506 + 0.406825i \(0.133364\pi\)
−0.104432 + 0.994532i \(0.533303\pi\)
\(420\) 0 0
\(421\) −187958. −0.0516838 −0.0258419 0.999666i \(-0.508227\pi\)
−0.0258419 + 0.999666i \(0.508227\pi\)
\(422\) 0 0
\(423\) 150309. 260342.i 0.0408444 0.0707446i
\(424\) 0 0
\(425\) 478920. 829514.i 0.128615 0.222767i
\(426\) 0 0
\(427\) 1.25107e6 + 2.16692e6i 0.332057 + 0.575140i
\(428\) 0 0
\(429\) −3.04577e6 1.24515e6i −0.799014 0.326647i
\(430\) 0 0
\(431\) 2.09639e6 + 3.63106e6i 0.543600 + 0.941543i 0.998694 + 0.0510995i \(0.0162726\pi\)
−0.455093 + 0.890444i \(0.650394\pi\)
\(432\) 0 0
\(433\) −2.10751e6 + 3.65031e6i −0.540194 + 0.935644i 0.458698 + 0.888592i \(0.348316\pi\)
−0.998892 + 0.0470517i \(0.985017\pi\)
\(434\) 0 0
\(435\) 405454. 702268.i 0.102735 0.177942i
\(436\) 0 0
\(437\) 586334. 0.146873
\(438\) 0 0
\(439\) 1.56199e6 + 2.70544e6i 0.386827 + 0.670003i 0.992021 0.126075i \(-0.0402379\pi\)
−0.605194 + 0.796078i \(0.706905\pi\)
\(440\) 0 0
\(441\) −1.19717e6 −0.293129
\(442\) 0 0
\(443\) −7.92957e6 −1.91973 −0.959865 0.280463i \(-0.909512\pi\)
−0.959865 + 0.280463i \(0.909512\pi\)
\(444\) 0 0
\(445\) 424463. + 735191.i 0.101611 + 0.175995i
\(446\) 0 0
\(447\) 3.66656e6 0.867941
\(448\) 0 0
\(449\) 881072. 1.52606e6i 0.206251 0.357237i −0.744280 0.667868i \(-0.767207\pi\)
0.950531 + 0.310631i \(0.100540\pi\)
\(450\) 0 0
\(451\) −1.83678e6 + 3.18140e6i −0.425223 + 0.736507i
\(452\) 0 0
\(453\) −1.14208e6 1.97815e6i −0.261488 0.452911i
\(454\) 0 0
\(455\) −346566. 141681.i −0.0784798 0.0320836i
\(456\) 0 0
\(457\) −1.02583e6 1.77680e6i −0.229766 0.397967i 0.727972 0.685606i \(-0.240463\pi\)
−0.957739 + 0.287639i \(0.907130\pi\)
\(458\) 0 0
\(459\) −118803. + 205773.i −0.0263206 + 0.0455887i
\(460\) 0 0
\(461\) −97067.1 + 168125.i −0.0212726 + 0.0368452i −0.876466 0.481464i \(-0.840105\pi\)
0.855193 + 0.518309i \(0.173438\pi\)
\(462\) 0 0
\(463\) −1.93631e6 −0.419781 −0.209891 0.977725i \(-0.567311\pi\)
−0.209891 + 0.977725i \(0.567311\pi\)
\(464\) 0 0
\(465\) 369223. + 639513.i 0.0791874 + 0.137157i
\(466\) 0 0
\(467\) −4.97796e6 −1.05623 −0.528116 0.849173i \(-0.677101\pi\)
−0.528116 + 0.849173i \(0.677101\pi\)
\(468\) 0 0
\(469\) 1.11974e6 0.235063
\(470\) 0 0
\(471\) 1.70280e6 + 2.94934e6i 0.353682 + 0.612595i
\(472\) 0 0
\(473\) 1.15301e7 2.36964
\(474\) 0 0
\(475\) 1.37125e6 2.37507e6i 0.278857 0.482995i
\(476\) 0 0
\(477\) 380834. 659624.i 0.0766372 0.132740i
\(478\) 0 0
\(479\) −2.15777e6 3.73737e6i −0.429701 0.744264i 0.567146 0.823618i \(-0.308048\pi\)
−0.996847 + 0.0793538i \(0.974714\pi\)
\(480\) 0 0
\(481\) 2.06818e6 1.60220e6i 0.407592 0.315758i
\(482\) 0 0
\(483\) 127296. + 220483.i 0.0248283 + 0.0430039i
\(484\) 0 0
\(485\) −506536. + 877345.i −0.0977812 + 0.169362i
\(486\) 0 0
\(487\) −1.48661e6 + 2.57489e6i −0.284038 + 0.491967i −0.972375 0.233423i \(-0.925007\pi\)
0.688338 + 0.725390i \(0.258341\pi\)
\(488\) 0 0
\(489\) 1.84687e6 0.349273
\(490\) 0 0
\(491\) −985768. 1.70740e6i −0.184532 0.319618i 0.758887 0.651222i \(-0.225743\pi\)
−0.943419 + 0.331604i \(0.892410\pi\)
\(492\) 0 0
\(493\) −2.15185e6 −0.398745
\(494\) 0 0
\(495\) −663267. −0.121668
\(496\) 0 0
\(497\) 939058. + 1.62650e6i 0.170530 + 0.295367i
\(498\) 0 0
\(499\) 9.15096e6 1.64519 0.822594 0.568629i \(-0.192526\pi\)
0.822594 + 0.568629i \(0.192526\pi\)
\(500\) 0 0
\(501\) −1.25549e6 + 2.17458e6i −0.223470 + 0.387062i
\(502\) 0 0
\(503\) −4.15716e6 + 7.20041e6i −0.732617 + 1.26893i 0.223145 + 0.974785i \(0.428368\pi\)
−0.955761 + 0.294144i \(0.904966\pi\)
\(504\) 0 0
\(505\) 660183. + 1.14347e6i 0.115196 + 0.199525i
\(506\) 0 0
\(507\) 2.38462e6 + 2.34097e6i 0.412002 + 0.404460i
\(508\) 0 0
\(509\) −4.99683e6 8.65476e6i −0.854869 1.48068i −0.876766 0.480917i \(-0.840304\pi\)
0.0218966 0.999760i \(-0.493030\pi\)
\(510\) 0 0
\(511\) 1.80180e6 3.12081e6i 0.305250 0.528708i
\(512\) 0 0
\(513\) −340158. + 589171.i −0.0570673 + 0.0988435i
\(514\) 0 0
\(515\) −1.65771e6 −0.275417
\(516\) 0 0
\(517\) −1.11341e6 1.92848e6i −0.183201 0.317314i
\(518\) 0 0
\(519\) −3.31759e6 −0.540635
\(520\) 0 0
\(521\) −4.63095e6 −0.747439 −0.373719 0.927542i \(-0.621918\pi\)
−0.373719 + 0.927542i \(0.621918\pi\)
\(522\) 0 0
\(523\) −4.05821e6 7.02902e6i −0.648754 1.12368i −0.983421 0.181339i \(-0.941957\pi\)
0.334666 0.942337i \(-0.391376\pi\)
\(524\) 0 0
\(525\) 1.19082e6 0.188559
\(526\) 0 0
\(527\) 979782. 1.69703e6i 0.153675 0.266173i
\(528\) 0 0
\(529\) 3.02080e6 5.23217e6i 0.469334 0.812911i
\(530\) 0 0
\(531\) 336921. + 583565.i 0.0518552 + 0.0898158i
\(532\) 0 0
\(533\) 2.94924e6 2.28475e6i 0.449669 0.348354i
\(534\) 0 0
\(535\) 227159. + 393451.i 0.0343119 + 0.0594300i
\(536\) 0 0
\(537\) −2.69086e6 + 4.66071e6i −0.402676 + 0.697456i
\(538\) 0 0
\(539\) −4.43401e6 + 7.67993e6i −0.657392 + 1.13864i
\(540\) 0 0
\(541\) −2.72696e6 −0.400576 −0.200288 0.979737i \(-0.564188\pi\)
−0.200288 + 0.979737i \(0.564188\pi\)
\(542\) 0 0
\(543\) 695660. + 1.20492e6i 0.101250 + 0.175371i
\(544\) 0 0
\(545\) 1.99005e6 0.286994
\(546\) 0 0
\(547\) −3.24480e6 −0.463681 −0.231841 0.972754i \(-0.574475\pi\)
−0.231841 + 0.972754i \(0.574475\pi\)
\(548\) 0 0
\(549\) −2.25075e6 3.89842e6i −0.318711 0.552023i
\(550\) 0 0
\(551\) −6.16120e6 −0.864543
\(552\) 0 0
\(553\) 1.35956e6 2.35483e6i 0.189054 0.327451i
\(554\) 0 0
\(555\) 263676. 456699.i 0.0363360 0.0629358i
\(556\) 0 0
\(557\) −4.44217e6 7.69407e6i −0.606677 1.05080i −0.991784 0.127924i \(-0.959169\pi\)
0.385107 0.922872i \(-0.374165\pi\)
\(558\) 0 0
\(559\) −1.08387e7 4.43101e6i −1.46706 0.599754i
\(560\) 0 0
\(561\) 880032. + 1.52426e6i 0.118057 + 0.204481i
\(562\) 0 0
\(563\) 37328.4 64654.8i 0.00496328 0.00859666i −0.863533 0.504292i \(-0.831753\pi\)
0.868496 + 0.495696i \(0.165087\pi\)
\(564\) 0 0
\(565\) −492663. + 853318.i −0.0649276 + 0.112458i
\(566\) 0 0
\(567\) −295400. −0.0385880
\(568\) 0 0
\(569\) 5.84632e6 + 1.01261e7i 0.757011 + 1.31118i 0.944368 + 0.328890i \(0.106674\pi\)
−0.187357 + 0.982292i \(0.559992\pi\)
\(570\) 0 0
\(571\) 1.09629e7 1.40713 0.703566 0.710630i \(-0.251590\pi\)
0.703566 + 0.710630i \(0.251590\pi\)
\(572\) 0 0
\(573\) −3.76412e6 −0.478936
\(574\) 0 0
\(575\) 923198. + 1.59903e6i 0.116446 + 0.201691i
\(576\) 0 0
\(577\) −1.06395e7 −1.33040 −0.665202 0.746663i \(-0.731655\pi\)
−0.665202 + 0.746663i \(0.731655\pi\)
\(578\) 0 0
\(579\) 3.64732e6 6.31735e6i 0.452145 0.783138i
\(580\) 0 0
\(581\) 2.67543e6 4.63398e6i 0.328817 0.569527i
\(582\) 0 0
\(583\) −2.82102e6 4.88615e6i −0.343744 0.595382i
\(584\) 0 0
\(585\) 623493. + 254892.i 0.0753255 + 0.0307941i
\(586\) 0 0
\(587\) −4.58015e6 7.93305e6i −0.548636 0.950266i −0.998368 0.0571023i \(-0.981814\pi\)
0.449732 0.893163i \(-0.351519\pi\)
\(588\) 0 0
\(589\) 2.80532e6 4.85895e6i 0.333191 0.577104i
\(590\) 0 0
\(591\) 539446. 934348.i 0.0635300 0.110037i
\(592\) 0 0
\(593\) 1.13631e7 1.32697 0.663484 0.748191i \(-0.269077\pi\)
0.663484 + 0.748191i \(0.269077\pi\)
\(594\) 0 0
\(595\) 100135. + 173440.i 0.0115957 + 0.0200843i
\(596\) 0 0
\(597\) −3.50058e6 −0.401980
\(598\) 0 0
\(599\) 41835.6 0.00476408 0.00238204 0.999997i \(-0.499242\pi\)
0.00238204 + 0.999997i \(0.499242\pi\)
\(600\) 0 0
\(601\) −973576. 1.68628e6i −0.109947 0.190434i 0.805802 0.592186i \(-0.201735\pi\)
−0.915749 + 0.401752i \(0.868401\pi\)
\(602\) 0 0
\(603\) −2.01448e6 −0.225615
\(604\) 0 0
\(605\) −1.35761e6 + 2.35145e6i −0.150795 + 0.261185i
\(606\) 0 0
\(607\) 1.52565e6 2.64250e6i 0.168067 0.291101i −0.769673 0.638438i \(-0.779581\pi\)
0.937740 + 0.347337i \(0.112914\pi\)
\(608\) 0 0
\(609\) −1.33763e6 2.31684e6i −0.146148 0.253135i
\(610\) 0 0
\(611\) 305530. + 2.24072e6i 0.0331093 + 0.242820i
\(612\) 0 0
\(613\) −6.76690e6 1.17206e7i −0.727342 1.25979i −0.958003 0.286759i \(-0.907422\pi\)
0.230661 0.973034i \(-0.425911\pi\)
\(614\) 0 0
\(615\) 376003. 651257.i 0.0400870 0.0694328i
\(616\) 0 0
\(617\) −3.87947e6 + 6.71944e6i −0.410260 + 0.710592i −0.994918 0.100688i \(-0.967895\pi\)
0.584658 + 0.811280i \(0.301229\pi\)
\(618\) 0 0
\(619\) 7.15135e6 0.750173 0.375087 0.926990i \(-0.377613\pi\)
0.375087 + 0.926990i \(0.377613\pi\)
\(620\) 0 0
\(621\) −229013. 396662.i −0.0238304 0.0412754i
\(622\) 0 0
\(623\) 2.80067e6 0.289096
\(624\) 0 0
\(625\) 8.05423e6 0.824753
\(626\) 0 0
\(627\) 2.51972e6 + 4.36427e6i 0.255966 + 0.443346i
\(628\) 0 0
\(629\) −1.39940e6 −0.141031
\(630\) 0 0
\(631\) −1.05433e6 + 1.82615e6i −0.105415 + 0.182584i −0.913908 0.405922i \(-0.866950\pi\)
0.808493 + 0.588506i \(0.200284\pi\)
\(632\) 0 0
\(633\) −2.18548e6 + 3.78536e6i −0.216789 + 0.375489i
\(634\) 0 0
\(635\) 1.75023e6 + 3.03148e6i 0.172250 + 0.298346i
\(636\) 0 0
\(637\) 7.11950e6 5.51541e6i 0.695186 0.538554i
\(638\) 0 0
\(639\) −1.68942e6 2.92616e6i −0.163676 0.283495i
\(640\) 0 0
\(641\) 3.14729e6 5.45127e6i 0.302546 0.524026i −0.674166 0.738580i \(-0.735497\pi\)
0.976712 + 0.214555i \(0.0688300\pi\)
\(642\) 0 0
\(643\) 4.28140e6 7.41560e6i 0.408374 0.707325i −0.586334 0.810070i \(-0.699429\pi\)
0.994708 + 0.102745i \(0.0327626\pi\)
\(644\) 0 0
\(645\) −2.36031e6 −0.223393
\(646\) 0 0
\(647\) −7.15260e6 1.23887e7i −0.671743 1.16349i −0.977409 0.211354i \(-0.932213\pi\)
0.305666 0.952139i \(-0.401121\pi\)
\(648\) 0 0
\(649\) 4.99148e6 0.465176
\(650\) 0 0
\(651\) 2.43619e6 0.225299
\(652\) 0 0
\(653\) 5.63627e6 + 9.76231e6i 0.517260 + 0.895921i 0.999799 + 0.0200466i \(0.00638145\pi\)
−0.482539 + 0.875875i \(0.660285\pi\)
\(654\) 0 0
\(655\) −67543.3 −0.00615147
\(656\) 0 0
\(657\) −3.24155e6 + 5.61452e6i −0.292981 + 0.507457i
\(658\) 0 0
\(659\) 2.30484e6 3.99210e6i 0.206741 0.358086i −0.743945 0.668241i \(-0.767048\pi\)
0.950686 + 0.310155i \(0.100381\pi\)
\(660\) 0 0
\(661\) −4.82633e6 8.35945e6i −0.429648 0.744173i 0.567193 0.823585i \(-0.308029\pi\)
−0.996842 + 0.0794117i \(0.974696\pi\)
\(662\) 0 0
\(663\) −241489. 1.77105e6i −0.0213360 0.156476i
\(664\) 0 0
\(665\) 286709. + 496594.i 0.0251412 + 0.0435459i
\(666\) 0 0
\(667\) 2.07403e6 3.59232e6i 0.180509 0.312651i
\(668\) 0 0
\(669\) −3.98412e6 + 6.90070e6i −0.344165 + 0.596112i
\(670\) 0 0
\(671\) −3.33448e7 −2.85905
\(672\) 0 0
\(673\) −4.53822e6 7.86042e6i −0.386231 0.668972i 0.605708 0.795687i \(-0.292890\pi\)
−0.991939 + 0.126715i \(0.959557\pi\)
\(674\) 0 0
\(675\) −2.14235e6 −0.180980
\(676\) 0 0
\(677\) −4.71013e6 −0.394967 −0.197484 0.980306i \(-0.563277\pi\)
−0.197484 + 0.980306i \(0.563277\pi\)
\(678\) 0 0
\(679\) 1.67110e6 + 2.89443e6i 0.139100 + 0.240929i
\(680\) 0 0
\(681\) −6.22883e6 −0.514681
\(682\) 0 0
\(683\) −3.65350e6 + 6.32805e6i −0.299680 + 0.519060i −0.976063 0.217490i \(-0.930213\pi\)
0.676383 + 0.736550i \(0.263546\pi\)
\(684\) 0 0
\(685\) 1.50315e6 2.60353e6i 0.122398 0.212000i
\(686\) 0 0
\(687\) 6.75493e6 + 1.16999e7i 0.546046 + 0.945779i
\(688\) 0 0
\(689\) 774115. + 5.67726e6i 0.0621237 + 0.455607i
\(690\) 0 0
\(691\) −1.05478e7 1.82693e7i −0.840361 1.45555i −0.889589 0.456761i \(-0.849009\pi\)
0.0492280 0.998788i \(-0.484324\pi\)
\(692\) 0 0
\(693\) −1.09408e6 + 1.89501e6i −0.0865402 + 0.149892i
\(694\) 0 0
\(695\) 93325.3 161644.i 0.00732887 0.0126940i
\(696\) 0 0
\(697\) −1.99555e6 −0.155589
\(698\) 0 0
\(699\) −2.80110e6 4.85165e6i −0.216838 0.375575i
\(700\) 0 0
\(701\) 9.13818e6 0.702368 0.351184 0.936306i \(-0.385779\pi\)
0.351184 + 0.936306i \(0.385779\pi\)
\(702\) 0 0
\(703\) −4.00676e6 −0.305777
\(704\) 0 0
\(705\) 227923. + 394775.i 0.0172709 + 0.0299141i
\(706\) 0 0
\(707\) 4.35599e6 0.327747
\(708\) 0 0
\(709\) −2.21617e6 + 3.83852e6i −0.165572 + 0.286780i −0.936858 0.349709i \(-0.886280\pi\)
0.771286 + 0.636489i \(0.219614\pi\)
\(710\) 0 0
\(711\) −2.44593e6 + 4.23647e6i −0.181455 + 0.314290i
\(712\) 0 0
\(713\) 1.88869e6 + 3.27131e6i 0.139135 + 0.240989i
\(714\) 0 0
\(715\) 3.94441e6 3.05570e6i 0.288547 0.223535i
\(716\) 0 0
\(717\) 1.12277e6 + 1.94469e6i 0.0815629 + 0.141271i
\(718\) 0 0
\(719\) 7.35001e6 1.27306e7i 0.530232 0.918388i −0.469146 0.883121i \(-0.655438\pi\)
0.999378 0.0352678i \(-0.0112284\pi\)
\(720\) 0 0
\(721\) −2.73446e6 + 4.73622e6i −0.195899 + 0.339308i
\(722\) 0 0
\(723\) 9.30225e6 0.661824
\(724\) 0 0
\(725\) −9.70097e6 1.68026e7i −0.685441 1.18722i
\(726\) 0 0
\(727\) 2.31830e7 1.62680 0.813400 0.581705i \(-0.197614\pi\)
0.813400 + 0.581705i \(0.197614\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 3.13169e6 + 5.42425e6i 0.216763 + 0.375445i
\(732\) 0 0
\(733\) −1.19022e7 −0.818215 −0.409108 0.912486i \(-0.634160\pi\)
−0.409108 + 0.912486i \(0.634160\pi\)
\(734\) 0 0
\(735\) 907676. 1.57214e6i 0.0619744 0.107343i
\(736\) 0 0
\(737\) −7.46110e6 + 1.29230e7i −0.505981 + 0.876385i
\(738\) 0 0
\(739\) −5.58988e6 9.68195e6i −0.376523 0.652157i 0.614031 0.789282i \(-0.289547\pi\)
−0.990554 + 0.137125i \(0.956214\pi\)
\(740\) 0 0
\(741\) −691434. 5.07089e6i −0.0462599 0.339264i
\(742\) 0 0
\(743\) −3.16516e6 5.48222e6i −0.210341 0.364321i 0.741480 0.670975i \(-0.234124\pi\)
−0.951821 + 0.306653i \(0.900791\pi\)
\(744\) 0 0
\(745\) −2.77993e6 + 4.81498e6i −0.183503 + 0.317837i
\(746\) 0 0
\(747\) −4.81325e6 + 8.33680e6i −0.315600 + 0.546636i
\(748\) 0 0
\(749\) 1.49883e6 0.0976221
\(750\) 0 0
\(751\) −1.27302e6 2.20493e6i −0.0823635 0.142658i 0.821901 0.569630i \(-0.192914\pi\)
−0.904265 + 0.426972i \(0.859580\pi\)
\(752\) 0 0
\(753\) 1.59926e7 1.02785
\(754\) 0 0
\(755\) 3.46364e6 0.221139
\(756\) 0 0
\(757\) −1.31648e6 2.28021e6i −0.0834977 0.144622i 0.821252 0.570565i \(-0.193276\pi\)
−0.904750 + 0.425943i \(0.859942\pi\)
\(758\) 0 0
\(759\) −3.39282e6 −0.213775
\(760\) 0 0
\(761\) −4.70923e6 + 8.15663e6i −0.294774 + 0.510563i −0.974932 0.222502i \(-0.928578\pi\)
0.680159 + 0.733065i \(0.261911\pi\)
\(762\) 0 0
\(763\) 3.28266e6 5.68574e6i 0.204134 0.353570i
\(764\) 0 0
\(765\) −180149. 312028.i −0.0111296 0.0192770i
\(766\) 0 0
\(767\) −4.69216e6 1.91822e6i −0.287995 0.117736i
\(768\) 0 0
\(769\) 581498. + 1.00718e6i 0.0354595 + 0.0614176i 0.883211 0.468977i \(-0.155377\pi\)
−0.847751 + 0.530394i \(0.822044\pi\)
\(770\) 0 0
\(771\) −6.72664e6 + 1.16509e7i −0.407532 + 0.705867i
\(772\) 0 0
\(773\) 4.67559e6 8.09835e6i 0.281441 0.487470i −0.690299 0.723524i \(-0.742521\pi\)
0.971740 + 0.236054i \(0.0758543\pi\)
\(774\) 0 0
\(775\) 1.76682e7 1.05667
\(776\) 0 0
\(777\) −869887. 1.50669e6i −0.0516904 0.0895304i
\(778\) 0 0
\(779\) −5.71367e6 −0.337343
\(780\) 0 0
\(781\) −2.50287e7 −1.46829
\(782\) 0 0
\(783\) 2.40647e6 + 4.16812e6i 0.140273 + 0.242961i
\(784\) 0 0
\(785\) −5.16416e6 −0.299106
\(786\) 0 0
\(787\) −3.38009e6 + 5.85449e6i −0.194532 + 0.336940i −0.946747 0.321978i \(-0.895652\pi\)
0.752215 + 0.658918i \(0.228986\pi\)
\(788\) 0 0
\(789\) −9.24189e6 + 1.60074e7i −0.528528 + 0.915438i
\(790\) 0 0
\(791\) 1.62534e6 + 2.81516e6i 0.0923638 + 0.159979i
\(792\) 0 0
\(793\) 3.13452e7 + 1.28144e7i 1.77006 + 0.723625i
\(794\) 0 0
\(795\) 577485. + 1.00023e6i 0.0324058 + 0.0561285i
\(796\) 0 0
\(797\) −1.67981e6 + 2.90951e6i −0.0936728 + 0.162246i −0.909054 0.416679i \(-0.863194\pi\)
0.815381 + 0.578925i \(0.196527\pi\)
\(798\) 0 0
\(799\) 604824. 1.04759e6i 0.0335168 0.0580527i
\(800\) 0 0
\(801\) −5.03857e6 −0.277476
\(802\) 0 0
\(803\) 2.40117e7 + 4.15895e7i 1.31412 + 2.27612i
\(804\) 0 0
\(805\) −386055. −0.0209971
\(806\) 0 0
\(807\) −115839. −0.00626138
\(808\) 0 0
\(809\) 492148. + 852425.i 0.0264377 + 0.0457915i 0.878942 0.476929i \(-0.158250\pi\)
−0.852504 + 0.522721i \(0.824917\pi\)
\(810\) 0 0
\(811\) 2.22480e7 1.18779 0.593893 0.804544i \(-0.297590\pi\)
0.593893 + 0.804544i \(0.297590\pi\)
\(812\) 0 0
\(813\) 227742. 394461.i 0.0120842 0.0209304i
\(814\) 0 0
\(815\) −1.40027e6 + 2.42534e6i −0.0738444 + 0.127902i
\(816\) 0 0
\(817\) 8.96668e6 + 1.55308e7i 0.469977 + 0.814024i
\(818\) 0 0
\(819\) 1.75673e6 1.36092e6i 0.0915154 0.0708961i
\(820\) 0 0
\(821\) 2.48133e6 + 4.29780e6i 0.128478 + 0.222530i 0.923087 0.384591i \(-0.125658\pi\)
−0.794609 + 0.607121i \(0.792324\pi\)
\(822\) 0 0
\(823\) 1.90316e7 3.29637e7i 0.979435 1.69643i 0.314987 0.949096i \(-0.398000\pi\)
0.664448 0.747335i \(-0.268667\pi\)
\(824\) 0 0
\(825\) −7.93471e6 + 1.37433e7i −0.405879 + 0.703002i
\(826\) 0 0
\(827\) −2.49081e7 −1.26642 −0.633209 0.773980i \(-0.718263\pi\)
−0.633209 + 0.773980i \(0.718263\pi\)
\(828\) 0 0
\(829\) −1.26064e7 2.18349e7i −0.637095 1.10348i −0.986067 0.166348i \(-0.946803\pi\)
0.348972 0.937133i \(-0.386531\pi\)
\(830\) 0 0
\(831\) 1.41742e7 0.712024
\(832\) 0 0
\(833\) −4.81727e6 −0.240541
\(834\) 0 0
\(835\) −1.90379e6 3.29746e6i −0.0944937 0.163668i
\(836\) 0 0
\(837\) −4.38285e6 −0.216243
\(838\) 0 0
\(839\) −9.20499e6 + 1.59435e7i −0.451459 + 0.781950i −0.998477 0.0551710i \(-0.982430\pi\)
0.547018 + 0.837121i \(0.315763\pi\)
\(840\) 0 0
\(841\) −1.15383e7 + 1.99849e7i −0.562538 + 0.974344i
\(842\) 0 0
\(843\) −8.03323e6 1.39140e7i −0.389333 0.674344i
\(844\) 0 0
\(845\) −4.88217e6 + 1.35663e6i −0.235218 + 0.0653610i
\(846\) 0 0
\(847\) 4.47887e6 + 7.75763e6i 0.214516 + 0.371553i
\(848\) 0 0
\(849\) 1.27194e6 2.20306e6i 0.0605615 0.104896i
\(850\) 0 0
\(851\) 1.34878e6 2.33616e6i 0.0638437 0.110581i
\(852\) 0 0
\(853\) 1.07679e7 0.506708 0.253354 0.967374i \(-0.418466\pi\)
0.253354 + 0.967374i \(0.418466\pi\)
\(854\) 0 0
\(855\) −515805. 893400.i −0.0241307 0.0417956i
\(856\) 0 0
\(857\) 2.40885e7 1.12036 0.560179 0.828371i \(-0.310732\pi\)
0.560179 + 0.828371i \(0.310732\pi\)
\(858\) 0 0
\(859\) −3.88080e6 −0.179448 −0.0897239 0.995967i \(-0.528598\pi\)
−0.0897239 + 0.995967i \(0.528598\pi\)
\(860\) 0 0
\(861\) −1.24046e6 2.14855e6i −0.0570265 0.0987728i
\(862\) 0 0
\(863\) 2.17440e7 0.993831 0.496916 0.867799i \(-0.334466\pi\)
0.496916 + 0.867799i \(0.334466\pi\)
\(864\) 0 0
\(865\) 2.51534e6 4.35670e6i 0.114303 0.197978i
\(866\) 0 0
\(867\) 5.91131e6 1.02387e7i 0.267077 0.462590i
\(868\) 0 0
\(869\) 1.81182e7 + 3.13816e7i 0.813889 + 1.40970i
\(870\) 0 0
\(871\) 1.19800e7 9.28077e6i 0.535070 0.414513i
\(872\) 0 0
\(873\) −3.00641e6 5.20725e6i −0.133509 0.231245i
\(874\) 0 0
\(875\) −1.86294e6 + 3.22671e6i −0.0822581 + 0.142475i
\(876\) 0 0
\(877\) −9.62832e6 + 1.66767e7i −0.422719 + 0.732170i −0.996204 0.0870454i \(-0.972257\pi\)
0.573486 + 0.819216i \(0.305591\pi\)
\(878\) 0 0
\(879\) −1.09788e7 −0.479275
\(880\) 0 0
\(881\) 1.73478e7 + 3.00472e7i 0.753015 + 1.30426i 0.946355 + 0.323128i \(0.104734\pi\)
−0.193340 + 0.981132i \(0.561932\pi\)
\(882\) 0 0
\(883\) 2.20047e7 0.949758 0.474879 0.880051i \(-0.342492\pi\)
0.474879 + 0.880051i \(0.342492\pi\)
\(884\) 0 0
\(885\) −1.02179e6 −0.0438536
\(886\) 0 0
\(887\) 1.04067e7 + 1.80250e7i 0.444125 + 0.769246i 0.997991 0.0633594i \(-0.0201814\pi\)
−0.553866 + 0.832606i \(0.686848\pi\)
\(888\) 0 0
\(889\) 1.15483e7 0.490075
\(890\) 0 0
\(891\) 1.96832e6 3.40923e6i 0.0830618 0.143867i
\(892\) 0 0
\(893\) 1.73174e6 2.99946e6i 0.0726697 0.125868i
\(894\) 0 0
\(895\) −4.08034e6 7.06736e6i −0.170270 0.294917i
\(896\) 0 0
\(897\) 3.18936e6 + 1.30385e6i 0.132350 + 0.0541063i
\(898\) 0 0
\(899\) −1.98464e7 3.43749e7i −0.818996 1.41854i
\(900\) 0 0
\(901\) 1.53243e6 2.65425e6i 0.0628882 0.108926i
\(902\) 0 0
\(903\) −3.89342e6 + 6.74360e6i −0.158896 + 0.275215i
\(904\) 0 0
\(905\) −2.10975e6 −0.0856269
\(906\) 0 0
\(907\) 2.55114e6 + 4.41870e6i 0.102971 + 0.178351i 0.912908 0.408166i \(-0.133832\pi\)
−0.809936 + 0.586518i \(0.800498\pi\)
\(908\) 0 0
\(909\) −7.83667e6 −0.314573
\(910\) 0 0
\(911\) 3.41074e7 1.36161 0.680805 0.732465i \(-0.261630\pi\)
0.680805 + 0.732465i \(0.261630\pi\)
\(912\) 0 0
\(913\) 3.56541e7 + 6.17547e7i 1.41557 + 2.45185i
\(914\) 0 0
\(915\) 6.82594e6 0.269532
\(916\) 0 0
\(917\) −111415. + 192977.i −0.00437544 + 0.00757849i
\(918\) 0 0
\(919\) −3.79211e6 + 6.56812e6i −0.148113 + 0.256538i −0.930530 0.366216i \(-0.880653\pi\)
0.782417 + 0.622754i \(0.213986\pi\)
\(920\) 0 0
\(921\) 2.25870e6 + 3.91219e6i 0.0877426 + 0.151975i
\(922\) 0 0
\(923\) 2.35278e7 + 9.61848e6i 0.909028 + 0.371623i
\(924\) 0 0
\(925\) −6.30874e6 1.09271e7i −0.242431 0.419903i
\(926\) 0 0
\(927\) 4.91944e6 8.52073e6i 0.188025 0.325670i
\(928\) 0 0
\(929\) −1.97048e7 + 3.41297e7i −0.749088 + 1.29746i 0.199172 + 0.979965i \(0.436175\pi\)
−0.948260 + 0.317494i \(0.897159\pi\)
\(930\) 0 0
\(931\) −1.37928e7 −0.521531
\(932\) 0 0
\(933\) 1.02470e6 + 1.77484e6i 0.0385384 + 0.0667505i
\(934\) 0 0
\(935\) −2.66891e6 −0.0998400
\(936\) 0 0
\(937\) 1.25596e7 0.467334 0.233667 0.972317i \(-0.424927\pi\)
0.233667 + 0.972317i \(0.424927\pi\)
\(938\) 0 0
\(939\) 5.26349e6 + 9.11664e6i 0.194809 + 0.337420i
\(940\) 0 0
\(941\) −7.71119e6 −0.283888 −0.141944 0.989875i \(-0.545335\pi\)
−0.141944 + 0.989875i \(0.545335\pi\)
\(942\) 0 0
\(943\) 1.92338e6 3.33138e6i 0.0704344 0.121996i
\(944\) 0 0
\(945\) 223968. 387923.i 0.00815841 0.0141308i
\(946\) 0 0
\(947\) −2.33024e7 4.03609e7i −0.844355 1.46247i −0.886180 0.463340i \(-0.846651\pi\)
0.0418255 0.999125i \(-0.486683\pi\)
\(948\) 0 0
\(949\) −6.58904e6 4.83232e7i −0.237496 1.74177i
\(950\) 0 0
\(951\) 2.79816e6 + 4.84655e6i 0.100328 + 0.173773i
\(952\) 0 0
\(953\) 2.59113e7 4.48797e7i 0.924182 1.60073i 0.131309 0.991341i \(-0.458082\pi\)
0.792872 0.609388i \(-0.208585\pi\)
\(954\) 0 0
\(955\) 2.85390e6 4.94310e6i 0.101258 0.175384i
\(956\) 0 0
\(957\) 3.56517e7 1.25835
\(958\) 0 0
\(959\) −4.95901e6 8.58926e6i −0.174120 0.301585i
\(960\) 0 0
\(961\) 7.51664e6 0.262552
\(962\) 0 0
\(963\) −2.69648e6 −0.0936983
\(964\) 0 0
\(965\) 5.53069e6 + 9.57943e6i 0.191188 + 0.331147i
\(966\) 0 0
\(967\) −5.61771e7 −1.93194 −0.965968 0.258660i \(-0.916719\pi\)
−0.965968 + 0.258660i \(0.916719\pi\)
\(968\) 0 0
\(969\) −1.36876e6 + 2.37075e6i −0.0468292 + 0.0811105i
\(970\) 0 0
\(971\) −7.55563e6 + 1.30867e7i −0.257172 + 0.445434i −0.965483 0.260466i \(-0.916124\pi\)
0.708312 + 0.705900i \(0.249457\pi\)
\(972\) 0 0
\(973\) −307887. 533277.i −0.0104258 0.0180580i
\(974\) 0 0
\(975\) 1.27404e7 9.86989e6i 0.429213 0.332507i
\(976\) 0 0
\(977\) 1.11361e7 + 1.92884e7i 0.373249 + 0.646485i 0.990063 0.140623i \(-0.0449105\pi\)
−0.616815 + 0.787108i \(0.711577\pi\)
\(978\) 0 0
\(979\) −1.86616e7 + 3.23228e7i −0.622287 + 1.07783i
\(980\) 0 0
\(981\) −5.90570e6 + 1.02290e7i −0.195929 + 0.339359i
\(982\) 0 0
\(983\) 4.00313e6 0.132134 0.0660671 0.997815i \(-0.478955\pi\)
0.0660671 + 0.997815i \(0.478955\pi\)
\(984\) 0 0
\(985\) 817999. + 1.41682e6i 0.0268635 + 0.0465289i
\(986\) 0 0
\(987\) 1.50387e6 0.0491381
\(988\) 0 0
\(989\) −1.20737e7 −0.392509
\(990\) 0 0
\(991\) 1.52042e7 + 2.63344e7i 0.491789 + 0.851803i 0.999955 0.00945598i \(-0.00300998\pi\)
−0.508167 + 0.861259i \(0.669677\pi\)
\(992\) 0 0
\(993\) 8.91183e6 0.286810
\(994\) 0 0
\(995\) 2.65409e6 4.59701e6i 0.0849880 0.147204i
\(996\) 0 0
\(997\) −2.87718e7 + 4.98343e7i −0.916705 + 1.58778i −0.112318 + 0.993672i \(0.535828\pi\)
−0.804386 + 0.594107i \(0.797506\pi\)
\(998\) 0 0
\(999\) 1.56498e6 + 2.71062e6i 0.0496128 + 0.0859319i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.6.q.b.289.5 yes 18
13.9 even 3 inner 312.6.q.b.217.5 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.6.q.b.217.5 18 13.9 even 3 inner
312.6.q.b.289.5 yes 18 1.1 even 1 trivial