Properties

Label 31.3.b.a
Level $31$
Weight $3$
Character orbit 31.b
Analytic conductor $0.845$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [31,3,Mod(30,31)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(31, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("31.30"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 31 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 31.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.844688819517\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-26}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-26}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + \beta q^{3} - 3 q^{4} + 2 q^{5} - \beta q^{6} + 8 q^{7} + 7 q^{8} - 17 q^{9} - 2 q^{10} - 3 \beta q^{11} - 3 \beta q^{12} + 3 \beta q^{13} - 8 q^{14} + 2 \beta q^{15} + 5 q^{16} + 17 q^{18} + \cdots + 51 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 6 q^{4} + 4 q^{5} + 16 q^{7} + 14 q^{8} - 34 q^{9} - 4 q^{10} - 16 q^{14} + 10 q^{16} + 34 q^{18} + 28 q^{19} - 12 q^{20} - 42 q^{25} - 48 q^{28} - 10 q^{31} - 66 q^{32} + 156 q^{33} + 32 q^{35}+ \cdots - 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
30.1
5.09902i
5.09902i
−1.00000 5.09902i −3.00000 2.00000 5.09902i 8.00000 7.00000 −17.0000 −2.00000
30.2 −1.00000 5.09902i −3.00000 2.00000 5.09902i 8.00000 7.00000 −17.0000 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 31.3.b.a 2
3.b odd 2 1 279.3.d.a 2
4.b odd 2 1 496.3.e.b 2
5.b even 2 1 775.3.d.c 2
5.c odd 4 2 775.3.c.a 4
31.b odd 2 1 inner 31.3.b.a 2
93.c even 2 1 279.3.d.a 2
124.d even 2 1 496.3.e.b 2
155.c odd 2 1 775.3.d.c 2
155.f even 4 2 775.3.c.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
31.3.b.a 2 1.a even 1 1 trivial
31.3.b.a 2 31.b odd 2 1 inner
279.3.d.a 2 3.b odd 2 1
279.3.d.a 2 93.c even 2 1
496.3.e.b 2 4.b odd 2 1
496.3.e.b 2 124.d even 2 1
775.3.c.a 4 5.c odd 4 2
775.3.c.a 4 155.f even 4 2
775.3.d.c 2 5.b even 2 1
775.3.d.c 2 155.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} + 1 \) acting on \(S_{3}^{\mathrm{new}}(31, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 26 \) Copy content Toggle raw display
$5$ \( (T - 2)^{2} \) Copy content Toggle raw display
$7$ \( (T - 8)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 234 \) Copy content Toggle raw display
$13$ \( T^{2} + 234 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T - 14)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 936 \) Copy content Toggle raw display
$29$ \( T^{2} + 234 \) Copy content Toggle raw display
$31$ \( T^{2} + 10T + 961 \) Copy content Toggle raw display
$37$ \( T^{2} + 2106 \) Copy content Toggle raw display
$41$ \( (T + 16)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 234 \) Copy content Toggle raw display
$47$ \( (T + 4)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 2106 \) Copy content Toggle raw display
$59$ \( (T - 74)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 234 \) Copy content Toggle raw display
$67$ \( (T - 62)^{2} \) Copy content Toggle raw display
$71$ \( (T + 94)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 8424 \) Copy content Toggle raw display
$79$ \( T^{2} + 3744 \) Copy content Toggle raw display
$83$ \( T^{2} + 234 \) Copy content Toggle raw display
$89$ \( T^{2} + 8424 \) Copy content Toggle raw display
$97$ \( (T + 100)^{2} \) Copy content Toggle raw display
show more
show less