Defining parameters
| Level: | \( N \) | \(=\) | \( 31 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 31.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 31 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(8\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(31, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 7 | 7 | 0 |
| Cusp forms | 5 | 5 | 0 |
| Eisenstein series | 2 | 2 | 0 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(31, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 31.3.b.a | $2$ | $0.845$ | \(\Q(\sqrt{-26}) \) | None | \(-2\) | \(0\) | \(4\) | \(16\) | \(q-q^{2}+\beta q^{3}-3q^{4}+2q^{5}-\beta q^{6}+\cdots\) |
| 31.3.b.b | $3$ | $0.845$ | 3.3.837.1 | \(\Q(\sqrt{-31}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{2}+(4+\beta _{1}-2\beta _{2})q^{4}+(-3\beta _{1}+\cdots)q^{5}+\cdots\) |