Properties

Label 31.11.b.a.30.3
Level $31$
Weight $11$
Character 31.30
Self dual yes
Analytic conductor $19.696$
Analytic rank $0$
Dimension $3$
CM discriminant -31
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [31,11,Mod(30,31)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(31, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 11, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("31.30"); S:= CuspForms(chi, 11); N := Newforms(S);
 
Level: \( N \) \(=\) \( 31 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 31.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.6960748329\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.837.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 30.3
Root \(-2.36147\) of defining polynomial
Character \(\chi\) \(=\) 31.30

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+57.4935 q^{2} +2281.50 q^{4} +1394.76 q^{5} -2750.44 q^{7} +72298.4 q^{8} +59049.0 q^{9} +80189.9 q^{10} -158132. q^{14} +1.82043e6 q^{16} +3.39493e6 q^{18} +2.05577e6 q^{19} +3.18216e6 q^{20} -7.82026e6 q^{25} -6.27513e6 q^{28} -2.86292e7 q^{31} +3.06292e7 q^{32} -3.83621e6 q^{35} +1.34721e8 q^{36} +1.18193e8 q^{38} +1.00839e8 q^{40} +6.60613e7 q^{41} +8.23595e7 q^{45} -4.58037e8 q^{47} -2.74910e8 q^{49} -4.49614e8 q^{50} -1.98852e8 q^{56} -7.66846e8 q^{59} -1.64599e9 q^{62} -1.62410e8 q^{63} -1.03136e8 q^{64} +9.85211e8 q^{67} -2.20557e8 q^{70} -1.29409e9 q^{71} +4.26915e9 q^{72} +4.69025e9 q^{76} +2.53907e9 q^{80} +3.48678e9 q^{81} +3.79810e9 q^{82} +4.73513e9 q^{90} -2.63342e10 q^{94} +2.86731e9 q^{95} -1.17935e10 q^{97} -1.58056e10 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3072 q^{4} + 40275 q^{8} + 177147 q^{9} - 136653 q^{10} - 1650069 q^{14} + 3145728 q^{16} + 17403147 q^{20} + 29296875 q^{25} + 76042875 q^{28} - 85887453 q^{31} + 41241600 q^{32} + 300399678 q^{35}+ \cdots - 51955098525 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 57.4935 1.79667 0.898336 0.439309i \(-0.144777\pi\)
0.898336 + 0.439309i \(0.144777\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 2281.50 2.22803
\(5\) 1394.76 0.446325 0.223162 0.974781i \(-0.428362\pi\)
0.223162 + 0.974781i \(0.428362\pi\)
\(6\) 0 0
\(7\) −2750.44 −0.163648 −0.0818241 0.996647i \(-0.526075\pi\)
−0.0818241 + 0.996647i \(0.526075\pi\)
\(8\) 72298.4 2.20637
\(9\) 59049.0 1.00000
\(10\) 80189.9 0.801899
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −158132. −0.294022
\(15\) 0 0
\(16\) 1.82043e6 1.73609
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 3.39493e6 1.79667
\(19\) 2.05577e6 0.830245 0.415123 0.909765i \(-0.363739\pi\)
0.415123 + 0.909765i \(0.363739\pi\)
\(20\) 3.18216e6 0.994426
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −7.82026e6 −0.800794
\(26\) 0 0
\(27\) 0 0
\(28\) −6.27513e6 −0.364613
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −2.86292e7 −1.00000
\(32\) 3.06292e7 0.912821
\(33\) 0 0
\(34\) 0 0
\(35\) −3.83621e6 −0.0730402
\(36\) 1.34721e8 2.22803
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 1.18193e8 1.49168
\(39\) 0 0
\(40\) 1.00839e8 0.984758
\(41\) 6.60613e7 0.570201 0.285101 0.958498i \(-0.407973\pi\)
0.285101 + 0.958498i \(0.407973\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 8.23595e7 0.446325
\(46\) 0 0
\(47\) −4.58037e8 −1.99715 −0.998577 0.0533350i \(-0.983015\pi\)
−0.998577 + 0.0533350i \(0.983015\pi\)
\(48\) 0 0
\(49\) −2.74910e8 −0.973219
\(50\) −4.49614e8 −1.43877
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.98852e8 −0.361069
\(57\) 0 0
\(58\) 0 0
\(59\) −7.66846e8 −1.07263 −0.536313 0.844019i \(-0.680183\pi\)
−0.536313 + 0.844019i \(0.680183\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −1.64599e9 −1.79667
\(63\) −1.62410e8 −0.163648
\(64\) −1.03136e8 −0.0960532
\(65\) 0 0
\(66\) 0 0
\(67\) 9.85211e8 0.729718 0.364859 0.931063i \(-0.381117\pi\)
0.364859 + 0.931063i \(0.381117\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −2.20557e8 −0.131229
\(71\) −1.29409e9 −0.717253 −0.358627 0.933481i \(-0.616755\pi\)
−0.358627 + 0.933481i \(0.616755\pi\)
\(72\) 4.26915e9 2.20637
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 4.69025e9 1.84981
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 2.53907e9 0.774862
\(81\) 3.48678e9 1.00000
\(82\) 3.79810e9 1.02446
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 4.73513e9 0.801899
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −2.63342e10 −3.58823
\(95\) 2.86731e9 0.370559
\(96\) 0 0
\(97\) −1.17935e10 −1.37336 −0.686679 0.726960i \(-0.740932\pi\)
−0.686679 + 0.726960i \(0.740932\pi\)
\(98\) −1.58056e10 −1.74856
\(99\) 0 0
\(100\) −1.78420e10 −1.78420
\(101\) 1.88643e10 1.79487 0.897436 0.441145i \(-0.145427\pi\)
0.897436 + 0.441145i \(0.145427\pi\)
\(102\) 0 0
\(103\) 9.82901e9 0.847859 0.423929 0.905695i \(-0.360650\pi\)
0.423929 + 0.905695i \(0.360650\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.53783e10 1.80944 0.904719 0.426009i \(-0.140081\pi\)
0.904719 + 0.426009i \(0.140081\pi\)
\(108\) 0 0
\(109\) 3.95218e9 0.256865 0.128432 0.991718i \(-0.459005\pi\)
0.128432 + 0.991718i \(0.459005\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −5.00697e9 −0.284109
\(113\) 3.67783e10 1.99618 0.998091 0.0617661i \(-0.0196733\pi\)
0.998091 + 0.0617661i \(0.0196733\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −4.40887e10 −1.92716
\(119\) 0 0
\(120\) 0 0
\(121\) 2.59374e10 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) −6.53175e10 −2.22803
\(125\) −2.45282e10 −0.803739
\(126\) −9.33755e9 −0.294022
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −3.72940e10 −1.08540
\(129\) 0 0
\(130\) 0 0
\(131\) 2.77522e10 0.719352 0.359676 0.933077i \(-0.382887\pi\)
0.359676 + 0.933077i \(0.382887\pi\)
\(132\) 0 0
\(133\) −5.65426e9 −0.135868
\(134\) 5.66432e10 1.31106
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) −8.75233e9 −0.162736
\(141\) 0 0
\(142\) −7.44017e10 −1.28867
\(143\) 0 0
\(144\) 1.07494e11 1.73609
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.93920e10 0.944882 0.472441 0.881362i \(-0.343373\pi\)
0.472441 + 0.881362i \(0.343373\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 1.48629e11 1.83183
\(153\) 0 0
\(154\) 0 0
\(155\) −3.99309e10 −0.446325
\(156\) 0 0
\(157\) −8.49695e10 −0.890769 −0.445384 0.895339i \(-0.646933\pi\)
−0.445384 + 0.895339i \(0.646933\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 4.27205e10 0.407415
\(161\) 0 0
\(162\) 2.00468e11 1.79667
\(163\) −2.26925e11 −1.97217 −0.986083 0.166254i \(-0.946833\pi\)
−0.986083 + 0.166254i \(0.946833\pi\)
\(164\) 1.50719e11 1.27043
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 1.37858e11 1.00000
\(170\) 0 0
\(171\) 1.21391e11 0.830245
\(172\) 0 0
\(173\) −2.42694e11 −1.56614 −0.783068 0.621937i \(-0.786346\pi\)
−0.783068 + 0.621937i \(0.786346\pi\)
\(174\) 0 0
\(175\) 2.15091e10 0.131049
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 1.87903e11 0.994426
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −1.04501e12 −4.44972
\(189\) 0 0
\(190\) 1.64852e11 0.665773
\(191\) −1.73249e11 −0.681558 −0.340779 0.940143i \(-0.610691\pi\)
−0.340779 + 0.940143i \(0.610691\pi\)
\(192\) 0 0
\(193\) −3.64948e11 −1.36284 −0.681419 0.731894i \(-0.738637\pi\)
−0.681419 + 0.731894i \(0.738637\pi\)
\(194\) −6.78050e11 −2.46748
\(195\) 0 0
\(196\) −6.27209e11 −2.16836
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −5.65392e11 −1.76685
\(201\) 0 0
\(202\) 1.08457e12 3.22480
\(203\) 0 0
\(204\) 0 0
\(205\) 9.21400e10 0.254495
\(206\) 5.65104e11 1.52332
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 7.77731e11 1.85959 0.929795 0.368079i \(-0.119984\pi\)
0.929795 + 0.368079i \(0.119984\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.45909e12 3.25097
\(215\) 0 0
\(216\) 0 0
\(217\) 7.87426e10 0.163648
\(218\) 2.27225e11 0.461502
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) −8.42436e10 −0.149382
\(225\) −4.61778e11 −0.800794
\(226\) 2.11452e12 3.58648
\(227\) −9.64307e11 −1.59987 −0.799937 0.600084i \(-0.795134\pi\)
−0.799937 + 0.600084i \(0.795134\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.32381e12 1.92772 0.963862 0.266401i \(-0.0858346\pi\)
0.963862 + 0.266401i \(0.0858346\pi\)
\(234\) 0 0
\(235\) −6.38854e11 −0.891379
\(236\) −1.74956e12 −2.38984
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 1.49123e12 1.79667
\(243\) 0 0
\(244\) 0 0
\(245\) −3.83435e11 −0.434372
\(246\) 0 0
\(247\) 0 0
\(248\) −2.06984e12 −2.20637
\(249\) 0 0
\(250\) −1.41021e12 −1.44406
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −3.70540e11 −0.364613
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −2.03855e12 −1.85405
\(257\) 1.60008e12 1.42717 0.713584 0.700570i \(-0.247071\pi\)
0.713584 + 0.700570i \(0.247071\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 1.59557e12 1.29244
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −3.25083e11 −0.244111
\(267\) 0 0
\(268\) 2.24776e12 1.62584
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) −1.69052e12 −1.00000
\(280\) −2.77352e11 −0.161154
\(281\) −3.41157e12 −1.94726 −0.973628 0.228143i \(-0.926735\pi\)
−0.973628 + 0.228143i \(0.926735\pi\)
\(282\) 0 0
\(283\) −1.34358e12 −0.740171 −0.370086 0.928998i \(-0.620672\pi\)
−0.370086 + 0.928998i \(0.620672\pi\)
\(284\) −2.95247e12 −1.59806
\(285\) 0 0
\(286\) 0 0
\(287\) −1.81698e11 −0.0933124
\(288\) 1.80862e12 0.912821
\(289\) 2.01599e12 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.00951e12 1.39366 0.696831 0.717235i \(-0.254593\pi\)
0.696831 + 0.717235i \(0.254593\pi\)
\(294\) 0 0
\(295\) −1.06957e12 −0.478739
\(296\) 0 0
\(297\) 0 0
\(298\) 3.98959e12 1.69764
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 3.74238e12 1.44138
\(305\) 0 0
\(306\) 0 0
\(307\) 3.90369e12 1.43147 0.715736 0.698371i \(-0.246091\pi\)
0.715736 + 0.698371i \(0.246091\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −2.29577e12 −0.801899
\(311\) −5.72295e12 −1.96706 −0.983530 0.180745i \(-0.942149\pi\)
−0.983530 + 0.180745i \(0.942149\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −4.88520e12 −1.60042
\(315\) −2.26524e11 −0.0730402
\(316\) 0 0
\(317\) −7.75645e11 −0.242307 −0.121154 0.992634i \(-0.538659\pi\)
−0.121154 + 0.992634i \(0.538659\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.43851e11 −0.0428709
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 7.95511e12 2.22803
\(325\) 0 0
\(326\) −1.30467e13 −3.54334
\(327\) 0 0
\(328\) 4.77613e12 1.25808
\(329\) 1.25980e12 0.326831
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.37414e12 0.325691
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 7.92597e12 1.79667
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 6.97920e12 1.49168
\(343\) 1.53305e12 0.322914
\(344\) 0 0
\(345\) 0 0
\(346\) −1.39534e13 −2.81383
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 1.03005e13 1.98944 0.994720 0.102625i \(-0.0327240\pi\)
0.994720 + 0.102625i \(0.0327240\pi\)
\(350\) 1.23663e12 0.235451
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) −1.80495e12 −0.320128
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.19216e13 1.99923 0.999615 0.0277619i \(-0.00883801\pi\)
0.999615 + 0.0277619i \(0.00883801\pi\)
\(360\) 5.95445e12 0.984758
\(361\) −1.90488e12 −0.310693
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 3.90086e12 0.570201
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.28027e13 1.77320 0.886599 0.462540i \(-0.153062\pi\)
0.886599 + 0.462540i \(0.153062\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −3.31153e13 −4.40646
\(377\) 0 0
\(378\) 0 0
\(379\) −9.85992e12 −1.26089 −0.630445 0.776234i \(-0.717128\pi\)
−0.630445 + 0.776234i \(0.717128\pi\)
\(380\) 6.54179e12 0.825617
\(381\) 0 0
\(382\) −9.96067e12 −1.22454
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.09821e13 −2.44857
\(387\) 0 0
\(388\) −2.69069e13 −3.05989
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.98756e13 −2.14728
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.16072e10 −0.00117700 −0.000588498 1.00000i \(-0.500187\pi\)
−0.000588498 1.00000i \(0.500187\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.42362e13 −1.39025
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 4.30390e13 3.99903
\(405\) 4.86324e12 0.446325
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 5.29745e12 0.457244
\(411\) 0 0
\(412\) 2.24249e13 1.88906
\(413\) 2.10916e12 0.175533
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2.15757e13 −1.67069 −0.835343 0.549730i \(-0.814731\pi\)
−0.835343 + 0.549730i \(0.814731\pi\)
\(420\) 0 0
\(421\) 2.14464e13 1.62160 0.810802 0.585320i \(-0.199031\pi\)
0.810802 + 0.585320i \(0.199031\pi\)
\(422\) 4.47145e13 3.34107
\(423\) −2.70466e13 −1.99715
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 5.79007e13 4.03148
\(429\) 0 0
\(430\) 0 0
\(431\) −2.70811e13 −1.82087 −0.910437 0.413649i \(-0.864254\pi\)
−0.910437 + 0.413649i \(0.864254\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 4.52719e12 0.294022
\(435\) 0 0
\(436\) 9.01692e12 0.572303
\(437\) 0 0
\(438\) 0 0
\(439\) 5.67978e12 0.348344 0.174172 0.984715i \(-0.444275\pi\)
0.174172 + 0.984715i \(0.444275\pi\)
\(440\) 0 0
\(441\) −1.62332e13 −0.973219
\(442\) 0 0
\(443\) 8.82190e12 0.517063 0.258531 0.966003i \(-0.416761\pi\)
0.258531 + 0.966003i \(0.416761\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 2.83670e11 0.0157189
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −2.65493e13 −1.43877
\(451\) 0 0
\(452\) 8.39100e13 4.44756
\(453\) 0 0
\(454\) −5.54414e13 −2.87445
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 7.61103e13 3.46349
\(467\) −3.56038e13 −1.60292 −0.801460 0.598048i \(-0.795943\pi\)
−0.801460 + 0.598048i \(0.795943\pi\)
\(468\) 0 0
\(469\) −2.70976e12 −0.119417
\(470\) −3.67300e13 −1.60152
\(471\) 0 0
\(472\) −5.54417e13 −2.36661
\(473\) 0 0
\(474\) 0 0
\(475\) −1.60766e13 −0.664856
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.70690e13 −1.07348 −0.536741 0.843747i \(-0.680345\pi\)
−0.536741 + 0.843747i \(0.680345\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 5.91764e13 2.22803
\(485\) −1.64492e13 −0.612964
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −2.20450e13 −0.780424
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −5.21173e13 −1.73609
\(497\) 3.55931e12 0.117377
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) −5.59611e13 −1.79076
\(501\) 0 0
\(502\) 0 0
\(503\) −3.76250e13 −1.16852 −0.584261 0.811566i \(-0.698615\pi\)
−0.584261 + 0.811566i \(0.698615\pi\)
\(504\) −1.17420e13 −0.361069
\(505\) 2.63112e13 0.801096
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −7.90144e13 −2.24572
\(513\) 0 0
\(514\) 9.19940e13 2.56415
\(515\) 1.37092e13 0.378420
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4.57048e13 1.19062 0.595310 0.803496i \(-0.297029\pi\)
0.595310 + 0.803496i \(0.297029\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 6.33168e13 1.60274
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 4.14265e13 1.00000
\(530\) 0 0
\(531\) −4.52815e13 −1.07263
\(532\) −1.29002e13 −0.302719
\(533\) 0 0
\(534\) 0 0
\(535\) 3.53968e13 0.807597
\(536\) 7.12291e13 1.61003
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 8.07859e13 1.74321 0.871604 0.490211i \(-0.163080\pi\)
0.871604 + 0.490211i \(0.163080\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.51236e12 0.114645
\(546\) 0 0
\(547\) 9.41521e13 1.92262 0.961310 0.275470i \(-0.0888336\pi\)
0.961310 + 0.275470i \(0.0888336\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) −9.71941e13 −1.79667
\(559\) 0 0
\(560\) −6.98354e12 −0.126805
\(561\) 0 0
\(562\) −1.96143e14 −3.49858
\(563\) −1.11470e14 −1.97068 −0.985338 0.170612i \(-0.945426\pi\)
−0.985338 + 0.170612i \(0.945426\pi\)
\(564\) 0 0
\(565\) 5.12971e13 0.890945
\(566\) −7.72473e13 −1.32985
\(567\) −9.59018e12 −0.163648
\(568\) −9.35605e13 −1.58253
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −1.04464e13 −0.167652
\(575\) 0 0
\(576\) −6.09010e12 −0.0960532
\(577\) 9.79252e13 1.53114 0.765571 0.643352i \(-0.222457\pi\)
0.765571 + 0.643352i \(0.222457\pi\)
\(578\) 1.15907e14 1.79667
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 1.73027e14 2.50395
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) −5.88549e13 −0.830245
\(590\) −6.14933e13 −0.860137
\(591\) 0 0
\(592\) 0 0
\(593\) −1.41598e13 −0.193101 −0.0965503 0.995328i \(-0.530781\pi\)
−0.0965503 + 0.995328i \(0.530781\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.58318e14 2.10523
\(597\) 0 0
\(598\) 0 0
\(599\) 1.44859e14 1.87851 0.939253 0.343226i \(-0.111520\pi\)
0.939253 + 0.343226i \(0.111520\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 5.81757e13 0.729718
\(604\) 0 0
\(605\) 3.61766e13 0.446325
\(606\) 0 0
\(607\) −1.07274e14 −1.30182 −0.650909 0.759156i \(-0.725612\pi\)
−0.650909 + 0.759156i \(0.725612\pi\)
\(608\) 6.29666e13 0.757866
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 2.24437e14 2.57189
\(615\) 0 0
\(616\) 0 0
\(617\) 2.22457e13 0.248783 0.124392 0.992233i \(-0.460302\pi\)
0.124392 + 0.992233i \(0.460302\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) −9.11026e13 −0.994426
\(621\) 0 0
\(622\) −3.29032e14 −3.53416
\(623\) 0 0
\(624\) 0 0
\(625\) 4.21587e13 0.442066
\(626\) 0 0
\(627\) 0 0
\(628\) −1.93858e14 −1.98466
\(629\) 0 0
\(630\) −1.30237e13 −0.131229
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −4.45945e13 −0.435347
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −7.64147e13 −0.717253
\(640\) −5.20163e13 −0.484440
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 2.52089e14 2.20637
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −5.17729e14 −4.39405
\(653\) −4.79879e13 −0.404172 −0.202086 0.979368i \(-0.564772\pi\)
−0.202086 + 0.979368i \(0.564772\pi\)
\(654\) 0 0
\(655\) 3.87078e13 0.321065
\(656\) 1.20260e14 0.989923
\(657\) 0 0
\(658\) 7.24304e13 0.587208
\(659\) −2.45475e14 −1.97506 −0.987531 0.157426i \(-0.949680\pi\)
−0.987531 + 0.157426i \(0.949680\pi\)
\(660\) 0 0
\(661\) −2.20343e14 −1.74619 −0.873097 0.487547i \(-0.837892\pi\)
−0.873097 + 0.487547i \(0.837892\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7.88637e12 −0.0606413
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 7.90040e13 0.585161
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 3.14525e14 2.22803
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 3.24373e13 0.224748
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 5.29627e12 0.0356341 0.0178171 0.999841i \(-0.494328\pi\)
0.0178171 + 0.999841i \(0.494328\pi\)
\(684\) 2.76954e14 1.84981
\(685\) 0 0
\(686\) 8.81406e13 0.580170
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 2.92616e14 1.85741 0.928705 0.370819i \(-0.120923\pi\)
0.928705 + 0.370819i \(0.120923\pi\)
\(692\) −5.53708e14 −3.48940
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 5.92212e14 3.57437
\(699\) 0 0
\(700\) 4.90731e13 0.291980
\(701\) −3.06681e14 −1.81174 −0.905871 0.423553i \(-0.860783\pi\)
−0.905871 + 0.423553i \(0.860783\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.18850e13 −0.293728
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) −1.03773e14 −0.575165
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 6.85415e14 3.59196
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 1.49929e14 0.774862
\(721\) −2.70341e13 −0.138751
\(722\) −1.09518e14 −0.558213
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −2.02104e14 −0.995181 −0.497590 0.867412i \(-0.665782\pi\)
−0.497590 + 0.867412i \(0.665782\pi\)
\(728\) 0 0
\(729\) 2.05891e14 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 3.39728e14 1.60550 0.802752 0.596312i \(-0.203368\pi\)
0.802752 + 0.596312i \(0.203368\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 2.24274e14 1.02446
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 9.67854e13 0.421724
\(746\) 7.36072e14 3.18585
\(747\) 0 0
\(748\) 0 0
\(749\) −6.98014e13 −0.296111
\(750\) 0 0
\(751\) 4.83554e13 0.202416 0.101208 0.994865i \(-0.467729\pi\)
0.101208 + 0.994865i \(0.467729\pi\)
\(752\) −8.33823e14 −3.46725
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) −5.66881e14 −2.26541
\(759\) 0 0
\(760\) 2.07302e14 0.817591
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) −1.08702e13 −0.0420354
\(764\) −3.95267e14 −1.51853
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −5.37825e14 −1.99990 −0.999952 0.00976081i \(-0.996893\pi\)
−0.999952 + 0.00976081i \(0.996893\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −8.32630e14 −3.03645
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 2.23887e14 0.800794
\(776\) −8.52651e14 −3.03014
\(777\) 0 0
\(778\) 0 0
\(779\) 1.35807e14 0.473407
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −5.00454e14 −1.68960
\(785\) −1.18513e14 −0.397572
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.01156e14 −0.326672
\(792\) 0 0
\(793\) 0 0
\(794\) −6.67339e11 −0.00211468
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −2.39528e14 −0.730982
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 1.36386e15 3.96015
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 2.79605e14 0.801899
\(811\) 3.67948e14 1.04878 0.524388 0.851480i \(-0.324294\pi\)
0.524388 + 0.851480i \(0.324294\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.16506e14 −0.880226
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 2.10218e14 0.567023
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 7.10621e14 1.87069
\(825\) 0 0
\(826\) 1.21263e14 0.315376
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −1.24046e15 −3.00167
\(839\) 7.82938e14 1.88329 0.941646 0.336605i \(-0.109279\pi\)
0.941646 + 0.336605i \(0.109279\pi\)
\(840\) 0 0
\(841\) 4.20707e14 1.00000
\(842\) 1.23303e15 2.91349
\(843\) 0 0
\(844\) 1.77440e15 4.14322
\(845\) 1.92280e14 0.446325
\(846\) −1.55501e15 −3.58823
\(847\) −7.13392e13 −0.163648
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −6.48316e14 −1.43563 −0.717814 0.696235i \(-0.754857\pi\)
−0.717814 + 0.696235i \(0.754857\pi\)
\(854\) 0 0
\(855\) 1.69312e14 0.370559
\(856\) 1.83481e15 3.99229
\(857\) −6.57365e14 −1.42201 −0.711004 0.703187i \(-0.751759\pi\)
−0.711004 + 0.703187i \(0.751759\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1.55699e15 −3.27151
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) −3.38502e14 −0.699005
\(866\) 0 0
\(867\) 0 0
\(868\) 1.79652e14 0.364613
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 2.85736e14 0.566739
\(873\) −6.96394e14 −1.37336
\(874\) 0 0
\(875\) 6.74631e13 0.131530
\(876\) 0 0
\(877\) −7.92753e14 −1.52806 −0.764029 0.645182i \(-0.776781\pi\)
−0.764029 + 0.645182i \(0.776781\pi\)
\(878\) 3.26550e14 0.625861
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −9.33303e14 −1.74856
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 5.07202e14 0.928993
\(887\) 2.11270e14 0.384786 0.192393 0.981318i \(-0.438375\pi\)
0.192393 + 0.981318i \(0.438375\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −9.41619e14 −1.65813
\(894\) 0 0
\(895\) 0 0
\(896\) 1.02575e14 0.177623
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −1.05355e15 −1.78420
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 2.65901e15 4.40432
\(905\) 0 0
\(906\) 0 0
\(907\) 1.20333e15 1.96042 0.980212 0.197952i \(-0.0634289\pi\)
0.980212 + 0.197952i \(0.0634289\pi\)
\(908\) −2.20007e15 −3.56457
\(909\) 1.11392e15 1.79487
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −7.63307e13 −0.117721
\(918\) 0 0
\(919\) 7.85587e14 1.19844 0.599221 0.800584i \(-0.295477\pi\)
0.599221 + 0.800584i \(0.295477\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 5.80393e14 0.847859
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) −5.65152e14 −0.808011
\(932\) 3.02027e15 4.29503
\(933\) 0 0
\(934\) −2.04699e15 −2.87992
\(935\) 0 0
\(936\) 0 0
\(937\) −4.18129e14 −0.578912 −0.289456 0.957191i \(-0.593474\pi\)
−0.289456 + 0.957191i \(0.593474\pi\)
\(938\) −1.55794e14 −0.214553
\(939\) 0 0
\(940\) −1.45755e15 −1.98602
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −1.39599e15 −1.86218
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −9.24303e14 −1.19453
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) −2.41641e14 −0.304196
\(956\) 0 0
\(957\) 0 0
\(958\) −1.55629e15 −1.92870
\(959\) 0 0
\(960\) 0 0
\(961\) 8.19628e14 1.00000
\(962\) 0 0
\(963\) 1.49856e15 1.80944
\(964\) 0 0
\(965\) −5.09016e14 −0.608268
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 1.87523e15 2.20637
\(969\) 0 0
\(970\) −9.45720e14 −1.10130
\(971\) 9.10755e13 0.105513 0.0527564 0.998607i \(-0.483199\pi\)
0.0527564 + 0.998607i \(0.483199\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.72308e15 1.93567 0.967837 0.251578i \(-0.0809494\pi\)
0.967837 + 0.251578i \(0.0809494\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −8.74809e14 −0.967794
\(981\) 2.33372e14 0.256865
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) −8.76888e14 −0.912821
\(993\) 0 0
\(994\) 2.04637e14 0.210888
\(995\) 0 0
\(996\) 0 0
\(997\) −3.09046e14 −0.313724 −0.156862 0.987621i \(-0.550138\pi\)
−0.156862 + 0.987621i \(0.550138\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 31.11.b.a.30.3 3
31.30 odd 2 CM 31.11.b.a.30.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.11.b.a.30.3 3 1.1 even 1 trivial
31.11.b.a.30.3 3 31.30 odd 2 CM