Properties

Label 31.11.b.a
Level $31$
Weight $11$
Character orbit 31.b
Self dual yes
Analytic conductor $19.696$
Analytic rank $0$
Dimension $3$
CM discriminant -31
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [31,11,Mod(30,31)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(31, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 11, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("31.30"); S:= CuspForms(chi, 11); N := Newforms(S);
 
Level: \( N \) \(=\) \( 31 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 31.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.6960748329\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.837.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (14 \beta_{2} - 15 \beta_1) q^{2} + ( - 167 \beta_{2} - 644 \beta_1 + 1024) q^{4} + ( - 1097 \beta_{2} - 1323 \beta_1) q^{5} + ( - 7489 \beta_{2} - 3835 \beta_1) q^{7} + (14336 \beta_{2} - 15360 \beta_1 + 13425) q^{8}+ \cdots + (4119122247 \beta_{2} + \cdots - 17318366175) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3072 q^{4} + 40275 q^{8} + 177147 q^{9} - 136653 q^{10} - 1650069 q^{14} + 3145728 q^{16} + 17403147 q^{20} + 29296875 q^{25} + 76042875 q^{28} - 85887453 q^{31} + 41241600 q^{32} + 300399678 q^{35}+ \cdots - 51955098525 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 6x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
30.1
−0.167449
2.52892
−2.36147
−53.0957 0 1795.15 4578.78 0 30388.2 −40945.0 59049.0 −243113.
30.2 −4.39780 0 −1004.66 −5973.54 0 −27637.7 8921.65 59049.0 26270.5
30.3 57.4935 0 2281.50 1394.76 0 −2750.44 72298.4 59049.0 80189.9
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.b odd 2 1 CM by \(\Q(\sqrt{-31}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 31.11.b.a 3
31.b odd 2 1 CM 31.11.b.a 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
31.11.b.a 3 1.a even 1 1 trivial
31.11.b.a 3 31.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 3072T_{2} - 13425 \) acting on \(S_{11}^{\mathrm{new}}(31, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 3072T - 13425 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + \cdots + 38148912726 \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots - 2309983432850 \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 29\!\cdots\!02 \) Copy content Toggle raw display
$23$ \( T^{3} \) Copy content Toggle raw display
$29$ \( T^{3} \) Copy content Toggle raw display
$31$ \( (T + 28629151)^{3} \) Copy content Toggle raw display
$37$ \( T^{3} \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 23\!\cdots\!98 \) Copy content Toggle raw display
$43$ \( T^{3} \) Copy content Toggle raw display
$47$ \( (T + 458037150)^{3} \) Copy content Toggle raw display
$53$ \( T^{3} \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 72\!\cdots\!02 \) Copy content Toggle raw display
$61$ \( T^{3} \) Copy content Toggle raw display
$67$ \( (T - 985211050)^{3} \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 10\!\cdots\!98 \) Copy content Toggle raw display
$73$ \( T^{3} \) Copy content Toggle raw display
$79$ \( T^{3} \) Copy content Toggle raw display
$83$ \( T^{3} \) Copy content Toggle raw display
$89$ \( T^{3} \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 96\!\cdots\!50 \) Copy content Toggle raw display
show more
show less