Properties

Label 3080.2.a.p
Level $3080$
Weight $2$
Character orbit 3080.a
Self dual yes
Analytic conductor $24.594$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3080,2,Mod(1,3080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3080.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3080, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3080 = 2^{3} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3080.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,4,0,-4,0,8,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.5939238226\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.116404.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 10x^{2} - 2x + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + q^{5} - q^{7} + (\beta_{2} + 2) q^{9} - q^{11} - \beta_1 q^{13} - \beta_1 q^{15} + (\beta_{3} + \beta_1 + 1) q^{17} + ( - 2 \beta_1 - 2) q^{19} + \beta_1 q^{21} + (\beta_{2} + 3) q^{23}+ \cdots + ( - \beta_{2} - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} - 4 q^{7} + 8 q^{9} - 4 q^{11} + 6 q^{17} - 8 q^{19} + 12 q^{23} + 4 q^{25} - 6 q^{27} + 10 q^{29} - 6 q^{31} - 4 q^{35} + 12 q^{37} + 20 q^{39} + 20 q^{41} + 14 q^{43} + 8 q^{45} + 4 q^{49}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 10x^{2} - 2x + 12 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 8\nu - 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 8\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.06153
1.05492
−1.33659
−2.77987
0 −3.06153 0 1.00000 0 −1.00000 0 6.37299 0
1.2 0 −1.05492 0 1.00000 0 −1.00000 0 −1.88714 0
1.3 0 1.33659 0 1.00000 0 −1.00000 0 −1.21354 0
1.4 0 2.77987 0 1.00000 0 −1.00000 0 4.72768 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3080.2.a.p 4
4.b odd 2 1 6160.2.a.bt 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3080.2.a.p 4 1.a even 1 1 trivial
6160.2.a.bt 4 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3080))\):

\( T_{3}^{4} - 10T_{3}^{2} + 2T_{3} + 12 \) Copy content Toggle raw display
\( T_{13}^{4} - 10T_{13}^{2} + 2T_{13} + 12 \) Copy content Toggle raw display
\( T_{17}^{4} - 6T_{17}^{3} - 54T_{17}^{2} + 238T_{17} + 636 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 10 T^{2} + \cdots + 12 \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( (T + 1)^{4} \) Copy content Toggle raw display
$11$ \( (T + 1)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 10 T^{2} + \cdots + 12 \) Copy content Toggle raw display
$17$ \( T^{4} - 6 T^{3} + \cdots + 636 \) Copy content Toggle raw display
$19$ \( T^{4} + 8 T^{3} + \cdots + 80 \) Copy content Toggle raw display
$23$ \( T^{4} - 12 T^{3} + \cdots + 8 \) Copy content Toggle raw display
$29$ \( T^{4} - 10 T^{3} + \cdots + 832 \) Copy content Toggle raw display
$31$ \( T^{4} + 6 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$37$ \( T^{4} - 12 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$41$ \( T^{4} - 20 T^{3} + \cdots - 128 \) Copy content Toggle raw display
$43$ \( T^{4} - 14 T^{3} + \cdots - 1968 \) Copy content Toggle raw display
$47$ \( T^{4} - 102 T^{2} + \cdots + 2104 \) Copy content Toggle raw display
$53$ \( T^{4} - 4 T^{3} + \cdots + 128 \) Copy content Toggle raw display
$59$ \( T^{4} + 6 T^{3} + \cdots - 1000 \) Copy content Toggle raw display
$61$ \( T^{4} + 12 T^{3} + \cdots - 1396 \) Copy content Toggle raw display
$67$ \( T^{4} + 10 T^{3} + \cdots - 2656 \) Copy content Toggle raw display
$71$ \( T^{4} + 8 T^{3} + \cdots + 1920 \) Copy content Toggle raw display
$73$ \( T^{4} - 10 T^{3} + \cdots + 596 \) Copy content Toggle raw display
$79$ \( T^{4} + 6 T^{3} + \cdots + 13928 \) Copy content Toggle raw display
$83$ \( T^{4} - 22 T^{3} + \cdots + 128 \) Copy content Toggle raw display
$89$ \( T^{4} + 2 T^{3} + \cdots + 22464 \) Copy content Toggle raw display
$97$ \( T^{4} - 416 T^{2} + \cdots + 38144 \) Copy content Toggle raw display
show more
show less