Properties

Label 3080.2.a
Level $3080$
Weight $2$
Character orbit 3080.a
Rep. character $\chi_{3080}(1,\cdot)$
Character field $\Q$
Dimension $60$
Newform subspaces $21$
Sturm bound $1152$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3080 = 2^{3} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3080.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 21 \)
Sturm bound: \(1152\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(3\), \(13\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3080))\).

Total New Old
Modular forms 592 60 532
Cusp forms 561 60 501
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(7\)\(11\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(30\)\(3\)\(27\)\(29\)\(3\)\(26\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(43\)\(5\)\(38\)\(41\)\(5\)\(36\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(36\)\(4\)\(32\)\(34\)\(4\)\(30\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(37\)\(3\)\(34\)\(35\)\(3\)\(32\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(42\)\(5\)\(37\)\(40\)\(5\)\(35\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(33\)\(2\)\(31\)\(31\)\(2\)\(29\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(40\)\(2\)\(38\)\(38\)\(2\)\(36\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(35\)\(6\)\(29\)\(33\)\(6\)\(27\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(40\)\(5\)\(35\)\(38\)\(5\)\(33\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(35\)\(2\)\(33\)\(33\)\(2\)\(31\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(34\)\(3\)\(31\)\(32\)\(3\)\(29\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(41\)\(5\)\(36\)\(39\)\(5\)\(34\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(36\)\(4\)\(32\)\(34\)\(4\)\(30\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(37\)\(4\)\(33\)\(35\)\(4\)\(31\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(38\)\(4\)\(34\)\(36\)\(4\)\(32\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(35\)\(3\)\(32\)\(33\)\(3\)\(30\)\(2\)\(0\)\(2\)
Plus space\(+\)\(280\)\(22\)\(258\)\(265\)\(22\)\(243\)\(15\)\(0\)\(15\)
Minus space\(-\)\(312\)\(38\)\(274\)\(296\)\(38\)\(258\)\(16\)\(0\)\(16\)

Trace form

\( 60 q + 60 q^{9} + 8 q^{23} + 60 q^{25} + 8 q^{31} + 8 q^{37} + 16 q^{41} + 16 q^{43} + 8 q^{47} + 60 q^{49} + 16 q^{51} + 40 q^{53} + 48 q^{57} + 16 q^{59} + 8 q^{67} + 48 q^{69} - 32 q^{71} + 16 q^{73}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3080))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 7 11
3080.2.a.a 3080.a 1.a $1$ $24.594$ \(\Q\) None 3080.2.a.a \(0\) \(-2\) \(-1\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}-q^{5}-q^{7}+q^{9}+q^{11}+2q^{15}+\cdots\)
3080.2.a.b 3080.a 1.a $1$ $24.594$ \(\Q\) None 3080.2.a.b \(0\) \(-2\) \(1\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{5}-q^{7}+q^{9}-q^{11}+6q^{13}+\cdots\)
3080.2.a.c 3080.a 1.a $1$ $24.594$ \(\Q\) None 3080.2.a.c \(0\) \(0\) \(-1\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-q^{7}-3q^{9}+q^{11}+2q^{13}+\cdots\)
3080.2.a.d 3080.a 1.a $1$ $24.594$ \(\Q\) None 3080.2.a.d \(0\) \(0\) \(1\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}+q^{7}-3q^{9}-q^{11}-2q^{13}+\cdots\)
3080.2.a.e 3080.a 1.a $1$ $24.594$ \(\Q\) None 3080.2.a.e \(0\) \(0\) \(1\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}+q^{7}-3q^{9}+q^{11}-6q^{13}+\cdots\)
3080.2.a.f 3080.a 1.a $2$ $24.594$ \(\Q(\sqrt{5}) \) None 3080.2.a.f \(0\) \(0\) \(-2\) \(2\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}+q^{7}-3q^{9}-q^{11}+\beta q^{13}+\cdots\)
3080.2.a.g 3080.a 1.a $2$ $24.594$ \(\Q(\sqrt{2}) \) None 3080.2.a.g \(0\) \(0\) \(-2\) \(2\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-q^{5}+q^{7}+5q^{9}-q^{11}+(2+\cdots)q^{13}+\cdots\)
3080.2.a.h 3080.a 1.a $2$ $24.594$ \(\Q(\sqrt{2}) \) None 3080.2.a.h \(0\) \(0\) \(2\) \(-2\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+q^{5}-q^{7}-q^{9}+q^{11}+(-2+\cdots)q^{13}+\cdots\)
3080.2.a.i 3080.a 1.a $2$ $24.594$ \(\Q(\sqrt{2}) \) None 3080.2.a.i \(0\) \(0\) \(2\) \(2\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+q^{5}+q^{7}-q^{9}-q^{11}+(-2+\cdots)q^{13}+\cdots\)
3080.2.a.j 3080.a 1.a $3$ $24.594$ 3.3.148.1 None 3080.2.a.j \(0\) \(-4\) \(3\) \(3\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{3}+q^{5}+q^{7}+(3\beta _{1}+\beta _{2})q^{9}+\cdots\)
3080.2.a.k 3080.a 1.a $3$ $24.594$ 3.3.148.1 None 3080.2.a.k \(0\) \(-2\) \(-3\) \(3\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}-q^{5}+q^{7}+(1-\beta _{1}+\cdots)q^{9}+\cdots\)
3080.2.a.l 3080.a 1.a $3$ $24.594$ 3.3.148.1 None 3080.2.a.l \(0\) \(0\) \(-3\) \(3\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}-q^{5}+q^{7}+(-\beta _{1}-\beta _{2})q^{9}+\cdots\)
3080.2.a.m 3080.a 1.a $3$ $24.594$ 3.3.404.1 None 3080.2.a.m \(0\) \(2\) \(-3\) \(-3\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{3}-q^{5}-q^{7}+(1-\beta _{1}+\beta _{2})q^{9}+\cdots\)
3080.2.a.n 3080.a 1.a $3$ $24.594$ 3.3.316.1 None 3080.2.a.n \(0\) \(2\) \(3\) \(3\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{3}+q^{5}+q^{7}+(3-\beta _{1}+\beta _{2})q^{9}+\cdots\)
3080.2.a.o 3080.a 1.a $4$ $24.594$ 4.4.11348.1 None 3080.2.a.o \(0\) \(-2\) \(4\) \(-4\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}+q^{5}-q^{7}+(-\beta _{2}-\beta _{3})q^{9}+\cdots\)
3080.2.a.p 3080.a 1.a $4$ $24.594$ 4.4.116404.1 None 3080.2.a.p \(0\) \(0\) \(4\) \(-4\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+q^{5}-q^{7}+(2+\beta _{2})q^{9}-q^{11}+\cdots\)
3080.2.a.q 3080.a 1.a $4$ $24.594$ 4.4.25488.1 None 3080.2.a.q \(0\) \(4\) \(4\) \(-4\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{3}+q^{5}-q^{7}+(1-2\beta _{1}+\cdots)q^{9}+\cdots\)
3080.2.a.r 3080.a 1.a $5$ $24.594$ 5.5.549616.1 None 3080.2.a.r \(0\) \(-2\) \(-5\) \(-5\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}-q^{5}-q^{7}+(1+\beta _{2}+\beta _{3}+\cdots)q^{9}+\cdots\)
3080.2.a.s 3080.a 1.a $5$ $24.594$ 5.5.265504.1 None 3080.2.a.s \(0\) \(2\) \(-5\) \(-5\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{3}-q^{5}-q^{7}+(1+\beta _{1}+\beta _{3}+\cdots)q^{9}+\cdots\)
3080.2.a.t 3080.a 1.a $5$ $24.594$ 5.5.8892720.1 None 3080.2.a.t \(0\) \(2\) \(-5\) \(5\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}-q^{5}+q^{7}+(1+\beta _{1}+\beta _{2}+\cdots)q^{9}+\cdots\)
3080.2.a.u 3080.a 1.a $5$ $24.594$ 5.5.15785648.1 None 3080.2.a.u \(0\) \(2\) \(5\) \(5\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+q^{5}+q^{7}+(3+\beta _{2})q^{9}+q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3080))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(3080)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(280))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(308))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(385))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(440))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(616))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(770))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1540))\)\(^{\oplus 2}\)