Properties

Label 3080.2.a.i
Level $3080$
Weight $2$
Character orbit 3080.a
Self dual yes
Analytic conductor $24.594$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3080 = 2^{3} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3080.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(24.5939238226\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} + q^{5} + q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{3} + q^{5} + q^{7} - q^{9} - q^{11} + (\beta - 2) q^{13} + \beta q^{15} + ( - 3 \beta - 2) q^{17} - 4 \beta q^{19} + \beta q^{21} - 2 q^{23} + q^{25} - 4 \beta q^{27} + ( - 2 \beta - 6) q^{29} + ( - \beta - 6) q^{31} - \beta q^{33} + q^{35} + 2 \beta q^{37} + ( - 2 \beta + 2) q^{39} - 3 \beta q^{41} - 2 q^{43} - q^{45} + (3 \beta - 4) q^{47} + q^{49} + ( - 2 \beta - 6) q^{51} + (6 \beta + 4) q^{53} - q^{55} - 8 q^{57} + (\beta + 6) q^{59} + (3 \beta - 8) q^{61} - q^{63} + (\beta - 2) q^{65} + ( - 8 \beta - 2) q^{67} - 2 \beta q^{69} + (6 \beta + 4) q^{71} + (3 \beta - 6) q^{73} + \beta q^{75} - q^{77} + (2 \beta + 10) q^{79} - 5 q^{81} + ( - 4 \beta + 12) q^{83} + ( - 3 \beta - 2) q^{85} + ( - 6 \beta - 4) q^{87} + ( - 2 \beta - 6) q^{89} + (\beta - 2) q^{91} + ( - 6 \beta - 2) q^{93} - 4 \beta q^{95} + (8 \beta + 2) q^{97} + q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + 2 q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{5} + 2 q^{7} - 2 q^{9} - 2 q^{11} - 4 q^{13} - 4 q^{17} - 4 q^{23} + 2 q^{25} - 12 q^{29} - 12 q^{31} + 2 q^{35} + 4 q^{39} - 4 q^{43} - 2 q^{45} - 8 q^{47} + 2 q^{49} - 12 q^{51} + 8 q^{53} - 2 q^{55} - 16 q^{57} + 12 q^{59} - 16 q^{61} - 2 q^{63} - 4 q^{65} - 4 q^{67} + 8 q^{71} - 12 q^{73} - 2 q^{77} + 20 q^{79} - 10 q^{81} + 24 q^{83} - 4 q^{85} - 8 q^{87} - 12 q^{89} - 4 q^{91} - 4 q^{93} + 4 q^{97} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 −1.41421 0 1.00000 0 1.00000 0 −1.00000 0
1.2 0 1.41421 0 1.00000 0 1.00000 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(5\) \(-1\)
\(7\) \(-1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3080.2.a.i 2
4.b odd 2 1 6160.2.a.bb 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3080.2.a.i 2 1.a even 1 1 trivial
6160.2.a.bb 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3080))\):

\( T_{3}^{2} - 2 \) Copy content Toggle raw display
\( T_{13}^{2} + 4T_{13} + 2 \) Copy content Toggle raw display
\( T_{17}^{2} + 4T_{17} - 14 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( (T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4T + 2 \) Copy content Toggle raw display
$17$ \( T^{2} + 4T - 14 \) Copy content Toggle raw display
$19$ \( T^{2} - 32 \) Copy content Toggle raw display
$23$ \( (T + 2)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 12T + 28 \) Copy content Toggle raw display
$31$ \( T^{2} + 12T + 34 \) Copy content Toggle raw display
$37$ \( T^{2} - 8 \) Copy content Toggle raw display
$41$ \( T^{2} - 18 \) Copy content Toggle raw display
$43$ \( (T + 2)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 8T - 2 \) Copy content Toggle raw display
$53$ \( T^{2} - 8T - 56 \) Copy content Toggle raw display
$59$ \( T^{2} - 12T + 34 \) Copy content Toggle raw display
$61$ \( T^{2} + 16T + 46 \) Copy content Toggle raw display
$67$ \( T^{2} + 4T - 124 \) Copy content Toggle raw display
$71$ \( T^{2} - 8T - 56 \) Copy content Toggle raw display
$73$ \( T^{2} + 12T + 18 \) Copy content Toggle raw display
$79$ \( T^{2} - 20T + 92 \) Copy content Toggle raw display
$83$ \( T^{2} - 24T + 112 \) Copy content Toggle raw display
$89$ \( T^{2} + 12T + 28 \) Copy content Toggle raw display
$97$ \( T^{2} - 4T - 124 \) Copy content Toggle raw display
show more
show less