Properties

Label 3060.2.z.g.829.8
Level $3060$
Weight $2$
Character 3060.829
Analytic conductor $24.434$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(829,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.z (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 1020)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 829.8
Character \(\chi\) \(=\) 3060.829
Dual form 3060.2.z.g.2809.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.725140 - 2.11522i) q^{5} +(0.920356 + 0.920356i) q^{7} +(2.91237 - 2.91237i) q^{11} +1.15938i q^{13} +(-3.13193 + 2.68160i) q^{17} +6.96915i q^{19} +(0.453675 + 0.453675i) q^{23} +(-3.94834 + 3.06767i) q^{25} +(1.79476 + 1.79476i) q^{29} +(4.62604 + 4.62604i) q^{31} +(1.27937 - 2.61415i) q^{35} +(-4.42242 + 4.42242i) q^{37} +(3.18157 - 3.18157i) q^{41} +12.6350 q^{43} +9.92920i q^{47} -5.30589i q^{49} +6.07145 q^{53} +(-8.27219 - 4.04844i) q^{55} -5.65133i q^{59} +(-7.40360 + 7.40360i) q^{61} +(2.45234 - 0.840709i) q^{65} +1.99215i q^{67} +(-8.29652 - 8.29652i) q^{71} +(7.41073 - 7.41073i) q^{73} +5.36084 q^{77} +(10.1183 - 10.1183i) q^{79} -11.7211 q^{83} +(7.94328 + 4.68020i) q^{85} -9.32011 q^{89} +(-1.06704 + 1.06704i) q^{91} +(14.7413 - 5.05361i) q^{95} +(-1.46372 + 1.46372i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 4 q^{5} + 8 q^{11} - 24 q^{29} - 16 q^{31} - 8 q^{35} + 8 q^{41} + 28 q^{55} + 16 q^{61} - 56 q^{71} + 16 q^{79} - 40 q^{85} - 32 q^{89} + 64 q^{91} - 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.725140 2.11522i −0.324292 0.945957i
\(6\) 0 0
\(7\) 0.920356 + 0.920356i 0.347862 + 0.347862i 0.859313 0.511451i \(-0.170892\pi\)
−0.511451 + 0.859313i \(0.670892\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.91237 2.91237i 0.878113 0.878113i −0.115226 0.993339i \(-0.536759\pi\)
0.993339 + 0.115226i \(0.0367594\pi\)
\(12\) 0 0
\(13\) 1.15938i 0.321553i 0.986991 + 0.160776i \(0.0513998\pi\)
−0.986991 + 0.160776i \(0.948600\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.13193 + 2.68160i −0.759605 + 0.650384i
\(18\) 0 0
\(19\) 6.96915i 1.59883i 0.600778 + 0.799416i \(0.294858\pi\)
−0.600778 + 0.799416i \(0.705142\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.453675 + 0.453675i 0.0945977 + 0.0945977i 0.752822 0.658224i \(-0.228692\pi\)
−0.658224 + 0.752822i \(0.728692\pi\)
\(24\) 0 0
\(25\) −3.94834 + 3.06767i −0.789669 + 0.613533i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.79476 + 1.79476i 0.333279 + 0.333279i 0.853831 0.520551i \(-0.174273\pi\)
−0.520551 + 0.853831i \(0.674273\pi\)
\(30\) 0 0
\(31\) 4.62604 + 4.62604i 0.830862 + 0.830862i 0.987635 0.156773i \(-0.0501091\pi\)
−0.156773 + 0.987635i \(0.550109\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.27937 2.61415i 0.216253 0.441871i
\(36\) 0 0
\(37\) −4.42242 + 4.42242i −0.727041 + 0.727041i −0.970029 0.242988i \(-0.921872\pi\)
0.242988 + 0.970029i \(0.421872\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.18157 3.18157i 0.496878 0.496878i −0.413587 0.910465i \(-0.635724\pi\)
0.910465 + 0.413587i \(0.135724\pi\)
\(42\) 0 0
\(43\) 12.6350 1.92682 0.963411 0.268029i \(-0.0863724\pi\)
0.963411 + 0.268029i \(0.0863724\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.92920i 1.44832i 0.689630 + 0.724161i \(0.257773\pi\)
−0.689630 + 0.724161i \(0.742227\pi\)
\(48\) 0 0
\(49\) 5.30589i 0.757984i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.07145 0.833978 0.416989 0.908912i \(-0.363085\pi\)
0.416989 + 0.908912i \(0.363085\pi\)
\(54\) 0 0
\(55\) −8.27219 4.04844i −1.11542 0.545892i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.65133i 0.735741i −0.929877 0.367870i \(-0.880087\pi\)
0.929877 0.367870i \(-0.119913\pi\)
\(60\) 0 0
\(61\) −7.40360 + 7.40360i −0.947934 + 0.947934i −0.998710 0.0507757i \(-0.983831\pi\)
0.0507757 + 0.998710i \(0.483831\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.45234 0.840709i 0.304175 0.104277i
\(66\) 0 0
\(67\) 1.99215i 0.243379i 0.992568 + 0.121690i \(0.0388313\pi\)
−0.992568 + 0.121690i \(0.961169\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.29652 8.29652i −0.984616 0.984616i 0.0152672 0.999883i \(-0.495140\pi\)
−0.999883 + 0.0152672i \(0.995140\pi\)
\(72\) 0 0
\(73\) 7.41073 7.41073i 0.867360 0.867360i −0.124819 0.992180i \(-0.539835\pi\)
0.992180 + 0.124819i \(0.0398350\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.36084 0.610924
\(78\) 0 0
\(79\) 10.1183 10.1183i 1.13840 1.13840i 0.149657 0.988738i \(-0.452183\pi\)
0.988738 0.149657i \(-0.0478170\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −11.7211 −1.28656 −0.643280 0.765631i \(-0.722427\pi\)
−0.643280 + 0.765631i \(0.722427\pi\)
\(84\) 0 0
\(85\) 7.94328 + 4.68020i 0.861570 + 0.507639i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.32011 −0.987930 −0.493965 0.869482i \(-0.664453\pi\)
−0.493965 + 0.869482i \(0.664453\pi\)
\(90\) 0 0
\(91\) −1.06704 + 1.06704i −0.111856 + 0.111856i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 14.7413 5.05361i 1.51243 0.518489i
\(96\) 0 0
\(97\) −1.46372 + 1.46372i −0.148618 + 0.148618i −0.777501 0.628882i \(-0.783513\pi\)
0.628882 + 0.777501i \(0.283513\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.2223 1.21616 0.608081 0.793875i \(-0.291939\pi\)
0.608081 + 0.793875i \(0.291939\pi\)
\(102\) 0 0
\(103\) 9.75626i 0.961313i 0.876909 + 0.480657i \(0.159602\pi\)
−0.876909 + 0.480657i \(0.840398\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.82873 + 2.82873i −0.273463 + 0.273463i −0.830493 0.557029i \(-0.811941\pi\)
0.557029 + 0.830493i \(0.311941\pi\)
\(108\) 0 0
\(109\) 9.18746 9.18746i 0.879999 0.879999i −0.113535 0.993534i \(-0.536217\pi\)
0.993534 + 0.113535i \(0.0362175\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.03145 + 9.03145i 0.849607 + 0.849607i 0.990084 0.140477i \(-0.0448636\pi\)
−0.140477 + 0.990084i \(0.544864\pi\)
\(114\) 0 0
\(115\) 0.630646 1.28860i 0.0588080 0.120163i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −5.35052 0.414464i −0.490482 0.0379938i
\(120\) 0 0
\(121\) 5.96381i 0.542164i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.35190 + 6.12715i 0.836460 + 0.548029i
\(126\) 0 0
\(127\) 13.9130 1.23458 0.617290 0.786736i \(-0.288231\pi\)
0.617290 + 0.786736i \(0.288231\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.27286 + 9.27286i 0.810173 + 0.810173i 0.984660 0.174486i \(-0.0558265\pi\)
−0.174486 + 0.984660i \(0.555826\pi\)
\(132\) 0 0
\(133\) −6.41410 + 6.41410i −0.556173 + 0.556173i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.4292i 1.57452i 0.616624 + 0.787258i \(0.288500\pi\)
−0.616624 + 0.787258i \(0.711500\pi\)
\(138\) 0 0
\(139\) −0.0744117 0.0744117i −0.00631152 0.00631152i 0.703944 0.710255i \(-0.251421\pi\)
−0.710255 + 0.703944i \(0.751421\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.37653 + 3.37653i 0.282360 + 0.282360i
\(144\) 0 0
\(145\) 2.49487 5.09778i 0.207188 0.423348i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.11888 −0.665125 −0.332562 0.943081i \(-0.607913\pi\)
−0.332562 + 0.943081i \(0.607913\pi\)
\(150\) 0 0
\(151\) 7.22211i 0.587727i −0.955847 0.293864i \(-0.905059\pi\)
0.955847 0.293864i \(-0.0949411\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.43059 13.1396i 0.516517 1.05540i
\(156\) 0 0
\(157\) 20.0539i 1.60048i 0.599681 + 0.800239i \(0.295294\pi\)
−0.599681 + 0.800239i \(0.704706\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.835084i 0.0658139i
\(162\) 0 0
\(163\) −6.35679 6.35679i −0.497902 0.497902i 0.412882 0.910784i \(-0.364522\pi\)
−0.910784 + 0.412882i \(0.864522\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.9499 16.9499i 1.31162 1.31162i 0.391399 0.920221i \(-0.371991\pi\)
0.920221 0.391399i \(-0.128009\pi\)
\(168\) 0 0
\(169\) 11.6558 0.896604
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.145437 + 0.145437i −0.0110573 + 0.0110573i −0.712614 0.701556i \(-0.752489\pi\)
0.701556 + 0.712614i \(0.252489\pi\)
\(174\) 0 0
\(175\) −6.45723 0.810537i −0.488121 0.0612709i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 17.0893i 1.27732i 0.769490 + 0.638659i \(0.220510\pi\)
−0.769490 + 0.638659i \(0.779490\pi\)
\(180\) 0 0
\(181\) 4.77844 4.77844i 0.355179 0.355179i −0.506853 0.862032i \(-0.669191\pi\)
0.862032 + 0.506853i \(0.169191\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.5613 + 6.14754i 0.923524 + 0.451976i
\(186\) 0 0
\(187\) −1.31153 + 16.9312i −0.0959084 + 1.23813i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.6178 0.840632 0.420316 0.907378i \(-0.361919\pi\)
0.420316 + 0.907378i \(0.361919\pi\)
\(192\) 0 0
\(193\) −7.26385 7.26385i −0.522864 0.522864i 0.395572 0.918435i \(-0.370547\pi\)
−0.918435 + 0.395572i \(0.870547\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 10.3378 + 10.3378i 0.736539 + 0.736539i 0.971907 0.235367i \(-0.0756293\pi\)
−0.235367 + 0.971907i \(0.575629\pi\)
\(198\) 0 0
\(199\) −3.63355 3.63355i −0.257575 0.257575i 0.566492 0.824067i \(-0.308300\pi\)
−0.824067 + 0.566492i \(0.808300\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.30365i 0.231870i
\(204\) 0 0
\(205\) −9.03681 4.42265i −0.631158 0.308891i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 20.2967 + 20.2967i 1.40395 + 1.40395i
\(210\) 0 0
\(211\) 0.480180 0.480180i 0.0330570 0.0330570i −0.690385 0.723442i \(-0.742559\pi\)
0.723442 + 0.690385i \(0.242559\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −9.16215 26.7259i −0.624854 1.82269i
\(216\) 0 0
\(217\) 8.51521i 0.578050i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.10899 3.63109i −0.209133 0.244253i
\(222\) 0 0
\(223\) −5.43069 −0.363666 −0.181833 0.983329i \(-0.558203\pi\)
−0.181833 + 0.983329i \(0.558203\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.35688 + 7.35688i 0.488293 + 0.488293i 0.907767 0.419474i \(-0.137785\pi\)
−0.419474 + 0.907767i \(0.637785\pi\)
\(228\) 0 0
\(229\) 25.9282i 1.71339i −0.515826 0.856693i \(-0.672515\pi\)
0.515826 0.856693i \(-0.327485\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.9626 14.9626i 0.980231 0.980231i −0.0195771 0.999808i \(-0.506232\pi\)
0.999808 + 0.0195771i \(0.00623198\pi\)
\(234\) 0 0
\(235\) 21.0025 7.20006i 1.37005 0.469680i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.8457 −0.701550 −0.350775 0.936460i \(-0.614082\pi\)
−0.350775 + 0.936460i \(0.614082\pi\)
\(240\) 0 0
\(241\) 2.68742 + 2.68742i 0.173112 + 0.173112i 0.788345 0.615233i \(-0.210938\pi\)
−0.615233 + 0.788345i \(0.710938\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −11.2231 + 3.84751i −0.717020 + 0.245809i
\(246\) 0 0
\(247\) −8.07986 −0.514109
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −22.0499 −1.39178 −0.695889 0.718149i \(-0.744990\pi\)
−0.695889 + 0.718149i \(0.744990\pi\)
\(252\) 0 0
\(253\) 2.64254 0.166135
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.19266 −0.323909 −0.161955 0.986798i \(-0.551780\pi\)
−0.161955 + 0.986798i \(0.551780\pi\)
\(258\) 0 0
\(259\) −8.14040 −0.505820
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 10.1590 0.626428 0.313214 0.949683i \(-0.398594\pi\)
0.313214 + 0.949683i \(0.398594\pi\)
\(264\) 0 0
\(265\) −4.40265 12.8425i −0.270453 0.788907i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5.44432 5.44432i −0.331946 0.331946i 0.521379 0.853325i \(-0.325418\pi\)
−0.853325 + 0.521379i \(0.825418\pi\)
\(270\) 0 0
\(271\) −8.33133 −0.506092 −0.253046 0.967454i \(-0.581432\pi\)
−0.253046 + 0.967454i \(0.581432\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.56486 + 20.4332i −0.154667 + 1.23217i
\(276\) 0 0
\(277\) 11.6068 11.6068i 0.697385 0.697385i −0.266461 0.963846i \(-0.585854\pi\)
0.963846 + 0.266461i \(0.0858543\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 12.2079i 0.728263i 0.931348 + 0.364131i \(0.118634\pi\)
−0.931348 + 0.364131i \(0.881366\pi\)
\(282\) 0 0
\(283\) −22.4914 22.4914i −1.33698 1.33698i −0.898975 0.438001i \(-0.855687\pi\)
−0.438001 0.898975i \(-0.644313\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.85635 0.345690
\(288\) 0 0
\(289\) 2.61801 16.7972i 0.154000 0.988071i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 26.1428i 1.52728i 0.645642 + 0.763640i \(0.276590\pi\)
−0.645642 + 0.763640i \(0.723410\pi\)
\(294\) 0 0
\(295\) −11.9538 + 4.09801i −0.695979 + 0.238595i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.525979 + 0.525979i −0.0304182 + 0.0304182i
\(300\) 0 0
\(301\) 11.6287 + 11.6287i 0.670268 + 0.670268i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 21.0289 + 10.2916i 1.20411 + 0.589297i
\(306\) 0 0
\(307\) 3.71962i 0.212290i 0.994351 + 0.106145i \(0.0338508\pi\)
−0.994351 + 0.106145i \(0.966149\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −11.6637 11.6637i −0.661388 0.661388i 0.294319 0.955707i \(-0.404907\pi\)
−0.955707 + 0.294319i \(0.904907\pi\)
\(312\) 0 0
\(313\) 15.7319 + 15.7319i 0.889219 + 0.889219i 0.994448 0.105229i \(-0.0335576\pi\)
−0.105229 + 0.994448i \(0.533558\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.89666 + 2.89666i 0.162692 + 0.162692i 0.783758 0.621066i \(-0.213300\pi\)
−0.621066 + 0.783758i \(0.713300\pi\)
\(318\) 0 0
\(319\) 10.4540 0.585314
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −18.6885 21.8269i −1.03986 1.21448i
\(324\) 0 0
\(325\) −3.55658 4.57761i −0.197283 0.253920i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9.13840 + 9.13840i −0.503816 + 0.503816i
\(330\) 0 0
\(331\) 10.4885i 0.576502i 0.957555 + 0.288251i \(0.0930737\pi\)
−0.957555 + 0.288251i \(0.906926\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.21384 1.44459i 0.230227 0.0789261i
\(336\) 0 0
\(337\) −8.12749 + 8.12749i −0.442733 + 0.442733i −0.892929 0.450197i \(-0.851354\pi\)
0.450197 + 0.892929i \(0.351354\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 26.9455 1.45918
\(342\) 0 0
\(343\) 11.3258 11.3258i 0.611536 0.611536i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −14.7752 14.7752i −0.793175 0.793175i 0.188834 0.982009i \(-0.439529\pi\)
−0.982009 + 0.188834i \(0.939529\pi\)
\(348\) 0 0
\(349\) 11.9614i 0.640282i 0.947370 + 0.320141i \(0.103730\pi\)
−0.947370 + 0.320141i \(0.896270\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.9492i 1.00856i 0.863539 + 0.504282i \(0.168243\pi\)
−0.863539 + 0.504282i \(0.831757\pi\)
\(354\) 0 0
\(355\) −11.5329 + 23.5651i −0.612101 + 1.25071i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.24214i 0.487781i 0.969803 + 0.243891i \(0.0784238\pi\)
−0.969803 + 0.243891i \(0.921576\pi\)
\(360\) 0 0
\(361\) −29.5690 −1.55626
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −21.0492 10.3015i −1.10176 0.539207i
\(366\) 0 0
\(367\) −0.751175 0.751175i −0.0392110 0.0392110i 0.687229 0.726440i \(-0.258827\pi\)
−0.726440 + 0.687229i \(0.758827\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.58790 + 5.58790i 0.290109 + 0.290109i
\(372\) 0 0
\(373\) 7.67593i 0.397445i 0.980056 + 0.198722i \(0.0636792\pi\)
−0.980056 + 0.198722i \(0.936321\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.08081 + 2.08081i −0.107167 + 0.107167i
\(378\) 0 0
\(379\) 3.46061 + 3.46061i 0.177760 + 0.177760i 0.790378 0.612619i \(-0.209884\pi\)
−0.612619 + 0.790378i \(0.709884\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.0930 −0.617926 −0.308963 0.951074i \(-0.599982\pi\)
−0.308963 + 0.951074i \(0.599982\pi\)
\(384\) 0 0
\(385\) −3.88736 11.3394i −0.198118 0.577908i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 15.2339i 0.772390i −0.922417 0.386195i \(-0.873789\pi\)
0.922417 0.386195i \(-0.126211\pi\)
\(390\) 0 0
\(391\) −2.63745 0.204303i −0.133382 0.0103321i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −28.7396 14.0653i −1.44605 0.707700i
\(396\) 0 0
\(397\) 14.7337 + 14.7337i 0.739464 + 0.739464i 0.972474 0.233010i \(-0.0748575\pi\)
−0.233010 + 0.972474i \(0.574857\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.04136 + 5.04136i −0.251753 + 0.251753i −0.821689 0.569936i \(-0.806968\pi\)
0.569936 + 0.821689i \(0.306968\pi\)
\(402\) 0 0
\(403\) −5.36332 + 5.36332i −0.267166 + 0.267166i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 25.7595i 1.27685i
\(408\) 0 0
\(409\) 12.5044 0.618302 0.309151 0.951013i \(-0.399955\pi\)
0.309151 + 0.951013i \(0.399955\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.20124 5.20124i 0.255936 0.255936i
\(414\) 0 0
\(415\) 8.49946 + 24.7928i 0.417222 + 1.21703i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.8752 + 12.8752i −0.628995 + 0.628995i −0.947815 0.318820i \(-0.896713\pi\)
0.318820 + 0.947815i \(0.396713\pi\)
\(420\) 0 0
\(421\) −11.2740 −0.549459 −0.274729 0.961522i \(-0.588588\pi\)
−0.274729 + 0.961522i \(0.588588\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.13969 20.1956i 0.200804 0.979631i
\(426\) 0 0
\(427\) −13.6279 −0.659501
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.551302 + 0.551302i −0.0265553 + 0.0265553i −0.720260 0.693704i \(-0.755977\pi\)
0.693704 + 0.720260i \(0.255977\pi\)
\(432\) 0 0
\(433\) 1.85198 0.0890004 0.0445002 0.999009i \(-0.485830\pi\)
0.0445002 + 0.999009i \(0.485830\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.16173 + 3.16173i −0.151246 + 0.151246i
\(438\) 0 0
\(439\) 24.0840 + 24.0840i 1.14947 + 1.14947i 0.986657 + 0.162811i \(0.0520561\pi\)
0.162811 + 0.986657i \(0.447944\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 17.4319i 0.828214i −0.910228 0.414107i \(-0.864094\pi\)
0.910228 0.414107i \(-0.135906\pi\)
\(444\) 0 0
\(445\) 6.75839 + 19.7141i 0.320378 + 0.934539i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −18.6026 + 18.6026i −0.877913 + 0.877913i −0.993318 0.115406i \(-0.963183\pi\)
0.115406 + 0.993318i \(0.463183\pi\)
\(450\) 0 0
\(451\) 18.5318i 0.872629i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.03078 + 1.48327i 0.142085 + 0.0695369i
\(456\) 0 0
\(457\) −17.4794 −0.817653 −0.408826 0.912612i \(-0.634062\pi\)
−0.408826 + 0.912612i \(0.634062\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 32.6942i 1.52272i −0.648330 0.761360i \(-0.724532\pi\)
0.648330 0.761360i \(-0.275468\pi\)
\(462\) 0 0
\(463\) 1.96866i 0.0914913i 0.998953 + 0.0457457i \(0.0145664\pi\)
−0.998953 + 0.0457457i \(0.985434\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −9.96756 −0.461244 −0.230622 0.973043i \(-0.574076\pi\)
−0.230622 + 0.973043i \(0.574076\pi\)
\(468\) 0 0
\(469\) −1.83348 + 1.83348i −0.0846625 + 0.0846625i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 36.7978 36.7978i 1.69197 1.69197i
\(474\) 0 0
\(475\) −21.3790 27.5166i −0.980937 1.26255i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −13.9579 13.9579i −0.637753 0.637753i 0.312248 0.950001i \(-0.398918\pi\)
−0.950001 + 0.312248i \(0.898918\pi\)
\(480\) 0 0
\(481\) −5.12725 5.12725i −0.233782 0.233782i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.15750 + 2.03470i 0.188782 + 0.0923908i
\(486\) 0 0
\(487\) 15.0332 + 15.0332i 0.681218 + 0.681218i 0.960275 0.279057i \(-0.0900218\pi\)
−0.279057 + 0.960275i \(0.590022\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.51034i 0.158419i −0.996858 0.0792097i \(-0.974760\pi\)
0.996858 0.0792097i \(-0.0252397\pi\)
\(492\) 0 0
\(493\) −10.4339 0.808236i −0.469920 0.0364011i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 15.2715i 0.685021i
\(498\) 0 0
\(499\) −6.45699 + 6.45699i −0.289055 + 0.289055i −0.836706 0.547652i \(-0.815522\pi\)
0.547652 + 0.836706i \(0.315522\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.81392 3.81392i −0.170054 0.170054i 0.616949 0.787003i \(-0.288368\pi\)
−0.787003 + 0.616949i \(0.788368\pi\)
\(504\) 0 0
\(505\) −8.86287 25.8529i −0.394392 1.15044i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 11.9248 0.528555 0.264278 0.964447i \(-0.414866\pi\)
0.264278 + 0.964447i \(0.414866\pi\)
\(510\) 0 0
\(511\) 13.6410 0.603443
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 20.6367 7.07466i 0.909361 0.311747i
\(516\) 0 0
\(517\) 28.9175 + 28.9175i 1.27179 + 1.27179i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 29.1089 29.1089i 1.27528 1.27528i 0.332008 0.943277i \(-0.392274\pi\)
0.943277 0.332008i \(-0.107726\pi\)
\(522\) 0 0
\(523\) 37.8707i 1.65597i −0.560749 0.827986i \(-0.689487\pi\)
0.560749 0.827986i \(-0.310513\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −26.8937 2.08324i −1.17151 0.0907475i
\(528\) 0 0
\(529\) 22.5884i 0.982103i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.68863 + 3.68863i 0.159772 + 0.159772i
\(534\) 0 0
\(535\) 8.03461 + 3.93217i 0.347366 + 0.170002i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −15.4527 15.4527i −0.665596 0.665596i
\(540\) 0 0
\(541\) 18.5764 + 18.5764i 0.798663 + 0.798663i 0.982885 0.184221i \(-0.0589763\pi\)
−0.184221 + 0.982885i \(0.558976\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −26.0957 12.7713i −1.11782 0.547064i
\(546\) 0 0
\(547\) −22.7641 + 22.7641i −0.973321 + 0.973321i −0.999653 0.0263321i \(-0.991617\pi\)
0.0263321 + 0.999653i \(0.491617\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −12.5080 + 12.5080i −0.532858 + 0.532858i
\(552\) 0 0
\(553\) 18.6248 0.792009
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.68311i 0.325544i 0.986664 + 0.162772i \(0.0520435\pi\)
−0.986664 + 0.162772i \(0.947957\pi\)
\(558\) 0 0
\(559\) 14.6487i 0.619575i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −38.6723 −1.62984 −0.814922 0.579571i \(-0.803220\pi\)
−0.814922 + 0.579571i \(0.803220\pi\)
\(564\) 0 0
\(565\) 12.5545 25.6526i 0.528171 1.07921i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 13.0075i 0.545304i −0.962113 0.272652i \(-0.912099\pi\)
0.962113 0.272652i \(-0.0879008\pi\)
\(570\) 0 0
\(571\) −26.4593 + 26.4593i −1.10729 + 1.10729i −0.113781 + 0.993506i \(0.536296\pi\)
−0.993506 + 0.113781i \(0.963704\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.18299 0.399541i −0.132740 0.0166620i
\(576\) 0 0
\(577\) 36.9260i 1.53725i −0.639699 0.768626i \(-0.720941\pi\)
0.639699 0.768626i \(-0.279059\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −10.7876 10.7876i −0.447546 0.447546i
\(582\) 0 0
\(583\) 17.6823 17.6823i 0.732327 0.732327i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −26.1089 −1.07763 −0.538814 0.842425i \(-0.681127\pi\)
−0.538814 + 0.842425i \(0.681127\pi\)
\(588\) 0 0
\(589\) −32.2396 + 32.2396i −1.32841 + 1.32841i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −7.06479 −0.290116 −0.145058 0.989423i \(-0.546337\pi\)
−0.145058 + 0.989423i \(0.546337\pi\)
\(594\) 0 0
\(595\) 3.00319 + 11.6181i 0.123119 + 0.476296i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 25.4369 1.03932 0.519662 0.854372i \(-0.326058\pi\)
0.519662 + 0.854372i \(0.326058\pi\)
\(600\) 0 0
\(601\) 13.0754 13.0754i 0.533355 0.533355i −0.388214 0.921569i \(-0.626908\pi\)
0.921569 + 0.388214i \(0.126908\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −12.6148 + 4.32459i −0.512864 + 0.175820i
\(606\) 0 0
\(607\) −33.2572 + 33.2572i −1.34987 + 1.34987i −0.464067 + 0.885800i \(0.653610\pi\)
−0.885800 + 0.464067i \(0.846390\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −11.5117 −0.465713
\(612\) 0 0
\(613\) 30.0418i 1.21338i −0.794940 0.606688i \(-0.792498\pi\)
0.794940 0.606688i \(-0.207502\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.1004 + 13.1004i −0.527402 + 0.527402i −0.919797 0.392395i \(-0.871647\pi\)
0.392395 + 0.919797i \(0.371647\pi\)
\(618\) 0 0
\(619\) −17.8124 + 17.8124i −0.715940 + 0.715940i −0.967771 0.251832i \(-0.918967\pi\)
0.251832 + 0.967771i \(0.418967\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −8.57782 8.57782i −0.343663 0.343663i
\(624\) 0 0
\(625\) 6.17885 24.2244i 0.247154 0.968976i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.99155 25.7099i 0.0794082 1.02512i
\(630\) 0 0
\(631\) 37.9978i 1.51267i −0.654186 0.756333i \(-0.726989\pi\)
0.654186 0.756333i \(-0.273011\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −10.0889 29.4291i −0.400365 1.16786i
\(636\) 0 0
\(637\) 6.15152 0.243732
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −23.2894 23.2894i −0.919874 0.919874i 0.0771457 0.997020i \(-0.475419\pi\)
−0.997020 + 0.0771457i \(0.975419\pi\)
\(642\) 0 0
\(643\) −12.3729 + 12.3729i −0.487939 + 0.487939i −0.907655 0.419716i \(-0.862130\pi\)
0.419716 + 0.907655i \(0.362130\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17.8600i 0.702151i −0.936347 0.351075i \(-0.885816\pi\)
0.936347 0.351075i \(-0.114184\pi\)
\(648\) 0 0
\(649\) −16.4588 16.4588i −0.646064 0.646064i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.9032 19.9032i −0.778873 0.778873i 0.200766 0.979639i \(-0.435657\pi\)
−0.979639 + 0.200766i \(0.935657\pi\)
\(654\) 0 0
\(655\) 12.8901 26.3383i 0.503656 1.02912i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 24.7532 0.964250 0.482125 0.876103i \(-0.339865\pi\)
0.482125 + 0.876103i \(0.339865\pi\)
\(660\) 0 0
\(661\) 25.2845i 0.983452i 0.870750 + 0.491726i \(0.163634\pi\)
−0.870750 + 0.491726i \(0.836366\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 18.2184 + 8.91614i 0.706478 + 0.345753i
\(666\) 0 0
\(667\) 1.62848i 0.0630549i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 43.1241i 1.66479i
\(672\) 0 0
\(673\) 17.2029 + 17.2029i 0.663122 + 0.663122i 0.956115 0.292993i \(-0.0946511\pi\)
−0.292993 + 0.956115i \(0.594651\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6.81527 + 6.81527i −0.261932 + 0.261932i −0.825839 0.563907i \(-0.809298\pi\)
0.563907 + 0.825839i \(0.309298\pi\)
\(678\) 0 0
\(679\) −2.69429 −0.103397
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −9.96792 + 9.96792i −0.381412 + 0.381412i −0.871611 0.490199i \(-0.836924\pi\)
0.490199 + 0.871611i \(0.336924\pi\)
\(684\) 0 0
\(685\) 38.9820 13.3638i 1.48942 0.510604i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.03909i 0.268168i
\(690\) 0 0
\(691\) 23.0027 23.0027i 0.875062 0.875062i −0.117956 0.993019i \(-0.537634\pi\)
0.993019 + 0.117956i \(0.0376343\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.103439 + 0.211356i −0.00392365 + 0.00801720i
\(696\) 0 0
\(697\) −1.43276 + 18.4962i −0.0542695 + 0.700592i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −5.92797 −0.223896 −0.111948 0.993714i \(-0.535709\pi\)
−0.111948 + 0.993714i \(0.535709\pi\)
\(702\) 0 0
\(703\) −30.8205 30.8205i −1.16242 1.16242i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 11.2489 + 11.2489i 0.423057 + 0.423057i
\(708\) 0 0
\(709\) 29.5924 + 29.5924i 1.11137 + 1.11137i 0.992966 + 0.118400i \(0.0377767\pi\)
0.118400 + 0.992966i \(0.462223\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.19744i 0.157195i
\(714\) 0 0
\(715\) 4.69366 9.59058i 0.175533 0.358667i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 14.8911 + 14.8911i 0.555344 + 0.555344i 0.927978 0.372634i \(-0.121545\pi\)
−0.372634 + 0.927978i \(0.621545\pi\)
\(720\) 0 0
\(721\) −8.97924 + 8.97924i −0.334404 + 0.334404i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −12.5921 1.58061i −0.467658 0.0587024i
\(726\) 0 0
\(727\) 10.2119i 0.378738i −0.981906 0.189369i \(-0.939356\pi\)
0.981906 0.189369i \(-0.0606442\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −39.5720 + 33.8821i −1.46362 + 1.25317i
\(732\) 0 0
\(733\) −13.2721 −0.490215 −0.245107 0.969496i \(-0.578823\pi\)
−0.245107 + 0.969496i \(0.578823\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.80187 + 5.80187i 0.213715 + 0.213715i
\(738\) 0 0
\(739\) 27.0478i 0.994968i −0.867473 0.497484i \(-0.834257\pi\)
0.867473 0.497484i \(-0.165743\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27.8098 27.8098i 1.02024 1.02024i 0.0204515 0.999791i \(-0.493490\pi\)
0.999791 0.0204515i \(-0.00651036\pi\)
\(744\) 0 0
\(745\) 5.88732 + 17.1732i 0.215695 + 0.629179i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.20687 −0.190255
\(750\) 0 0
\(751\) 5.97276 + 5.97276i 0.217949 + 0.217949i 0.807634 0.589684i \(-0.200748\pi\)
−0.589684 + 0.807634i \(0.700748\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −15.2764 + 5.23704i −0.555964 + 0.190595i
\(756\) 0 0
\(757\) 40.6471 1.47734 0.738672 0.674065i \(-0.235453\pi\)
0.738672 + 0.674065i \(0.235453\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 32.7541 1.18733 0.593667 0.804711i \(-0.297680\pi\)
0.593667 + 0.804711i \(0.297680\pi\)
\(762\) 0 0
\(763\) 16.9115 0.612236
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.55202 0.236580
\(768\) 0 0
\(769\) 19.5789 0.706032 0.353016 0.935617i \(-0.385156\pi\)
0.353016 + 0.935617i \(0.385156\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −37.6385 −1.35376 −0.676881 0.736092i \(-0.736669\pi\)
−0.676881 + 0.736092i \(0.736669\pi\)
\(774\) 0 0
\(775\) −32.4564 4.07405i −1.16587 0.146344i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 22.1728 + 22.1728i 0.794424 + 0.794424i
\(780\) 0 0
\(781\) −48.3251 −1.72921
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 42.4186 14.5419i 1.51398 0.519023i
\(786\) 0 0
\(787\) −24.7987 + 24.7987i −0.883978 + 0.883978i −0.993936 0.109959i \(-0.964928\pi\)
0.109959 + 0.993936i \(0.464928\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 16.6243i 0.591092i
\(792\) 0 0
\(793\) −8.58356 8.58356i −0.304811 0.304811i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.98758 −0.105826 −0.0529128 0.998599i \(-0.516851\pi\)
−0.0529128 + 0.998599i \(0.516851\pi\)
\(798\) 0 0
\(799\) −26.6262 31.0976i −0.941967 1.10015i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 43.1656i 1.52328i
\(804\) 0 0
\(805\) 1.76639 0.605553i 0.0622571 0.0213429i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −16.6706 + 16.6706i −0.586108 + 0.586108i −0.936575 0.350467i \(-0.886023\pi\)
0.350467 + 0.936575i \(0.386023\pi\)
\(810\) 0 0
\(811\) 14.3540 + 14.3540i 0.504039 + 0.504039i 0.912690 0.408652i \(-0.134001\pi\)
−0.408652 + 0.912690i \(0.634001\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −8.83647 + 18.0556i −0.309528 + 0.632460i
\(816\) 0 0
\(817\) 88.0553i 3.08066i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.57512 + 6.57512i 0.229473 + 0.229473i 0.812473 0.582999i \(-0.198121\pi\)
−0.582999 + 0.812473i \(0.698121\pi\)
\(822\) 0 0
\(823\) −11.4869 11.4869i −0.400408 0.400408i 0.477969 0.878377i \(-0.341373\pi\)
−0.878377 + 0.477969i \(0.841373\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −20.7914 20.7914i −0.722988 0.722988i 0.246225 0.969213i \(-0.420810\pi\)
−0.969213 + 0.246225i \(0.920810\pi\)
\(828\) 0 0
\(829\) −48.9429 −1.69986 −0.849929 0.526898i \(-0.823355\pi\)
−0.849929 + 0.526898i \(0.823355\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 14.2283 + 16.6177i 0.492981 + 0.575769i
\(834\) 0 0
\(835\) −48.1438 23.5617i −1.66608 0.815388i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 29.7911 29.7911i 1.02850 1.02850i 0.0289208 0.999582i \(-0.490793\pi\)
0.999582 0.0289208i \(-0.00920706\pi\)
\(840\) 0 0
\(841\) 22.5576i 0.777850i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8.45212 24.6547i −0.290762 0.848148i
\(846\) 0 0
\(847\) 5.48883 5.48883i 0.188598 0.188598i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.01268 −0.137553
\(852\) 0 0
\(853\) −14.4227 + 14.4227i −0.493823 + 0.493823i −0.909508 0.415685i \(-0.863542\pi\)
0.415685 + 0.909508i \(0.363542\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 23.5643 + 23.5643i 0.804940 + 0.804940i 0.983863 0.178923i \(-0.0572613\pi\)
−0.178923 + 0.983863i \(0.557261\pi\)
\(858\) 0 0
\(859\) 7.83039i 0.267170i −0.991037 0.133585i \(-0.957351\pi\)
0.991037 0.133585i \(-0.0426488\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 11.8712i 0.404099i 0.979375 + 0.202050i \(0.0647603\pi\)
−0.979375 + 0.202050i \(0.935240\pi\)
\(864\) 0 0
\(865\) 0.413093 + 0.202169i 0.0140456 + 0.00687395i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 58.9363i 1.99928i
\(870\) 0 0
\(871\) −2.30965 −0.0782594
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.96793 + 14.2462i 0.100334 + 0.481611i
\(876\) 0 0
\(877\) 1.45075 + 1.45075i 0.0489882 + 0.0489882i 0.731177 0.682188i \(-0.238972\pi\)
−0.682188 + 0.731177i \(0.738972\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 5.33607 + 5.33607i 0.179777 + 0.179777i 0.791259 0.611482i \(-0.209426\pi\)
−0.611482 + 0.791259i \(0.709426\pi\)
\(882\) 0 0
\(883\) 48.5959i 1.63538i −0.575657 0.817691i \(-0.695254\pi\)
0.575657 0.817691i \(-0.304746\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −25.1417 + 25.1417i −0.844177 + 0.844177i −0.989399 0.145222i \(-0.953610\pi\)
0.145222 + 0.989399i \(0.453610\pi\)
\(888\) 0 0
\(889\) 12.8049 + 12.8049i 0.429463 + 0.429463i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −69.1981 −2.31563
\(894\) 0 0
\(895\) 36.1478 12.3922i 1.20829 0.414224i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.6053i 0.553818i
\(900\) 0 0
\(901\) −19.0154 + 16.2812i −0.633494 + 0.542406i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −13.5725 6.64244i −0.451166 0.220802i
\(906\) 0 0
\(907\) −23.3183 23.3183i −0.774272 0.774272i 0.204578 0.978850i \(-0.434418\pi\)
−0.978850 + 0.204578i \(0.934418\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −40.0778 + 40.0778i −1.32784 + 1.32784i −0.420580 + 0.907256i \(0.638173\pi\)
−0.907256 + 0.420580i \(0.861827\pi\)
\(912\) 0 0
\(913\) −34.1363 + 34.1363i −1.12975 + 1.12975i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 17.0687i 0.563657i
\(918\) 0 0
\(919\) −5.02824 −0.165866 −0.0829332 0.996555i \(-0.526429\pi\)
−0.0829332 + 0.996555i \(0.526429\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 9.61879 9.61879i 0.316606 0.316606i
\(924\) 0 0
\(925\) 3.89473 31.0277i 0.128058 1.02019i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −17.4499 + 17.4499i −0.572514 + 0.572514i −0.932830 0.360316i \(-0.882669\pi\)
0.360316 + 0.932830i \(0.382669\pi\)
\(930\) 0 0
\(931\) 36.9775 1.21189
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 36.7643 9.50329i 1.20232 0.310791i
\(936\) 0 0
\(937\) −42.1294 −1.37631 −0.688154 0.725565i \(-0.741579\pi\)
−0.688154 + 0.725565i \(0.741579\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −27.5722 + 27.5722i −0.898828 + 0.898828i −0.995333 0.0965045i \(-0.969234\pi\)
0.0965045 + 0.995333i \(0.469234\pi\)
\(942\) 0 0
\(943\) 2.88679 0.0940070
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 15.1175 15.1175i 0.491253 0.491253i −0.417448 0.908701i \(-0.637075\pi\)
0.908701 + 0.417448i \(0.137075\pi\)
\(948\) 0 0
\(949\) 8.59182 + 8.59182i 0.278902 + 0.278902i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 28.4337i 0.921058i 0.887645 + 0.460529i \(0.152340\pi\)
−0.887645 + 0.460529i \(0.847660\pi\)
\(954\) 0 0
\(955\) −8.42450 24.5742i −0.272611 0.795201i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −16.9615 + 16.9615i −0.547714 + 0.547714i
\(960\) 0 0
\(961\) 11.8005i 0.380662i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −10.0974 + 20.6320i −0.325046 + 0.664167i
\(966\) 0 0
\(967\) −10.9648 −0.352604 −0.176302 0.984336i \(-0.556414\pi\)
−0.176302 + 0.984336i \(0.556414\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 23.7882i 0.763400i 0.924286 + 0.381700i \(0.124661\pi\)
−0.924286 + 0.381700i \(0.875339\pi\)
\(972\) 0 0
\(973\) 0.136971i 0.00439107i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.33721 −0.0747738 −0.0373869 0.999301i \(-0.511903\pi\)
−0.0373869 + 0.999301i \(0.511903\pi\)
\(978\) 0 0
\(979\) −27.1436 + 27.1436i −0.867514 + 0.867514i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 30.1083 30.1083i 0.960306 0.960306i −0.0389361 0.999242i \(-0.512397\pi\)
0.999242 + 0.0389361i \(0.0123969\pi\)
\(984\) 0 0
\(985\) 14.3704 29.3632i 0.457880 0.935588i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.73218 + 5.73218i 0.182273 + 0.182273i
\(990\) 0 0
\(991\) −11.1150 11.1150i −0.353080 0.353080i 0.508174 0.861254i \(-0.330321\pi\)
−0.861254 + 0.508174i \(0.830321\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5.05094 + 10.3206i −0.160126 + 0.327185i
\(996\) 0 0
\(997\) −30.1544 30.1544i −0.954998 0.954998i 0.0440317 0.999030i \(-0.485980\pi\)
−0.999030 + 0.0440317i \(0.985980\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.z.g.829.8 40
3.2 odd 2 1020.2.y.a.829.15 yes 40
5.4 even 2 inner 3060.2.z.g.829.3 40
15.14 odd 2 1020.2.y.a.829.6 yes 40
17.4 even 4 inner 3060.2.z.g.2809.3 40
51.38 odd 4 1020.2.y.a.769.6 40
85.4 even 4 inner 3060.2.z.g.2809.8 40
255.89 odd 4 1020.2.y.a.769.15 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1020.2.y.a.769.6 40 51.38 odd 4
1020.2.y.a.769.15 yes 40 255.89 odd 4
1020.2.y.a.829.6 yes 40 15.14 odd 2
1020.2.y.a.829.15 yes 40 3.2 odd 2
3060.2.z.g.829.3 40 5.4 even 2 inner
3060.2.z.g.829.8 40 1.1 even 1 trivial
3060.2.z.g.2809.3 40 17.4 even 4 inner
3060.2.z.g.2809.8 40 85.4 even 4 inner